JPH04247235A - Adsorbent for beta2-microglobulin - Google Patents

Adsorbent for beta2-microglobulin

Info

Publication number
JPH04247235A
JPH04247235A JP2901391A JP2901391A JPH04247235A JP H04247235 A JPH04247235 A JP H04247235A JP 2901391 A JP2901391 A JP 2901391A JP 2901391 A JP2901391 A JP 2901391A JP H04247235 A JPH04247235 A JP H04247235A
Authority
JP
Japan
Prior art keywords
microglobulin
acid
adsorbent
porous
polyamino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2901391A
Other languages
Japanese (ja)
Inventor
Chuichi Hirayama
平山 忠一
Hirotaka Ihara
博隆 伊原
Kiyoshi Hidachi
日達 清
Kohei Okawa
大川 浩平
Shiro Fujikake
藤掛 史朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP2901391A priority Critical patent/JPH04247235A/en
Publication of JPH04247235A publication Critical patent/JPH04247235A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently and selectively adsorb and remove beta2-microglubulin which exists at high concn. in the blood of a patient under treatment with artificial hemodialysis. CONSTITUTION:A porous body containing polyamino acid as a structural component is prepared by controlling the micropores to such a range that beta2- miicroglobulin can be diffused but other coexisting proteins (albumin, globulin) in blood are hardly diffused (in the range from 10000 to 50000 in terms of dextran mol.wt.). Then the surface of this porous body is treated with formic acid to form a beta structure to the polyamino acid.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、β2−ミクログロブリ
ンの吸着剤に関するものであり、更に詳しくは、血液中
または血しょう中より、β2−ミクログロブリンを除去
する為の吸着剤に関するものである。
[Field of Industrial Application] The present invention relates to an adsorbent for β2-microglobulin, and more particularly to an adsorbent for removing β2-microglobulin from blood or plasma. .

【0002】0002

【従来の技術】β2−ミクログロブリンは、全アミノ酸
配列の分析により、免疫グロブリンのCドメインと類似
の、分子量約12000の糖鎖を持たない単純タンパク
であることが分かっている。ところで、長期間にわたっ
て血液透析を行っている患者では、血液中の遊離のβ2
−ミクログロブリン濃度が健常者の10〜100倍にも
増大しており、透析患者に効率で発生する手根管症候群
(アミロイドーシス)は、このβ2−ミクログロブリン
が原因物質と考えられている。従来より血液あるいは血
しょう中よりβ2−ミクログロブリンを除去しようとす
る試みがなされているが、未だ実用に耐え得るような除
去方法は見いだされていない。例えば、透析膜による分
離ではβ2−ミクログロブリン以外の有用タンパク質も
除去されたり、除去量が少ないなどの欠点を有している
BACKGROUND OF THE INVENTION Through analysis of its entire amino acid sequence, β2-microglobulin has been found to be a simple protein with a molecular weight of about 12,000 and no sugar chains, similar to the C domain of immunoglobulins. By the way, in patients undergoing hemodialysis for a long period of time, free β2 in the blood
- Microglobulin concentration is 10 to 100 times higher than in healthy individuals, and β2-microglobulin is thought to be the causative agent of carpal tunnel syndrome (amyloidosis), which frequently occurs in dialysis patients. Attempts have been made to remove β2-microglobulin from blood or plasma, but no practical removal method has yet been found. For example, separation using a dialysis membrane has the disadvantage that useful proteins other than β2-microglobulin are also removed, and the amount removed is small.

