JPH04246300A - Compressor for gas turbine - Google Patents
Compressor for gas turbineInfo
- Publication number
- JPH04246300A JPH04246300A JP5622591A JP5622591A JPH04246300A JP H04246300 A JPH04246300 A JP H04246300A JP 5622591 A JP5622591 A JP 5622591A JP 5622591 A JP5622591 A JP 5622591A JP H04246300 A JPH04246300 A JP H04246300A
- Authority
- JP
- Japan
- Prior art keywords
- air
- stage compression
- compression section
- section
- compression part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007906 compression Methods 0.000 claims abstract description 51
- 230000006835 compression Effects 0.000 claims abstract description 48
- 239000000567 combustion gas Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 10
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、遠心式の前段圧縮部と
、遠新式の後段圧縮部を有し、前段圧縮部で圧縮された
空気を更に後段圧縮部で圧縮するガスタービンの圧縮機
に関する。[Industrial Application Field] The present invention relates to a gas turbine compressor that has a centrifugal front compression section and a centrifugal rear compression section, and further compresses air compressed in the front compression section in the rear compression section. Regarding.
【0002】0002
【従来の技術】遠心式の圧縮部を2段構えに備えたター
ビンの圧縮機としては、例えば実開平2−110237
があり、前段圧縮部の吐出部と後段圧縮部の吸入部との
間は、単なる空気流通路としてのヘアピンカーブ状の空
気通路が連続的に形成されている。[Prior Art] As a turbine compressor equipped with two stages of centrifugal compression sections, for example, the Utility Model Application Publication No. 2-110237
A hairpin-curved air passage, which is simply an air flow passage, is continuously formed between the discharge part of the front-stage compression part and the suction part of the latter-stage compression part.
【0003】0003
【発明が解決しようとする課題】この従来例の構造であ
ると、前段圧縮部で大きい運動エネルギーを得て高い流
速になった空気は、途中圧力エネルギーに変換されるこ
となく、後段圧縮部の吸入部に連続的に供給されるため
、前段圧縮部と後段圧縮部の間の空気通路の管路抵抗に
よるエネルギー損失が大きく、エネルギー効率の点で問
題が残る。[Problems to be Solved by the Invention] With the structure of this conventional example, the air that has obtained a large amount of kinetic energy and has a high flow velocity in the first stage compression section is not converted into pressure energy on the way, and is transferred to the second stage compression section. Since it is continuously supplied to the suction section, energy loss due to pipe resistance in the air passage between the front-stage compression section and the rear-stage compression section is large, and a problem remains in terms of energy efficiency.
【0004】0004
【課題を解決するための手段】遠心式の前段圧縮部と、
遠心式の後段圧縮部を有し、前段圧縮部で圧縮された空
気を更に後段圧縮部で圧縮するガスタービンの圧縮機に
おいて、前段圧縮部の空気吐出部と後段圧縮部の空気吸
入部の間を、流通断面積が広くて大きな容積の空気コレ
クタ室により接続し、後段圧縮部の空気吸入部側の空気
コレクタ室部分に、空気コレクタ室の圧縮空気の流れを
後段圧縮部の空気吸入方向に整流する整流ガイドを設け
たことを特徴とするガスタービンの圧縮機である。[Means for solving the problem] A centrifugal front-stage compression section,
In a gas turbine compressor that has a centrifugal post-compression section and compresses the air compressed in the pre-compression section further in the post-compression section, the space between the air discharge section of the pre-compression section and the air suction section of the post-compression section are connected by an air collector chamber with a large flow cross-sectional area and a large volume, and the flow of compressed air in the air collector chamber is directed to the air intake direction of the rear compression section to the air collector chamber on the air intake section side of the rear compression section. This is a gas turbine compressor characterized by being provided with a rectifying guide for rectifying the flow.
