JPH04246175A - Method for forming silicon oxide - Google Patents

Method for forming silicon oxide

Info

Publication number
JPH04246175A
JPH04246175A JP1227491A JP1227491A JPH04246175A JP H04246175 A JPH04246175 A JP H04246175A JP 1227491 A JP1227491 A JP 1227491A JP 1227491 A JP1227491 A JP 1227491A JP H04246175 A JPH04246175 A JP H04246175A
Authority
JP
Japan
Prior art keywords
film
silicon oxide
oxide film
water vapor
hexamethyldisilazane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1227491A
Other languages
Japanese (ja)
Other versions
JP3086926B2 (en
Inventor
Yoshihiko Suzuki
美彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Japan Science and Technology Agency
Original Assignee
Seiko Instruments Inc
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc, Research Development Corp of Japan filed Critical Seiko Instruments Inc
Priority to JP03012274A priority Critical patent/JP3086926B2/en
Publication of JPH04246175A publication Critical patent/JPH04246175A/en
Application granted granted Critical
Publication of JP3086926B2 publication Critical patent/JP3086926B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To form a film of precise film thickness by independently introducing water vapor and gaseous hexamethyldisilazane to a vacuum chamber and irradiating the surface of a material on which a film is to be formed with light of specified eV. CONSTITUTION:The material on which a film is to be formed is held in a vacuum chamber, into which water vapor is introduced for a specified time. After discharging the water vapor from the chamber, hexamethyldisilazane vapor is introduced for a specified time and then discharged. Then the material on which a film is to be formed is irradiated with 4.55-8.29eV light. This procedure as one cycle is repeated to form a silicon oxide film. Thereby, thickness of the formed film can precisely be determined as well as a high-purity silicon oxide film can be formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体集積回路素子、
光学素子、微小検出素子、光電変換素子等の小型素子で
用いる酸化珪素膜の形成方法に関するものである。
[Industrial Application Field] The present invention relates to semiconductor integrated circuit devices,
The present invention relates to a method for forming a silicon oxide film used in small devices such as optical devices, minute detection devices, and photoelectric conversion devices.

【0002】0002

【従来の技術】従来、酸化珪素膜を形成する方法として
、被成膜体を気体状ヘキサメチルジシラザンと水蒸気を
同時に導入した減圧雰囲気に保持し、この状態で光子エ
ネルギーが4.55eV乃至は8.29eVの光を部分
的、あるいは全面に照射して酸化珪素膜を形成していた
BACKGROUND ART Conventionally, as a method for forming a silicon oxide film, an object to be film-formed is kept in a reduced pressure atmosphere into which gaseous hexamethyldisilazane and water vapor are simultaneously introduced, and in this state, the photon energy is 4.55 eV or more. A silicon oxide film was formed by irradiating a portion or the entire surface with 8.29 eV light.

【0003】0003

【発明が解決しようとする課題】しかしながら、従来の
方法では成膜速度が速いため成膜厚の精密な決定が困難
であると同時に、原料分子の吸着量が数分子層以上と多
いため光解離反応の未反応分が発生し成膜した酸化珪素
膜中に炭素、水素の不純物が混入しやすいという欠点を
有していた。従って、従来法で得た酸化珪素膜で素子を
構成した場合、電気絶縁性などの電気的特性、透過率な
どの光学的特性などを低下あるいは、ばらつかせるとい
う欠点を有していた。
[Problems to be Solved by the Invention] However, with the conventional method, it is difficult to accurately determine the film thickness because the film formation rate is high, and at the same time, the adsorption amount of raw material molecules is large, several molecular layers or more, so photodissociation is difficult. This method has the disadvantage that unreacted components are generated and impurities such as carbon and hydrogen are likely to be mixed into the formed silicon oxide film. Therefore, when an element is constructed using a silicon oxide film obtained by the conventional method, it has the disadvantage that electrical properties such as electrical insulation, optical properties such as transmittance, etc. are reduced or varied.