【0003】また、不活性担体に抗β2−ミクログロブ
リン抗体を担持させた例(特開昭62−871597号
)があるが、抗体の生産クローニング等の吸着剤の調製
に時間とコストがかかり、大量使用には不向きである。 また、各種多孔質担体に疎水性の強いリガンドを結合さ
せて吸着させる例(特開昭63−99875号、同62
−240068号)では、その強疎水性故にβ2−ミク
ログロブリン吸着量は大きいが、実際の血液あるいは血
しょう中に大量に存在する他のタンパク(特に疎水性の
強いタンパク、例えば免疫グロブリン等)、脂質等まで
吸着してしまう。そのため実際の血液または血しょう中
ではβ2−ミクログロブリンの吸着量と吸着速度が小さ
くなるので使用は困難と考えられる。更にこれらの従来
技術で開示されている担体の孔径、20〜2000オン
グストロームの範囲では他のタンパクとのサイズ上の選
択は困難と考えられる。また、従来技術の吸着剤は生体
適合性がなく、そのまま実際の血液、血しょう中に適用
するには血液適合性の面で問題が残されている。
[0003]Also, there is an example in which an inert carrier is supported with an anti-β2-microglobulin antibody (Japanese Patent Application Laid-Open No. 62-871597), but preparation of the adsorbent such as antibody production cloning takes time and cost. Not suitable for mass use. Examples of bonding and adsorption of strongly hydrophobic ligands to various porous carriers (JP-A-63-99875, JP-A-63-99875;
-240068) has a large adsorption amount of β2-microglobulin due to its strong hydrophobicity, but other proteins (especially highly hydrophobic proteins, such as immunoglobulins) that exist in large quantities in actual blood or plasma, It even adsorbs lipids, etc. Therefore, in actual blood or plasma, the adsorption amount and adsorption rate of β2-microglobulin will be small, making it difficult to use. Furthermore, since the pore diameter of the carriers disclosed in these prior art is in the range of 20 to 2000 angstroms, it is considered difficult to select between them and other proteins in terms of size. Furthermore, the adsorbents of the prior art are not biocompatible, and problems remain in terms of blood compatibility when directly applied to actual blood or plasma.

【0004】0004

【発明が解決しようとする課題】本発明の吸着剤は、従
来の吸着剤の欠点を克服し、血液または血しょう中より
β2−ミクログロブリンを選択的に、更には効率よく、
吸着除去し得る吸着剤を提供することを目的とする。
Problems to be Solved by the Invention The adsorbent of the present invention overcomes the drawbacks of conventional adsorbents and selectively and efficiently collects β2-microglobulin from blood or plasma.
The object of the present invention is to provide an adsorbent that can be removed by adsorption.

【0005】[0005]

【課題を解決するための手段】本発明者らは、従来より
ポリアミノ酸の表面構造によってタンパク質分子との相
互作用に選択性が生じ多孔質表面の細孔を制御すること
で、内部に拡散できるタンパク質分子を限定できること
を見いだし、既に特開平2−209155で出願済みで
ある。本発明者らは、さらに高性能な吸着能力を有する
吸着剤を鋭意研究した結果、前述のポリアミノ酸多孔質
体が、表面構造、細孔径の制御によって、タンパク質の
吸着の選択性のみならず、拡散透過の選択性も増大する
こと、及び、ポリアミノ酸の表面構造で、β構造がβ2
−ミクログロブリンに対して特異的に相互作用すること
、ポリアミノ酸多孔質体のギ酸処理がβ構造の生成に寄
与することを見いだし、この知見をもとに、本発明を完
成するに至った。
[Means for Solving the Problems] The present inventors have conventionally discovered that the surface structure of polyamino acids gives them selectivity in their interaction with protein molecules, and by controlling the pores of the porous surface, they can diffuse into the interior. It was discovered that protein molecules can be limited, and an application has already been filed under JP-A-2-209155. As a result of intensive research into adsorbents with even higher adsorption ability, the present inventors found that the above-mentioned polyamino acid porous material not only has high selectivity for protein adsorption by controlling the surface structure and pore diameter. The selectivity of diffusive permeation also increases, and the surface structure of the polyamino acid is such that the β structure changes to β2.
- It was discovered that the polyamino acid interacts specifically with microglobulin, and that treatment of a polyamino acid porous material with formic acid contributes to the generation of β structure, and based on these findings, the present invention was completed.