【0005】[0005]
【実施例】図1は本発明に係る圧縮機を備えたガスター
ビンの全体略図を示しており、この図1において図の左
側を前側と仮定して全体構造を簡単に説明する。ガスタ
ービンは前側から順に圧縮機Aと、タービン部Bと、燃
焼器Cを備えると共に、回転中心部分に前後方向に延び
るロータ軸1を備えている。前側の圧縮機Aはその外郭
がインテークハウジング3、圧縮機軸受ハウジング4及
び中間ハウジング5等で構成されており、遠心式の前段
圧縮部11と後段圧縮部12を備え、両圧縮部11,1
2は互いに一体回転するように噛合部10を介して噛み
合い、シールハウジング15を介して後方のタービン部
Bのロータ翼支持用のディスク19に連動連結している
。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an overall schematic diagram of a gas turbine equipped with a compressor according to the present invention, and the overall structure will be briefly described assuming that the left side of the figure is the front side. The gas turbine includes a compressor A, a turbine section B, and a combustor C in order from the front side, and also includes a rotor shaft 1 extending in the front-rear direction at the center of rotation. The front compressor A has an outer shell composed of an intake housing 3, a compressor bearing housing 4, an intermediate housing 5, etc., and includes a centrifugal front compression section 11 and a rear compression section 12.
2 are meshed with each other via a meshing portion 10 so as to rotate integrally with each other, and are operatively connected via a seal housing 15 to a disk 19 for supporting a rotor blade of a rear turbine section B.
【0006】タービンケーシング13内には、ロータ軸
1を取り巻くようにスクロール室16が設けられ、スク
ロール室16の半径方向外方側の端部は燃焼ガス連絡管
8を介して燃焼器Cの燃焼ガス吐出部分に接続している
。スクロール室16よりも軸芯側には燃焼ガス通路Sが
設けられ、燃焼ガス通路Sには複数のタービン用のロー
タ翼(動翼)17及び複数のノズル翼(静翼)18より
なるタービン翼部が配置されている。燃焼ガス通路Sの
排気ガス上流側端部にはスクロール室16の軸心側の吐
出口が開口し、該吐出口から燃焼ガスは燃焼ガス通路S
内に供給される。A scroll chamber 16 is provided in the turbine casing 13 so as to surround the rotor shaft 1, and the radially outer end of the scroll chamber 16 is connected to the combustion gas of the combustor C via a combustion gas communication pipe 8. Connected to the gas discharge part. A combustion gas passage S is provided on the axis side of the scroll chamber 16, and the combustion gas passage S includes turbine blades including a plurality of rotor blades (moving blades) 17 for a plurality of turbines and a plurality of nozzle blades (stationary blades) 18. section is arranged. A discharge port on the axis side of the scroll chamber 16 opens at the exhaust gas upstream end of the combustion gas passage S, and the combustion gas flows from the discharge port to the combustion gas passage S.
supplied within.
【0007】各ロータ翼17はそれぞれロータ翼支持用
のディスク19の外周端部に支持されており、各ディス
ク19は互いに噛合部を介して一体回転可能に連結する
と共に、後方のカップリング25に連動連結し、カップ
リング25はロータ軸1の後端部外周面にスプライン嵌
合してロータ軸1と一体に回転するようになっている。
各ノズル翼18はそれらの外周側のノズル支持用の筒状
タービンケース20に固定支持されており、該タービン
ケース20の半径方向外方側にはタービンロータが万一
破壊した時の破片の外部飛散を防止するためのコンテイ
ンメントリング(筒状隔壁)21が配置されている。Each of the rotor blades 17 is supported by the outer peripheral end of a disc 19 for supporting the rotor blade, and the discs 19 are connected to each other via a meshing part so as to be rotatable together, and are connected to a rear coupling 25. The coupling 25 is interlocked and spline-fitted to the outer peripheral surface of the rear end of the rotor shaft 1 so as to rotate together with the rotor shaft 1. Each nozzle blade 18 is fixedly supported by a cylindrical turbine case 20 for supporting the nozzle on the outer circumferential side of the blade. A containment ring (cylindrical partition wall) 21 is arranged to prevent scattering.
【0008】タービンケーシング13の開口部には排気
ガスを減速するための筒状の排気ディフューザ28が取
り付けられており、燃焼ガス通路Sの排気ガス出口側に
連通し、排気ディフユーザ28の下流側端部は例えば排
気マフラ等に接続している。A cylindrical exhaust diffuser 28 for decelerating exhaust gas is attached to the opening of the turbine casing 13, and communicates with the exhaust gas outlet side of the combustion gas passage S, and is connected to the downstream side of the exhaust diffuser 28. The end portion is connected to, for example, an exhaust muffler.