【0004】0004

【課題を解決するための手段】前述の課題を解決するた
めに、本発明では水蒸気と気体状ヘキサメチルジシラザ
ンを同時に導入せず、これらを別々に導入することとし
、また、気相中の原料は高真空に排気排出し、表面層に
約1分子層の吸着層を形成させた状態で光子エネルギー
が4.55eV乃至は8.29eVの光を照射すること
により酸化珪素膜を形成した。
[Means for Solving the Problems] In order to solve the above-mentioned problems, in the present invention, water vapor and gaseous hexamethyldisilazane are not introduced at the same time, but are introduced separately. The raw material was evacuated to a high vacuum, and a silicon oxide film was formed by irradiating it with light having a photon energy of 4.55 eV to 8.29 eV while forming an adsorption layer of approximately one molecular layer on the surface layer.

【0005】[0005]

【作用】周知のように気体状ヘキサメチルジシラザン雰
囲気中に保持された物質表面は、物質表面に吸着してい
た水酸基とヘキサメチルジシラザンの解離反応により酸
素、シリコン、メチル基で構成され、末端がメチル基で
覆われ表面は疎水性となる。またこの時、表面に吸着し
ていた水素原子、及びヘキサメチルジシラザン中の窒素
原子はアンモニアとして気化し真空容器外に排出される
[Operation] As is well known, the surface of a substance held in a gaseous hexamethyldisilazane atmosphere is composed of oxygen, silicon, and methyl groups due to the dissociation reaction between the hydroxyl groups adsorbed on the substance surface and hexamethyldisilazane. The terminal ends are covered with methyl groups, making the surface hydrophobic. At this time, hydrogen atoms adsorbed on the surface and nitrogen atoms in hexamethyldisilazane are vaporized as ammonia and discharged outside the vacuum container.

【0006】この状態で、表面に光子エネルギーが4.
55eV乃至は8.29eVの光を照射すると、炭素と
水素の結合手、及びシリコンと炭素の結合手が光分解さ
れ余分な付着物質であるメチル基が脱離することは周知
のことである。本法では、まず真空層内に水蒸気の導入
後これを排気することにより、表面に単分子層の水酸基
を吸着させる、この後、気体状ヘキサメチルジシラザン
を導入後真空排気することにより、先に表面に吸着した
水酸基の数の3分の1に相当する量だけのヘキサメチル
ジシラザンが解離吸着するため、最終的には表面には、
表面に結合した酸素、該酸素に結合した珪素、及び珪素
に結合した3つのメチル基とからなる単分子層だけが表
面吸着した状態を得ることができるのである。
In this state, the photon energy on the surface is 4.
It is well known that when irradiated with light of 55 eV to 8.29 eV, bonds between carbon and hydrogen and bonds between silicon and carbon are photolyzed and methyl groups, which are excess adhering substances, are removed. In this method, water vapor is first introduced into the vacuum layer and then evacuated to adsorb a monomolecular layer of hydroxyl groups on the surface.Then, gaseous hexamethyldisilazane is introduced and evacuated to remove the hydroxyl groups. As the amount of hexamethyldisilazane corresponding to one-third of the number of hydroxyl groups adsorbed on the surface is dissociated and adsorbed, the surface ultimately has the following properties:
Only a monomolecular layer consisting of oxygen bound to the surface, silicon bound to the oxygen, and three methyl groups bound to the silicon can be adsorbed on the surface.

【0007】この状態で、表面に光子エネルギーが4.
55eV乃至は8.29eVの光を照射することにより
、単分子層の酸素と珪素からなる表面が得られるのであ
る。従って、この一連のサイクルを繰り返すことにより
単分子層ずつの酸化珪素結合が形成されるため、同サイ
クル数により単分子層オーダーの成膜厚が決定可能とな
ったのである。
In this state, the photon energy on the surface is 4.
By irradiating with light of 55 eV to 8.29 eV, a surface consisting of a monomolecular layer of oxygen and silicon can be obtained. Therefore, by repeating this series of cycles, silicon oxide bonds are formed in each monomolecular layer, so that the film thickness on the order of a monomolecular layer can be determined by the same number of cycles.