【0006】即ち、本発明は、ポリアミノ酸を構成成分
として含有してなる多孔質体を、ギ酸処理して成るβ2
−ミクログロブリン用吸着剤を提供するものである。該
吸着剤は、ポリアミノ酸を構成成分とて含有してなる多
孔質体の細孔径が、好ましくはデキストランの分子量換
算で1万〜5万の範囲である。これら吸着剤は、好まし
くは、更に、ポリアミノ酸がβ構造を有する。
That is, the present invention provides a β2 material obtained by treating a porous material containing a polyamino acid as a constituent with formic acid.
- Provides an adsorbent for microglobulin. In the adsorbent, the pore diameter of the porous body containing polyamino acids as a constituent component is preferably in the range of 10,000 to 50,000 in terms of the molecular weight of dextran. In these adsorbents, preferably, the polyamino acid further has a β structure.

【0007】本発明におけるポリアミノ酸とは、アラニ
ン、シスチン、グリシン、プロリン、オキシプロリン、
ロイシン、イソロイシン、メチオニン、フェニルアラニ
ン、セリン、スレオニン、トリプトファン、チロシン、
バリン、アルギニン、リジン、ヒスチジン、グルタミン
酸、アスパラギン酸及びこれらのアミノ酸の誘導体の1
種または2種以上を重合したものであり、ポリアミノ酸
を含有してなる多孔質体とは、前述のポリアミノ酸自身
を多孔質膜化しても良いし、多孔質繊維化したものでも
良いし、多孔質ビーズ化したものでもよい。また、各種
担体上にコーティングまたは化学結合させた後多孔質化
しても良いし、多孔質担体上にコーティングまたは化学
結合させてもよい。これらに用いられる担体は、ガラス
、金属塩類、炭素等の無機物質でも良いし、ポリマー等
の有機物質であってもよい。また、これら担体の形状も
、粉状、ビーズ状、膜状、繊維状、中空糸状、等いろい
ろな形状のものが利用できるが、吸着カラム、吸着カー
トリッジ等のモジュールに合わせて選ぶことが出来る。
[0007] The polyamino acids in the present invention include alanine, cystine, glycine, proline, oxyproline,
Leucine, isoleucine, methionine, phenylalanine, serine, threonine, tryptophan, tyrosine,
Valine, arginine, lysine, histidine, glutamic acid, aspartic acid and one of the derivatives of these amino acids
A porous body containing a polyamino acid, which is a polymerization of one or more kinds of polyamino acids, may be one in which the above-mentioned polyamino acid itself is made into a porous membrane or into a porous fiber. Porous beads may also be used. Further, it may be made porous after being coated or chemically bonded onto various carriers, or may be coated or chemically bonded onto a porous carrier. The carrier used for these may be an inorganic substance such as glass, metal salts, or carbon, or an organic substance such as a polymer. Furthermore, various shapes of these carriers can be used, such as powder, beads, membranes, fibers, and hollow fibers, and they can be selected depending on the module such as an adsorption column or an adsorption cartridge.

【0008】化学結合させる方法は、担体の官能基を利
用して適当な結合試薬を用いて結合させる方法、例えば
、アミノプロピルシリカゲルに、トルエンジイソシアネ
ートまたはテレフタル酸クロリド等の二官能試薬を反応
させ、該ポリアミノ酸のアミノ基、カルボキシル基、水
酸基等を結合させる方法が挙げられる。ポリアミノ酸自
身を多孔質化する方法としては、例えばポリアミノ酸を
適当な溶剤に溶解し、これと非相溶性の媒体中で分散し
て、ポリアミノ酸の溶媒を蒸発除去し、析出させる方法
(特願昭62−1728号)や、重合する前のアミノ酸
NCA(N−カルボキシ−β−アミノ酸無水物)をこれ
と相溶性であるが、重合すると非相溶性になる溶媒中で
重合を行わせる方法がある。前者の方法では、ポリアミ
ノ酸の貧溶媒を添加しておき、析出させた後、これを抽
出等の方法で除去して多孔質化を行うことができ、貧溶
媒の種類、添加量によって細孔径を制御することができ
る。
[0008] The chemical bonding method utilizes the functional groups of the carrier and uses a suitable bonding reagent. For example, aminopropyl silica gel is reacted with a bifunctional reagent such as toluene diisocyanate or terephthalic acid chloride; Examples include a method of bonding amino groups, carboxyl groups, hydroxyl groups, etc. of the polyamino acid. As a method for making polyamino acids themselves porous, for example, the polyamino acids are dissolved in a suitable solvent, dispersed in a medium that is incompatible with the solvent, the solvent of the polyamino acids is removed by evaporation, and the polyamino acids are precipitated. (No. 62-1728) or a method of polymerizing the amino acid NCA (N-carboxy-β-amino acid anhydride) before polymerization in a solvent that is compatible with it but becomes incompatible with it after polymerization. There is. In the former method, a poor solvent for the polyamino acid is added, and after precipitation, it can be removed by extraction or other methods to make it porous.The pore size can be adjusted depending on the type of poor solvent and the amount added. can be controlled.

【0009】前者の方法で多孔質化できるポリアミノ酸
としては、ポリアラニン、ポリアスパラギン酸、ポリグ
ルタミン酸、ポリグリシン、ポリオキシプロリン、ポリ
イソロイシン、ポリロイシン、ポリプロリン、ポリセリ
ン、ポリスレオニン、ポリバリン、及びこれらの誘導体
、2種以上の共重合体などが挙げられる。
Polyamino acids that can be made porous by the former method include polyalanine, polyaspartic acid, polyglutamic acid, polyglycine, polyoxyproline, polyisoleucine, polyleucine, polyproline, polyserine, polythreonine, polyvaline, and These derivatives, copolymers of two or more types, etc. can be mentioned.

【0010】後者の方法は、基本的には、どの様なアミ
ノ酸、アミノ酸誘導体の組合せでも良いが、細孔径の制
御は溶媒の種類、重合温度、重合触媒、重合時間をうま
く組み合わせて行うことが必要である。これらの方法で
得られる多孔質体の大きさは、任意に変えられるが、実
際に血液または血しょうを通液してβ2−ミクログロブ
リンを除去する場合、吸着カラム、吸着カートリッジ等
のモジュールに合わせて選ぶことが出来る。
[0010] In the latter method, basically any combination of amino acids and amino acid derivatives may be used, but the pore size can be controlled by appropriately combining the type of solvent, polymerization temperature, polymerization catalyst, and polymerization time. is necessary. The size of the porous material obtained by these methods can be changed arbitrarily, but when actually removing β2-microglobulin by passing blood or plasma through it, it is necessary to adjust the size to the size of the adsorption column, adsorption cartridge, etc. You can choose.

【0011】本発明におけるギ酸処理とは、ポリアミノ
酸多孔質体の合成過程でギ酸を添加してβ構造の生成を
促進しても良いし、多孔質化後に、ギ酸蒸気または、直
接ギ酸に浸漬しても良い。即ち、前述の貧溶媒の一部と
してギ酸を添加して、多孔質体を生成せしめる方法が挙
げられる。ギ酸の添加量は、多孔質体の生成が行える範
囲で任意に選ぶことができるが、得られる多孔質体の細
孔径がデキストランの分子量換算で1万から5万の範囲
であることが好ましい。
[0011] Formic acid treatment in the present invention may include adding formic acid during the synthesis process of the polyamino acid porous material to promote the formation of β structure, or treatment with formic acid vapor or direct immersion in formic acid after making it porous. You may do so. That is, there is a method in which formic acid is added as part of the aforementioned poor solvent to generate a porous body. The amount of formic acid added can be arbitrarily selected within a range that allows generation of a porous body, but it is preferable that the pore diameter of the resulting porous body is in the range of 10,000 to 50,000 in terms of the molecular weight of dextran.

【0012】多孔質体の細孔径はデキストラン標準分子
量物質によるゲルパーミエーションクロマトグラフィー
(GPC)によって評価できる。すなわち、ポリアミノ
酸を構成成分として含有してなる多孔質体を適当な方法
でふるい分け、液体クロマトグラフィー用のステンレス
カラムに充填する。孔径評価用のビーズは100μm以
下のもので、できるだけ均一サイズが好ましい。ステン
レスカラムのサイズは、通常市販されている(例えば日
本精密(株)社製4.6mmφ*150mm)カラムで
充分である。GPC測定を行う標準分子量物質は、でき
るだけ該多孔質体との相互作用が無いものが好ましく、
デキストラン標準分子量物質(シグマケミカル社製)が
適当である。その他の標準分子量物質、例えば球状タン
パク質、ポリエチレングリコール等は、必ずしも分子量
の順番に溶出しなかったり、吸着されてしまうことがあ
り適当でない。測定方法は、標準分子量デキストランを
用いた通常の水系GPC測定でよい。即ち、蒸留水を溶
離液として、液体クロマトグラフィー装置により種々の
分子量のデキストランの溶出容量を測定するものである
。ポリアミノ酸を構成成分として含有してなる多孔質体
は、β2−ミクログロブリン用吸着剤に用いる場合デキ
ストランの分子量にして1万から5万の範囲に排除限界
分子量を持つものがよい。ポリアミノ酸多孔質体のβ構
造は、赤外吸収スペクトルによって同定できる。即ち、
アミドIバンドの吸収スペクトルにおいて、ランダムコ
イルは1655cm−1、α−ヘリックスは、1650
cm−1、β構造は、1630、1690cm−1に吸
収を持つ。
The pore diameter of the porous material can be evaluated by gel permeation chromatography (GPC) using dextran standard molecular weight substance. That is, a porous material containing a polyamino acid as a component is sieved by an appropriate method and packed into a stainless steel column for liquid chromatography. The beads for pore size evaluation are preferably 100 μm or less, and are preferably as uniform in size as possible. As for the size of the stainless steel column, a commercially available column (for example, 4.6 mmφ*150 mm manufactured by Nippon Seimitsu Co., Ltd.) is sufficient. The standard molecular weight substance used for GPC measurement is preferably one that has as little interaction as possible with the porous body;
Dextran standard molecular weight material (manufactured by Sigma Chemical Co.) is suitable. Other standard molecular weight substances, such as globular proteins and polyethylene glycol, are not suitable because they do not necessarily elute in the order of molecular weight or are adsorbed. The measurement method may be normal aqueous GPC measurement using standard molecular weight dextran. That is, the elution capacity of dextran of various molecular weights is measured using a liquid chromatography device using distilled water as an eluent. The porous material containing polyamino acids as a constituent component preferably has an exclusion limit molecular weight in the range of 10,000 to 50,000 in terms of the molecular weight of dextran when used as an adsorbent for β2-microglobulin. The β structure of the polyamino acid porous material can be identified by infrared absorption spectrum. That is,
In the absorption spectrum of the amide I band, the random coil is at 1655 cm, and the α-helix is at 1650 cm.
cm-1, β structure has absorption at 1630 and 1690 cm-1.

【0013】[0013]

【作用】本発明により、血液中または血しょう中からの
β2−ミクログロブリンの選択的吸着技術が確立された
。そのメカニズムは明かではないが、吸着剤の細孔径の
制御により内部に拡散できるタンパク質分子を限定でき
、ポリアミノ酸のβ構造がβ2−ミクログロブリンを特
異的に吸着するためではないかと考えられる。
[Operation] According to the present invention, a technique for selectively adsorbing β2-microglobulin from blood or plasma has been established. Although the mechanism is not clear, it is thought that the protein molecules that can diffuse into the adsorbent can be limited by controlling the pore size of the adsorbent, and that the β structure of the polyamino acid specifically adsorbs β2-microglobulin.

【0014】[0014]

【発明の効果】本発明のβ2−ミクログロブリン用吸着
剤は、(1)β2−ミクログロブリン以外の有用タンパ
ク質を吸着することなく選択性が高い(2)β2−ミク
ログロブリンの吸着量及び吸着速度が大きい(3)吸着
性は生体適合性を有するなどの優れた効果を奏する。
Effects of the Invention The adsorbent for β2-microglobulin of the present invention has (1) high selectivity without adsorbing useful proteins other than β2-microglobulin, and (2) adsorption amount and adsorption rate of β2-microglobulin. (3) Adsorptive property with a large value has excellent effects such as biocompatibility.

【0015】[0015]

【実施例】以下実施例にしたがって、本発明をさらに詳
しく説明するが、本発明は、これら実施例に限られるも
のではない。なおβ2−ミクログロブリン吸着テストは
後述した。 (製造例1)平均重合度500のポリ−γ−メチル−L
−グルタメート(以下PMLG)の2.5%ジクロルエ
タン溶液50g中に、ラウリン酸メチル4ml及びギ酸
4mlを加えてよく撹拌する。これを、部分鹸化ポリビ
ニルアルコール2.5%水溶液500ml中に撹拌分散
しながら50℃でジクロルエタンを蒸発除去する。得ら
れたポリアミノ酸多孔質体を濾過し、温水で充分洗浄し
て、完全にポリビニルアルコール及びギ酸を除去する。 更にメタノールにより、内部のラウリン酸メチルを完全
に抽出除去する。この多孔質体を分級して、37〜74
μmのものを取り出し、ステンレスカラムに充填して、
GPC測定を行った。その結果、排除限界分子量は約4
万であった。またこの多孔質体の、赤外吸収スペクトル
は、図1の様であり、β構造の生成が観測された。
EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples. Note that the β2-microglobulin adsorption test will be described later. (Production Example 1) Poly-γ-methyl-L with an average degree of polymerization of 500
- Add 4 ml of methyl laurate and 4 ml of formic acid to 50 g of a 2.5% dichloroethane solution of glutamate (hereinafter referred to as PMLG) and stir well. Dichloroethane was removed by evaporation at 50° C. while stirring and dispersing this in 500 ml of a 2.5% aqueous solution of partially saponified polyvinyl alcohol. The obtained polyamino acid porous material is filtered and thoroughly washed with warm water to completely remove polyvinyl alcohol and formic acid. Furthermore, the internal methyl laurate is completely extracted and removed using methanol. This porous material was classified to 37 to 74
Take out the μm one and fill it into a stainless steel column.
GPC measurement was performed. As a result, the exclusion limit molecular weight was approximately 4
It was 10,000. The infrared absorption spectrum of this porous material was as shown in FIG. 1, and the formation of a β structure was observed.

【0016】(製造例2)製造例1において、ラウリン
酸メチルの量を8mlとし、ギ酸を添加しなかったほか
は製造例1と全く同様な方法で多孔質体を製造した。こ
れをギ酸中に、室温で3時間浸漬したものを蒸留水で洗
浄し、完全にギ酸を除去した後、製造例1と同様にGP
C測定を行った。その結果、排除限界分子量は約3万で
あった。また、この多孔質体の、赤外吸収スペクトルを
とると、図1と同様であり、β構造の生成が観測された
(Production Example 2) A porous body was produced in exactly the same manner as in Production Example 1 except that the amount of methyl laurate was changed to 8 ml and formic acid was not added. This was immersed in formic acid at room temperature for 3 hours, washed with distilled water to completely remove the formic acid, and then GP
C measurement was performed. As a result, the exclusion limit molecular weight was approximately 30,000. Moreover, when the infrared absorption spectrum of this porous body was taken, it was similar to that shown in FIG. 1, and the formation of a β structure was observed.

【0017】(比較例1)製造例1において、ギ酸を添
加しなかったほかは製造例1と全く同様な方法で多孔質
体を製造した。これをステンレスカラムに充填して、G
PC測定を行った。その結果、排除限界分子量は約4万
であった。またこの多孔質体の、赤外吸収スペクトルは
、図2の様であり、β構造の生成が観測されなかった。 (比較例2)製造例2において、ラウリン酸メチルの量
を4mlとしたほかは製造例2と全く同様な方法て得ら
れた多孔質体を、ステンレスカラムに充填して、GPC
測定を行った。その結果、排除限界分子量は約4千であ
った。
(Comparative Example 1) A porous body was produced in exactly the same manner as in Production Example 1 except that formic acid was not added. Fill this into a stainless steel column and
PC measurement was performed. As a result, the exclusion limit molecular weight was approximately 40,000. Further, the infrared absorption spectrum of this porous body was as shown in FIG. 2, and no formation of β structure was observed. (Comparative Example 2) A porous material obtained in the same manner as in Production Example 2 except that the amount of methyl laurate was changed to 4 ml was packed into a stainless steel column, and GPC
Measurements were taken. As a result, the exclusion limit molecular weight was approximately 4,000.

【0018】(実施例)製造例1,2及び比較例1,2
で得られた吸着剤それぞれ1gを、人口透析患者血しょ
う50ml中に浸漬し、撹拌しながら、37℃で、血し
ょう中のβ2−ミクログロブリン濃度(β2)、全タン
パク質濃度(TP)、アルブミン/グロブリン比(A/
G)の経時変化を測定した。                       0時間
                        4
時間              β2      T
P  A/G        β2      TP 
 A/G              mg/L   
  g/dl    −          mg/L
     g/dl    −    製造例1  1
1.5      4.1     1.5     
     1.6      4.1     1.5
     製造例2  11.5      4.1 
    1.5          1.8     
 4.1     1.5     比較例1  11
.5      4.1     1.5      
    5.2      4.1     1.5 
    比較例2  11.5      4.1  
   1.5          8.9      
4.1     1.5    比較例の吸着剤では、血しょう中のβ2−ミクログ
ロブリンが多く残っている。
(Example) Production Examples 1 and 2 and Comparative Examples 1 and 2
1 g of each of the adsorbents obtained in step 1 was immersed in 50 ml of plasma from a patient undergoing artificial dialysis, and the concentration of β2-microglobulin (β2), total protein concentration (TP), and albumin in the plasma was measured at 37°C while stirring. /globulin ratio (A/
G) Changes over time were measured. 0 hours 4
Time β2 T
P A/G β2 TP
A/G mg/L
g/dl - mg/L
g/dl - Production example 1 1
1.5 4.1 1.5
1.6 4.1 1.5
Production example 2 11.5 4.1
1.5 1.8
4.1 1.5 Comparative example 1 11
.. 5 4.1 1.5
5.2 4.1 1.5
Comparative example 2 11.5 4.1
1.5 8.9
4.1 1.5 In the adsorbent of the comparative example, a large amount of β2-microglobulin in plasma remains.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のギ酸処理されたポリアミノ酸含有多孔
質体の赤外吸収スペクトルである。
FIG. 1 is an infrared absorption spectrum of a polyamino acid-containing porous material treated with formic acid of the present invention.