【0009】ロータ軸1はタービン側の後端部がタービ
ン側軸受23を介して軸受ハウジング35に支持され、
前記ディスク19の内周側を圧縮機A側へと前方に延び
、圧縮機A内等を通過し、動力取出し軸として発電機等
の負荷駆動用に供される。ロータ軸1の圧縮機側の前端
部は圧縮機側回転軸受24及びスラスト軸受38を介し
て圧縮機軸受ハウジング4の内周部分に支持されている
。The rotor shaft 1 has a turbine-side rear end supported by a bearing housing 35 via a turbine-side bearing 23.
The inner peripheral side of the disk 19 extends forward toward the compressor A side, passes through the compressor A, etc., and is used as a power output shaft for driving a load such as a generator. A front end portion of the rotor shaft 1 on the compressor side is supported by the inner peripheral portion of the compressor bearing housing 4 via a compressor side rotation bearing 24 and a thrust bearing 38.
【0010】図2において、各圧縮部11,12の半径
方向外方側には湾曲状のシュラウド38,39が配置さ
れ、各圧縮部11,12にはそれぞれシュラウド38,
39の形状に沿う曲状の羽根部40,41が形成されて
いる。中間ハウジング5の前端部には前段隔壁32等に
より前段羽根部40の外方端部から半径方向外方に延び
る前段空気通路44が形成され、該前段空気通路44の
半径方向外方端部は折り曲げガイド部47により軸方向
後方へと折れ曲がり、中間ハウジング5内の上端部に連
通している。In FIG. 2, curved shrouds 38 and 39 are disposed on the radially outer side of each compression section 11 and 12, respectively.
Curved blade portions 40 and 41 are formed along the shape of 39. A front air passage 44 is formed at the front end of the intermediate housing 5 by the front partition 32 and the like and extends radially outward from the outer end of the front blade 40. It is bent axially rearward by the bending guide portion 47 and communicates with the upper end portion inside the intermediate housing 5 .
【0011】中間ハウジング5の後端部には後段隔壁3
3との間に後段羽根部41の外方端部から半径方向外方
に延びる後段空気通路45が形成され、該後段空気通路
45の半径方向外方端部は圧縮空気室30に連通してい
る。中間ハウジング5内は流通断面積が大きくて容積の
大きい空気コレクタ室50として形成されており、前段
空気通路44から吐出される空気の運動エネルギーを圧
力エネルギーに変換し、空気の流速を低速にせしめる程
度の容積に形成されている。A rear partition wall 3 is provided at the rear end of the intermediate housing 5.
A rear stage air passage 45 extending radially outward from the outer end of the rear stage blade portion 41 is formed between the rear stage air passage 45 and the rear stage air passage 45, and the radially outer end of the rear stage air passage 45 communicates with the compressed air chamber 30. There is. The inside of the intermediate housing 5 is formed as an air collector chamber 50 having a large flow cross-sectional area and a large volume, and converts the kinetic energy of the air discharged from the front air passage 44 into pressure energy, thereby slowing down the flow velocity of the air. It is formed to have a volume of approximately
【0012】空気コレクタ室50の半径方向内方端部は
後段圧縮部12の空気吸入部12aに連通しており、か
つ空気コレクタ室50内の空気の流れを後段圧縮部12
の空気吸入方向Tに整流する複数の整流ガイド51が配
置されている。整流ガイド51はブラケット52を介し
て後段シュラウド39に固定されている。また前段圧縮
部11の空気吐出部11aには空気の流れを軸方向にガ
イドする複数の軸方向ガイド板53が配置されており、
該ガイド板53は前記折り曲げガイド部47に固着され
ている。The radially inner end of the air collector chamber 50 communicates with the air suction section 12a of the rear compression section 12, and the air flow inside the air collector chamber 50 is connected to the rear compression section 12.
A plurality of rectifying guides 51 are arranged to rectify the air in the air intake direction T. The rectifying guide 51 is fixed to the rear shroud 39 via a bracket 52. Further, a plurality of axial guide plates 53 are arranged in the air discharge section 11a of the pre-stage compression section 11 to guide the flow of air in the axial direction.
The guide plate 53 is fixed to the bending guide portion 47.
【0013】作用を説明する。図1において、圧縮機A
のインテークマニホールド3に供給された空気はまず前
段圧縮部11の回転により圧縮され、前段空気通路44
内を外方に流れ、図2のガイド部47で軸方向の流れに
変換され、ガイド板53で整流されて吐出部11aから
空気コレクタ室50に放出される。前段圧縮部11の圧
縮段階においては空気は大きい運動エネルギーを得て高
流速となり、容積の大きい空気コレクタ室50に放出さ
れる。[0013] The operation will be explained. In FIG. 1, compressor A
The air supplied to the intake manifold 3 is first compressed by the rotation of the front-stage compression section 11, and then passes through the front-stage air passage 44.