【0008】さらに、光子エネルギーが4.55eV乃
至は8.29eVの光の照射時に、気相中のヘキサメチ
ルジシラザンは真空排気されるため、未解離状態のヘキ
サメチルジシラザンが数分子層以上吸着することがない
ので、照射光が吸着層の下層部まで届かず、炭素、水素
等の光解離による脱離が発生できず、これらが不純物と
して膜中に混入するという従来法の欠点も無くなったの
である。
Furthermore, when irradiated with light having a photon energy of 4.55 eV to 8.29 eV, hexamethyldisilazane in the gas phase is evacuated, so that undissociated hexamethyldisilazane forms several molecular layers or more. Since there is no adsorption, the irradiated light does not reach the lower layer of the adsorption layer, and desorption due to photodissociation of carbon, hydrogen, etc. cannot occur, and the disadvantages of conventional methods such as these entering the film as impurities are eliminated. It was.

【0009】[0009]

【実施例】(実施例1)以下、本発明の実施例について
具体的に述べる。被成膜体として厚み600μm、大き
さ20mm角のP型シリコン(100)単結晶基板を用
い、これを真空容器内に垂直に保持し、一度真空容器内
圧力を10−8torrまで減圧した。
EXAMPLES (Example 1) Examples of the present invention will be specifically described below. A P-type silicon (100) single crystal substrate with a thickness of 600 μm and a size of 20 mm square was used as a film-forming object and was held vertically in a vacuum chamber, and the pressure inside the vacuum chamber was once reduced to 10 −8 torr.

【0010】その後、該真空容器内に水蒸気をマスフロ
ーコントローラを介して毎分50cc導入し、真空容器
内圧力を1torrに1分間保持した後、該真空容器内
圧力を10−6torrまで排気した。その後、気体状
ヘキサメチルジシラザンをマスフローコントローラを介
して毎分20cc導入し、真空容器内圧力を1torr
に1分間保持した後、該真空容器内圧力を10−6to
rrまで排気した。この状態で、基板に直角に出力1W
で15mm角の照射領域を持つArFエキシマレーザ光
を20秒間照射した。以上の水蒸気導入から光照射まで
のサイクルを500サイクル繰り返して酸化珪素膜を形
成した。
[0010] Thereafter, 50 cc of water vapor per minute was introduced into the vacuum vessel via a mass flow controller, and the pressure inside the vacuum vessel was maintained at 1 torr for 1 minute, and then the pressure inside the vacuum vessel was evacuated to 10 -6 torr. Thereafter, gaseous hexamethyldisilazane was introduced at a rate of 20 cc per minute via a mass flow controller, and the pressure inside the vacuum vessel was adjusted to 1 torr.
After holding for 1 minute, the pressure inside the vacuum container was increased to 10-6 to
Exhausted to rr. In this state, output 1W perpendicular to the board.
ArF excimer laser light having an irradiation area of 15 mm square was irradiated for 20 seconds. The above cycle from introducing water vapor to irradiating light was repeated 500 times to form a silicon oxide film.

【0011】このようにして得た酸化珪素膜を用い、フ
ォトエッチングプロセスを経て原子間力顕微鏡に用いる
カンチレバーを作製した。このようにして、5枚の基板
から得られたカンチレバーのバネ定数すなわち、先端に
加えた力とカンチレバーのたわみの比の、狙い値に対す
るばらつきを調べたところ、膜厚ばらつきの大きい従来
法の15%に対して1.2%と十分の一以下に低減する
ことができた。(実施例2)被成膜体として厚み500
μm、大きさ20mm角のP型シリコン(100)単結
晶基板を用い、これをスパッタ用真空容器内に保持し、
一度真空容器内圧力を10−7torrまで減圧した。
Using the silicon oxide film thus obtained, a cantilever for use in an atomic force microscope was fabricated through a photo-etching process. In this way, we investigated the variation in the spring constant of the cantilever obtained from five substrates, that is, the ratio of the force applied to the tip to the cantilever deflection, with respect to the target value. %, it was able to be reduced to 1.2%, which is less than one-tenth of that. (Example 2) Thickness 500 as film-formed object
A P-type silicon (100) single crystal substrate of μm and 20 mm square is held in a vacuum chamber for sputtering,
The pressure inside the vacuum container was once reduced to 10-7 torr.