【図2】ギ酸処理されなかった、図1と同様の多孔質体
の赤外吸収スペクトルである。
FIG. 2 is an infrared absorption spectrum of a porous material similar to FIG. 1 but not treated with formic acid.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  ポリアミノ酸を構成成分として含有し
てなる多孔質体を、ギ酸処理して成るβ2−ミクログロ
ブリン用吸着剤。
1. An adsorbent for β2-microglobulin, which is obtained by treating a porous material containing a polyamino acid as a constituent with formic acid.
【請求項2】  ポリアミノ酸を構成成分とて含有して
なる多孔質体の細孔径が、デキストランの分子量換算で
1万〜5万の範囲である請求項1記載のβ2−ミクログ
ロブリン用吸着剤。
2. The adsorbent for β2-microglobulin according to claim 1, wherein the porous body containing a polyamino acid as a constituent has a pore diameter in the range of 10,000 to 50,000 in terms of the molecular weight of dextran. .
【請求項3】  ポリアミノ酸がβ構造を有する請求項
1又は2記載のβ2−ミクログロブリン用吸着剤。
3. The adsorbent for β2-microglobulin according to claim 1 or 2, wherein the polyamino acid has a β structure.
JP2901391A 1991-01-31 1991-01-31 Adsorbent for beta2-microglobulin Pending JPH04247235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2901391A JPH04247235A (en) 1991-01-31 1991-01-31 Adsorbent for beta2-microglobulin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2901391A JPH04247235A (en) 1991-01-31 1991-01-31 Adsorbent for beta2-microglobulin

Publications (1)

Publication Number Publication Date
JPH04247235A true JPH04247235A (en) 1992-09-03

Family

ID=12264529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2901391A Pending JPH04247235A (en) 1991-01-31 1991-01-31 Adsorbent for beta2-microglobulin

Country Status (1)

Country Link
JP (1) JPH04247235A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8947573B2 (en) 2010-03-31 2015-02-03 Sony Corporation Solid-state imaging device and electronic instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8947573B2 (en) 2010-03-31 2015-02-03 Sony Corporation Solid-state imaging device and electronic instrument

Similar Documents

Publication Publication Date Title
Garipcan et al. A novel affinity support material for the separation of immunoglobulin G from human plasma
Shi et al. Functionalized anodic aluminum oxide (AAO) membranes for affinity protein separation
CA2383955C (en) Extracorporeal endotoxin removal method
Avramescu et al. Adsorptive membranes for bilirubin removal
Bereli et al. Oriented immobilized anti-LDL antibody carrying poly (hydroxyethyl methacrylate) cryogel for cholesterol removal from human plasma
Kavoshchian et al. HSA immobilized novel polymeric matrix as an alternative sorbent in hemoperfusion columns for bilirubin removal
Shi et al. Poly (pyrrole-3-carboxylic acid)-alumina composite membrane for affinity adsorption of bilirubin
JP5109003B2 (en) Separation material such as stimulus-responsive affinity chromatography material and separation purification method
Bueno et al. Experimental kinetic aspects of hollow fiber membrane-based pseudobioaffinity filtration: process for IgG separation from human plasma
WO2001074420A1 (en) Adsorbents for high mobility group proteins and column for purifying body fluid
Çorman Poly-l-lysine modified cryogels for efficient bilirubin removal from human plasma
JPH0416219A (en) Manufacture of complexly functional filtration membrane having amino acid
Bereli et al. Antibody purification by concanavalin A affinity chromatography
Bayramoğlu et al. Characterization of polyethylenimine grafted and Cibacron Blue F3GA immobilized poly (hydroxyethylmethacrylate-co-glycydylmethacrylate) membranes and application to bilirubin removal from human serum
JP2928589B2 (en) Adsorbent for modified LDL and apparatus for removing modified LDL using the same
Bereli et al. Antibody purification using porous metal–chelated monolithic columns
Suen et al. Effects of spacer arms on cibacron blue 3GA immobilization and lysozyme adsorption using regenerated cellulose membrane discs
JPH02209155A (en) Porous adsorbent for beta2-microglobulin
JPH04247235A (en) Adsorbent for beta2-microglobulin
JPH04256441A (en) Adsorbent for beta2-microglobulin
Yavuz et al. Molecular recognition based iron removal from human plasma with imprinted membranes
Song et al. Functionalized silica nanotubes as affinity matrices for bilirubin removal
Beena et al. Chitosan: A novel matrix for hemoperfusion
JPH04256438A (en) Pyrogen adsorbent
JPH0435742A (en) Adsorbent for beta2-microglobulin