The air flows outward, is converted into an axial flow by the guide portion 47 in FIG. 2, is rectified by the guide plate 53, and is discharged from the discharge portion 11a into the air collector chamber 50. In the compression stage of the pre-compression section 11, the air gains a large amount of kinetic energy, has a high flow rate, and is discharged into the air collector chamber 50, which has a large volume.
【0014】この放出により運動エネルギーの約50%
は失なわれてしまうが、流れが低流速となると共に残り
の運動エネルギーは殆んど圧力エネルギーに変換され、
圧力エネルギーの状態で、後段圧縮部12の吸入部12
aに至る。低流速で流通断面積の広い空気コレクタ室5
0内を通ることになるので、管路抵抗によるエネルギー
の損失は極めて少なくなり、また圧力損失は略前段部の
動圧に相当する分だけとなる。即ち管路抵抗等によるエ
ネルギー損失(曲り損失や渦損失等)の少い圧力エネル
ギーを後段圧縮部12の吸入部12aに導くことができ
る。ちなみに管路抵抗によるエネルギー損失は1%以下
であった。[0014] Approximately 50% of the kinetic energy is
is lost, but as the flow becomes slower, most of the remaining kinetic energy is converted into pressure energy,
In the state of pressure energy, the suction section 12 of the rear compression section 12
Leading to a. Air collector chamber 5 with low flow rate and wide flow cross section
0, energy loss due to pipe resistance is extremely small, and pressure loss is approximately equivalent to the dynamic pressure in the front stage. That is, pressure energy with less energy loss (bending loss, vortex loss, etc.) due to pipe resistance etc. can be guided to the suction section 12a of the latter stage compression section 12. Incidentally, the energy loss due to conduit resistance was less than 1%.
【0015】後段圧縮部12でさらに圧縮された空気は
、後段空気通路45を通って圧縮空気室30に入る。
ここから図1の燃焼器Cに送られ、燃料と混合して燃焼
に利用され、そこで発生する燃焼ガスはスクロール室1
6を通って燃焼ガス通路Sに供給される。燃焼ガス通路
S内でタービンのロータ翼17を回転させた後、排気デ
ィフューザ28を通って排気マフラ等に送られる。The air further compressed in the rear stage compression section 12 enters the compressed air chamber 30 through the rear stage air passage 45. From here, it is sent to the combustor C in Figure 1, where it is mixed with fuel and used for combustion, and the combustion gas generated there is sent to the scroll chamber 1.
6 and is supplied to the combustion gas passage S. After rotating the rotor blades 17 of the turbine in the combustion gas passage S, the combustion gas is sent to an exhaust muffler or the like through an exhaust diffuser 28.
【0016】[0016]
【発明の効果】以上説明したように本願発明は、前段圧
縮部11の吐出部11aと後段圧縮部12の空気吸入部
12aの間を、流通断面積が広くて大きな容積の空気コ
レクタ室50により接続し、後段圧縮部12の空気吸入
部側の空気コレクタ室部分に、空気コレクタ室50の圧
力空気の流れを後段圧縮部12の空気吸入方向に整流す
る整流ガイド51を設けているので、容積の大きい空気
コレクタ室50内を空気が低流速で流れ、管路抵抗によ
るエネルギー損失を極めて少くでき、エネルギー効率を
向上させ、圧縮性能を向上させることができる。As explained above, the present invention provides air flow between the discharge section 11a of the front-stage compression section 11 and the air suction section 12a of the rear-stage compression section 12 by the air collector chamber 50 having a large flow cross-sectional area and a large volume. A rectifying guide 51 is provided in the air collector chamber on the air suction side of the rear compression section 12 to rectify the flow of pressurized air in the air collector chamber 50 in the air intake direction of the rear compression section 12. Air flows at a low flow rate in the air collector chamber 50 with a large flow rate, and energy loss due to pipe resistance can be extremely reduced, improving energy efficiency and compression performance.
【図1】 本発明を適用したガスタービン全体の縦断
面略図である。FIG. 1 is a schematic vertical cross-sectional view of the entire gas turbine to which the present invention is applied.
【図2】 図1のII部分の拡大図である。FIG. 2 is an enlarged view of part II in FIG. 1.
1 ロータ軸 11 前段圧縮部 11a 吐出部 12 後段圧縮部 12a 吸入部 50 空気コレクタ室 51 整流ガイド 1 Rotor shaft 11 Pre-stage compression section 11a Discharge part 12 Late stage compression section 12a Suction part 50 Air collector room 51 Rectification guide
Claims (1)
圧縮部を有し、前段圧縮部で圧縮された空気を更に後段
圧縮部で圧縮するガスタービンの圧縮機において、前段
圧縮部の空気吐出部と後段圧縮部の空気吸入部の間を、
流通断面積が広くて大きな容積の空気コレクタ室により
接続し、後段圧縮部の空気吸入部側の空気コレクタ室部
分に、空気コレクタ室の圧縮空気の流れを後段圧縮部の
空気吸入方向に整流する整流ガイドを設けたことを特徴
とするガスタービンの圧縮機。Claim 1: A gas turbine compressor having a centrifugal front-stage compression section and a centrifugal rear-stage compression section, in which the air compressed in the front-stage compression section is further compressed in the rear-stage compression section. Between the air discharge part and the air suction part of the latter stage compression part,
Connected by an air collector chamber with a wide flow cross section and large volume, the flow of compressed air in the air collector chamber is rectified in the air intake direction of the rear compression section to the air collector chamber on the air intake section side of the rear compression section. A gas turbine compressor characterized by being provided with a rectification guide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5622591A JPH04246300A (en) | 1991-01-30 | 1991-01-30 | Compressor for gas turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5622591A JPH04246300A (en) | 1991-01-30 | 1991-01-30 | Compressor for gas turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04246300A true JPH04246300A (en) | 1992-09-02 |
Family
ID=13021165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5622591A Pending JPH04246300A (en) | 1991-01-30 | 1991-01-30 | Compressor for gas turbine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04246300A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07301195A (en) * | 1994-05-06 | 1995-11-14 | Ingersoll Rand Co | Method and equipment for passively damping flow disturbance in centrifugal compressor |
JP2009236108A (en) * | 2008-02-27 | 2009-10-15 | Snecma | Diffuser-nozzle assembly for turbo machine |
-
1991
- 1991-01-30 JP JP5622591A patent/JPH04246300A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07301195A (en) * | 1994-05-06 | 1995-11-14 | Ingersoll Rand Co | Method and equipment for passively damping flow disturbance in centrifugal compressor |
JP2009236108A (en) * | 2008-02-27 | 2009-10-15 | Snecma | Diffuser-nozzle assembly for turbo machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4428715A (en) | Multi-stage centrifugal compressor | |
US7334392B2 (en) | Counter-rotating gas turbine engine and method of assembling same | |
JP2746783B2 (en) | Centrifugal compressor | |
US20070204615A1 (en) | Two-shaft turbocharger | |
JPH06193585A (en) | Multispindle turbocompressor with gear having return stage and radial expander | |
CA2507972A1 (en) | Method and apparatus for assembling gas turbine engines | |
JPH079194B2 (en) | Gas turbine engine cooling air transfer means | |
US5741123A (en) | Turbocharger compressor fan and housing | |
JPS584173B2 (en) | gas turbine engine | |
CN106382258A (en) | Centrifugal contra-rotating ram compressor | |
CN110792615A (en) | Two-stage centrifugal equidirectional tandem type fuel cell air compressor with waste gas recovery device | |
US6712588B1 (en) | Turbomachine with a vaneless rotating diffuser and nozzle | |
CN201802444U (en) | Compound turbine device with variable cross-section | |
EP0811752B1 (en) | Centrifugal gas turbine | |
CN113323876B (en) | Air suction supercharging structure of compressor and compressor | |
CN217841757U (en) | Turbocharger and shell structure thereof | |
JPH04246300A (en) | Compressor for gas turbine | |
CN219472163U (en) | High-pressure gas driven turbine mechanism | |
US3692420A (en) | Inlets of centrifugal compressors, blowers and pumps | |
JP4174131B2 (en) | Turbofan engine | |
CN212225574U (en) | Turbine rotor of multistage turbine fan | |
EP0021709A1 (en) | Multi stage centrifugal compressor and its application to a turbine | |
CN110735666B (en) | Self-priming vortex supercharger | |
CN115506916B (en) | Double-drive turbofan engine with contra-rotating blade tips | |
CN211737497U (en) | Explosion-proof low noise axial fan |