【0012】その後、該真空容器内に水蒸気をマスフロ
ーコントローラを介して毎分50cc導入し、真空容器
内圧力を2torrに1分間保持した後、該真空容器内
圧力を10−6torrまで排気した。その後、気体状
ヘキサメチルジシラザンをマスフローコントローラを介
して毎分20cc導入し、真空容器内圧力を2torr
に1分間保持した後、該真空容器内圧力を10−6to
rrまで排気した。この状態で、基板に45度の角度方
向から出力0.5Wで20mm角の照射領域を持つAr
Fエキシマレーザ光を20秒間照射した。以上の水蒸気
導入から光照射までのサイクルを10サイクル繰り返し
て酸化珪素膜を形成した。
[0012] Thereafter, 50 cc of water vapor per minute was introduced into the vacuum vessel via a mass flow controller, and the pressure inside the vacuum vessel was maintained at 2 torr for 1 minute, and then the pressure inside the vacuum vessel was evacuated to 10 -6 torr. Thereafter, 20 cc/min of gaseous hexamethyldisilazane was introduced via a mass flow controller, and the pressure inside the vacuum vessel was adjusted to 2 torr.
After holding for 1 minute, the pressure inside the vacuum container was increased to 10-6 to
Exhausted to rr. In this state, Ar with an irradiation area of 20 mm square with an output of 0.5 W is applied to the substrate from an angle direction of 45 degrees.
F excimer laser light was irradiated for 20 seconds. The above cycle from introducing water vapor to irradiating light was repeated 10 times to form a silicon oxide film.

【0013】このようにして得た酸化珪素膜を1つのス
ペーサ材料として用い、これと交互にスパッタリングに
より膜厚5nmのタングステン膜を形成し、合計で40
層の交互層からなるX線多層膜反射鏡を形成し、X線の
反射特性を調べた。周知のように該多層膜反射鏡では、
これを構成する層の膜厚のばらつきが小さい程高い反射
率が得られる。波長0.154nmのX線に対して、従
来法により形成した酸化珪素膜層を有する多層膜反射鏡
の反射率と比較したところ、本法を用いて形成した酸化
珪素膜を有した多層膜反射鏡は、従来よりも8%も反射
率が向上することができた。(実施例3)被成膜体とし
て厚み600μm、大きさ20mm角のP型シリコン(
100)単結晶基板を用い、これを真空容器内に垂直に
保持し、一度真空容器内圧力を10−8torrまで減
圧した。
Using the silicon oxide film thus obtained as one spacer material, a tungsten film with a thickness of 5 nm was formed alternately with this by sputtering, making a total of 40 nm thick.
An X-ray multilayer film reflector consisting of alternating layers was formed, and the X-ray reflection characteristics were investigated. As is well known, in this multilayer film reflecting mirror,
The smaller the variation in film thickness of the layers constituting this, the higher the reflectance can be obtained. When comparing the reflectance of a multilayer mirror with a silicon oxide film layer formed using the conventional method for X-rays with a wavelength of 0.154 nm, it was found that the multilayer film reflectance with a silicon oxide film layer formed using this method The reflectance of the mirror was improved by 8% compared to conventional mirrors. (Example 3) The object to be coated was P-type silicon (600 μm thick and 20 mm square) (
100) A single crystal substrate was used and held vertically in a vacuum container, and the pressure inside the vacuum container was once reduced to 10 −8 torr.

【0014】その後、該真空容器内に水蒸気をマスフロ
ーコントローラを介して毎分50cc導入し、真空容器
内圧力を1torrに1分間保持した後、該真空容器内
圧力を10−6torrまで排気した。その後、気体状
ヘキサメチルジシラザンをマスフローコントローラを介
して毎分20cc導入し、真空容器内圧力を1torr
に1分間保持した後、該真空容器内圧力を10−6to
rrまで排気した。この状態で、基板に直角に出力1W
で15mm角の照射領域を持つArFエキシマレーザ光
を20秒間照射した。以上の水蒸気導入から光照射まで
のサイクルを50サイクル繰り返して酸化珪素膜を形成
した。
[0014] Thereafter, 50 cc of water vapor per minute was introduced into the vacuum vessel via a mass flow controller, and the pressure inside the vacuum vessel was maintained at 1 torr for 1 minute, and then the pressure inside the vacuum vessel was evacuated to 10 -6 torr. Thereafter, gaseous hexamethyldisilazane was introduced at a rate of 20 cc per minute via a mass flow controller, and the pressure inside the vacuum vessel was adjusted to 1 torr.
After holding for 1 minute, the pressure inside the vacuum container was increased to 10-6 to
Exhausted to rr. In this state, output 1W perpendicular to the board.
ArF excimer laser light having an irradiation area of 15 mm square was irradiated for 20 seconds. The above cycle from introducing water vapor to irradiating light was repeated 50 times to form a silicon oxide film.

【0015】このようにして得た酸化珪素膜に対して、
半導体集積回路の絶縁保護膜として重要な特性である比
抵抗を調べたところ、従来法で得た酸化珪素膜が5×1
09 Ω・cmであったのに対して、4×1011Ω・
cmと2桁の向上が認められた。これらの膜に対して、
二次イオン質量分析、及び赤外吸収分析により膜中の炭
素、水素の混入量を調べたところ、本法で得た酸化珪素
膜の不純物濃度は、従来法の約5分の1と不純物の混入
が極端に少ないことが判った。
For the silicon oxide film thus obtained,
When we investigated the specific resistance, which is an important property for an insulating protective film for semiconductor integrated circuits, we found that the silicon oxide film obtained by the conventional method had a
09 Ω・cm, while it was 4×1011 Ω・
A two-digit improvement was observed. For these membranes,
When the amount of carbon and hydrogen mixed into the film was investigated by secondary ion mass spectrometry and infrared absorption analysis, the impurity concentration of the silicon oxide film obtained by this method was about one-fifth that of the conventional method. It was found that contamination was extremely low.

【0016】[0016]

【発明の効果】以上のように本発明は、従来法に比較し
、酸化珪素膜の成膜厚を精密に決定できると同時に高純
度な酸化珪素膜が得られる等画期的な効果がある。
[Effects of the Invention] As described above, compared to conventional methods, the present invention has revolutionary effects such as being able to precisely determine the thickness of a silicon oxide film and at the same time obtaining a highly pure silicon oxide film. .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  被成膜体を保持した真空容器に、水蒸
気を一定時間導入したのち、該水蒸気を排気し、その後
、ヘキサメチルジシラザン蒸気を一定時間導入したのち
、該ヘキサメチルジシラザン蒸気を排気し、該被成膜体
に4.55eV乃至は8.29eVの光を照射すること
を1サイクルとし、同サイクルを繰り返すことにより酸
化珪素膜を形成することを特徴とする酸化珪素膜の形成
方法。
Claim 1: After introducing water vapor into a vacuum container holding the object to be film-formed for a certain period of time, the water vapor is evacuated, and then, after introducing hexamethyldisilazane vapor for a certain period of time, the hexamethyldisilazane vapor is A silicon oxide film characterized in that one cycle consists of evacuating and irradiating the film-forming object with light of 4.55 eV to 8.29 eV, and forming a silicon oxide film by repeating the same cycle. Formation method.
JP03012274A 1991-02-01 1991-02-01 Method for forming silicon oxide film Expired - Fee Related JP3086926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03012274A JP3086926B2 (en) 1991-02-01 1991-02-01 Method for forming silicon oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03012274A JP3086926B2 (en) 1991-02-01 1991-02-01 Method for forming silicon oxide film

Publications (2)

Publication Number Publication Date
JPH04246175A true JPH04246175A (en) 1992-09-02
JP3086926B2 JP3086926B2 (en) 2000-09-11

Family

ID=11800789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03012274A Expired - Fee Related JP3086926B2 (en) 1991-02-01 1991-02-01 Method for forming silicon oxide film

Country Status (1)

Country Link
JP (1) JP3086926B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304398A (en) * 1993-06-03 1994-04-19 Watkins Johnson Company Chemical vapor deposition of silicon dioxide using hexamethyldisilazane
US5567661A (en) * 1993-08-26 1996-10-22 Fujitsu Limited Formation of planarized insulating film by plasma-enhanced CVD of organic silicon compound
JP2006344659A (en) * 2005-06-07 2006-12-21 Toshiba Corp Semiconductor device and its manufacturing method
JP2011124371A (en) * 2009-12-10 2011-06-23 Nippon Telegr & Teleph Corp <Ntt> Film forming method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304398A (en) * 1993-06-03 1994-04-19 Watkins Johnson Company Chemical vapor deposition of silicon dioxide using hexamethyldisilazane
US5567661A (en) * 1993-08-26 1996-10-22 Fujitsu Limited Formation of planarized insulating film by plasma-enhanced CVD of organic silicon compound
JP2006344659A (en) * 2005-06-07 2006-12-21 Toshiba Corp Semiconductor device and its manufacturing method
JP2011124371A (en) * 2009-12-10 2011-06-23 Nippon Telegr & Teleph Corp <Ntt> Film forming method

Also Published As

Publication number Publication date
JP3086926B2 (en) 2000-09-11

Similar Documents

Publication Publication Date Title
Wendt et al. The interaction of water with silica thin films grown on Mo (1 1 2)
Antony Premkumar et al. NiO thin films synthesized by atomic layer deposition using Ni (dmamb) 2 and ozone as precursors
Otto et al. Inverse photoemission of pyridine on silver (111)
JPS582022A (en) Thin film formation
Rosenberg et al. The photodissociative ionization of amorphous ice
Wu et al. MIRIRS studies of the growth of Si and Si-Ge alloys from molecular precursors
JPH04246175A (en) Method for forming silicon oxide
Celii et al. UV laser-induced photochemistry of iron pentacarbonyl on single crystal surfaces in ultrahigh vacuum
Fournier et al. Preparation and characterization of thin films of alumina by metal-organic chemical vapor deposition
Li et al. Efficient dry etching of Si with vacuum ultraviolet light and XeF2 in a buffer gas
Himmerlich et al. Interaction of indium oxide nanoparticle film surfaces with ozone, oxygen and water
JP2997849B2 (en) Method for forming silicon oxide film
Popova et al. Comparative study of Al (111) oxidation with O3 and O2
WO1997048499A1 (en) GaAs SUBSTRATE WITH A PASSIVATING EPITAXIAL GALLIUM SULFIDE FILM AND METHODS FOR FORMING SAME
JPS63239811A (en) Optical reactor
JP2004500481A (en) Void / pillar network structure
JPH073815B2 (en) Method of forming thin film
Duś Hydrogen adsorption on group 1 B metals
RU1836487C (en) Method of metal hydride film applying in vacuum, application of metal hydride film, produced by the method of item 1, and application of substratum with metal hydride film, produced by the method of item 1
Kinashi et al. Synchrotron radiation induced reactions of a condensed layer of silicon alkoxide on Si
Mino et al. Analysis of electric properties of chemically adsorbed multilayers on solid substrates
Nara et al. Synchrotron radiation-assisted silicon film growth by irradiation parallel to the substrate
Nakayama et al. Effects of initial transient states in the plasma during the preparation of a-Si: H/a-Si3N4: H multilayer structures
JPH0658889B2 (en) Thin film formation method
Godet et al. Helium ion‐induced stoichiometry modification in hydrogenated silicon oxide films

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees