JPH04245814A - Fm transmission circuit - Google Patents
Fm transmission circuitInfo
- Publication number
- JPH04245814A JPH04245814A JP2922891A JP2922891A JPH04245814A JP H04245814 A JPH04245814 A JP H04245814A JP 2922891 A JP2922891 A JP 2922891A JP 2922891 A JP2922891 A JP 2922891A JP H04245814 A JPH04245814 A JP H04245814A
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- mixer
- oscillator
- intermediate frequency
- pll
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 18
- 230000010355 oscillation Effects 0.000 claims abstract description 35
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 238000000034 method Methods 0.000 description 7
- 230000005236 sound signal Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
Landscapes
- Transmitters (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】アマチュア無線用の無線送受信機
のごとく、広範囲の運用周波数帯と多くの変調モードで
運用する送受信形無線通信機に適用する。[Industrial Application Field] Applicable to transmitting/receiving wireless communication equipment that operates in a wide range of operating frequency bands and in many modulation modes, such as radio transceivers for amateur radio.
【0002】0002
【従来の技術】アマチュア無線通信のようにHF帯全域
のように広い周波数範囲で、AM・CW・SSB・FM
等の多モード動作での通信機には図3例示のような、多
重変換スーパーヘテロダイン方式が使用されることが多
い。[Prior Art] AM, CW, SSB, and FM are used in amateur radio communications in a wide frequency range such as the entire HF band.
A multi-conversion superheterodyne system, as illustrated in FIG. 3, is often used for communication devices operating in multiple modes such as the above.
【0003】その最大の理由は特にSSB(Singl
e Side Band)波の受信時に必要な3k
Hz 程度の狭帯域幅選択度と、許容周波数変動100
Hz以下の高度の周波数安定度を得ることが出来、送信
時には受信経路を逆通する間にAM波より搬送波と片サ
イドバンドを除去して、SSB波が送出できる事による
。以下にその構成の概略を述べる。[0003] The biggest reason for this is especially SSB (Singl.
3K required when receiving e Side Band) waves
Narrow bandwidth selectivity on the order of Hz and allowable frequency variation of 100 Hz
This is because a high degree of frequency stability of Hz or less can be obtained, and during transmission, the carrier wave and one sideband are removed from the AM wave while reversing the receiving path, and the SSB wave can be sent out. The outline of its configuration is described below.
【0004】図3(A)は多重変換式送受信機の受信回
路の構成であり、受信電波F0 は第1ミクサM1 に
て第1局部発振周波数f1と混合して第1中間周波数F
1 となり、第2ミクサM2 にて第2局部発振周波数
f2 と混合して第2中間周波数となり、復調器DMに
て音声信号となり、低周波数増幅器AFを経てスピーカ
SPを動作させる。FIG. 3A shows the configuration of a receiving circuit of a multiple conversion type transmitter/receiver, in which the received radio wave F0 is mixed with a first local oscillation frequency f1 in a first mixer M1 to produce a first intermediate frequency F1.
1, and is mixed with the second local oscillation frequency f2 in the second mixer M2 to become a second intermediate frequency, which becomes an audio signal in the demodulator DM, and operates the speaker SP via the low frequency amplifier AF.
【0005】アマチュア無線機として少なくも3〜30
MHz 間をカバーする関係上、第1中間周波数F1
は30MHz 以上に取ることにより、イメージ混信を
減じ、第2中間周波数F2 を狭帯域フィルタに適当な
周波数(例えば455kHz )とすることにより十分
な混信除去特性が得られる。[0005] At least 3 to 30 amateur radio equipment
MHz, the first intermediate frequency F1
By setting F2 to 30 MHz or more, image interference can be reduced, and by setting the second intermediate frequency F2 to a frequency suitable for a narrow band filter (for example, 455 kHz), sufficient interference removal characteristics can be obtained.
【0006】周波数安定度としては第1局部発振器をP
LL制御とし、その周波数を可変にして同調を取ること
と、第2局部発振器を水晶制御とすることにより十分な
性能が得られるのである。As for frequency stability, the first local oscillator is P
Sufficient performance can be obtained by using LL control, adjusting the frequency by making it variable, and controlling the second local oscillator by crystal control.
【0007】SSBとCW受信に際しては復調器DMに
キャリア発振器よりf3 を注入してプロダクト検波を
行い、AMとFM受信ではキャリア発振器は停めて、A
Mでは振幅検波により、FMではデスクリミネータによ
り復調する。[0007] For SSB and CW reception, product detection is performed by injecting f3 from the carrier oscillator into the demodulator DM, and for AM and FM reception, the carrier oscillator is stopped and A
In M, demodulation is performed by amplitude detection, and in FM, demodulation is performed by a discriminator.
【0008】隣接選択度は主に第2中間周波段のフィル
タ特性に依存して居り、AM・CW・SSBに対しては
通過帯域幅3kHz 程度のフィルタを共用することも
あるが、別個に最適幅のフィルタを用いることも多い。
FMに対しては5kHz 以上数10kHz の帯域幅
とリミッタ特性が要求されるので、第2中間周波数は別
個のリミッタ増幅器を通してデスクリミネータで復調す
るのが普通である。[0008] Adjacent selectivity mainly depends on the filter characteristics of the second intermediate frequency stage, and for AM, CW, and SSB, a filter with a passband width of about 3 kHz may be shared, but the optimum filter is determined separately. Width filters are often used. Since a bandwidth of 5 kHz or more to several tens of kHz and limiter characteristics are required for FM, the second intermediate frequency is usually demodulated with a discriminator through a separate limiter amplifier.
【0009】送信時には図3(B)のように、SSB送
信時にはマイクロホン増幅器MAの出力を平衡変調器B
M(受信時のDMと共用できる)でキャリアf3 を振
幅変調すると低減キャリアのAM波が得られるから、キ
ャリアの周波数を第2中間周波段のフィルタの帯域外に
移動することにより、不要サイドバンドとキャリアを抑
圧したSSB波を得て、これをミクサM2 、ミクサM
1 と受信時と逆の周波数変換により運用周波数F0
を得て、電力増幅器PAで必要な送信電力に増幅してア
ンテナに送出するのである。At the time of transmission, as shown in FIG. 3(B), at the time of SSB transmission, the output of the microphone amplifier MA is sent to the balanced modulator B.
By amplitude modulating the carrier f3 with M (which can be shared with DM during reception), a reduced carrier AM wave is obtained, so by moving the carrier frequency out of the band of the second intermediate frequency stage filter, unnecessary sideband and the carrier-suppressed SSB wave, which is sent to mixer M2 and mixer M.
1 and the operating frequency F0 by reverse frequency conversion to that during reception.
The received signal is amplified to the required transmission power by the power amplifier PA and sent to the antenna.
【0010】AM送信時には前記のSSB信号に適量の
キャリアを再添加することによりAM波を発生し、CW
送信時にはキャリアを直接に中間周波段に挿入し、中間
増幅段またはPA段でキーイングを行うのである。[0010] During AM transmission, AM waves are generated by re-adding an appropriate amount of carrier to the SSB signal, and CW
During transmission, the carrier is directly inserted into the intermediate frequency stage, and keying is performed at the intermediate amplification stage or PA stage.
【0011】FM送信については本形式の送受信機に対
して後から使用が追加されたものであるため、多重変換
を行う必然性が無いのであって、便宜的に次の数種の方
法が用いられている。[0011] Regarding FM transmission, since its use was added later to this type of transceiver, there is no necessity to perform multiplex conversion, and the following several methods are used for convenience. ing.
【0012】図3において、(1)はブロックFM1の
ように第2中間周波数のFM波をM2 に加えて、受信
と逆の周波数変換により運用周波数F0 のFM波を送
出する。
(2)はブロックFM2のように第1中間周波数のFM
波をM1 に加えて、受信と逆の周波数変換により運用
周波数F0 のFM波を送出する。
(3)はブロックFM3のようにCW送信状態で第2局
部発振器を周波数変調して、ミクサM2 の出力する第
1中間周波数のFM波をミクサM1に加える方法。
(4)はブロックFM4のようにCW送信状態で第1局
部発振器を周波数変調して、ミクサM1 より運用周波
数F0 のFM波をPAに加えて送出する。In FIG. 3, (1) adds the FM wave of the second intermediate frequency to M2 like the block FM1, and sends out the FM wave of the operating frequency F0 by performing frequency conversion inverse to reception. (2) is the FM of the first intermediate frequency like block FM2.
wave is added to M1, and an FM wave of operating frequency F0 is sent out by frequency conversion inverse to reception. (3) is a method of frequency modulating the second local oscillator in the CW transmission state as in block FM3, and adding the FM wave of the first intermediate frequency output from mixer M2 to mixer M1. In (4), the first local oscillator is frequency modulated in the CW transmission state as in block FM4, and the FM wave of the operating frequency F0 is added to the PA and sent out from the mixer M1.
【0013】[0013]
【発明が解決しようとする課題】前項で述べたように、
多重変換無線送受信機のFMモードは便宜的に追加され
た機能であるため、他のモードに比べて回路構成上の必
然性が薄いのである。[Problem to be solved by the invention] As stated in the previous section,
Since the FM mode of the multiplex conversion radio transceiver is a function added for convenience, it is less necessary in the circuit configuration than other modes.
【0014】前項に例示のブロックFM1の場合では、
比較的低い第2中間周波数に対して比較的大きい周波数
偏位となるFM波の発生には困難がある。ブロックFM
2では前例よりキャリア周波数が高いから周波数偏位量
については問題が少ないが、周波数安定度の高い周波数
変調器を別に設ける必要がある。ブロックFM3は第2
局部発振器をVCO(Voltage Contro
lled Oscillator)として、これに音
声信号を加えてFM波を発生するので、回路構成上の変
更は少なくて済むが、VCOを周波数安定度の良いVC
XO(Voltage Controlled X
tal Oscillator)としても、固定周波
数のXOより安定度が低下することは否定できない。ブ
ロックFM4では第1局部発振器のPLL回路に音声信
号を加えてFM波を発生するので、PLL回路の構成に
より一概には言えないが、一般的に構成の複雑な第1局
部発振回路に別の機能を追加することによる副作用を考
慮しなければならない。In the case of the block FM1 illustrated in the previous section,
There are difficulties in generating FM waves with a relatively large frequency deviation relative to a relatively low second intermediate frequency. Block FM
In case of No. 2, since the carrier frequency is higher than that of the previous example, there is less problem with the amount of frequency deviation, but it is necessary to separately provide a frequency modulator with high frequency stability. Block FM3 is the second
The local oscillator is converted into a VCO (Voltage Control).
Since the FM wave is generated by adding an audio signal to this as an oscillator, there are few changes to the circuit configuration, but it is possible to replace the VCO with a VC with good frequency stability.
XO (Voltage Controlled X
tal Oscillator), it cannot be denied that the stability is lower than that of a fixed frequency XO. In block FM4, an audio signal is added to the PLL circuit of the first local oscillator to generate an FM wave, so although it cannot be generalized depending on the configuration of the PLL circuit, generally speaking, the first local oscillator circuit, which has a complicated configuration, is Side effects of adding functionality must be considered.
【0015】前述の4種のFM送信回路にはそれぞれに
問題点があるので、さらに改善されたFM送信回路が求
められる所である。Since each of the four types of FM transmitting circuits described above has its own problems, there is a need for a further improved FM transmitting circuit.
【0016】[0016]
【課題を解決するための手段】前記の課題を解決するた
めの本発明においては図1に示すように、多重変換式無
線送受信機の受信時の第1中間周波数F1 に等しい周
波数のFM波F1 ′を発生するPLL制御発振回路1
を設ける。PLL制御発振回路1は標準的構成のもので
良く、周波数F1 ′を発振するVCO11と、発振周
波数F1 ′を分周する分周器12と、分周された周波
数を基準周波数fr と位相比較して位相差成分を出力
する位相検波器13と、この位相差成分をLPF14を
通して直流の制御電圧Vc としてVCO11に加える
ことによりVCOの発振周波数を安定化する。この発振
周波数安定度は主に基準周波数fr の安定度に依存す
るが、本発明では受信時の第2局部発振器2の発振周波
数f2 を分周器15で分周して利用するのであるが、
このf2 はFM波より遥かにシビアな周波数安定度が
必要なSSB波の送受信に十分な機能を具えているので
あるから基準周波数とfr の安定度には全く問題が無
いのである。ただVCO11で希望の周波数F1 ′を
得るためにはF1 ′とfr とが整数関係となるよう
に分周器12と15の分周比を設定しなければならない
のであるが、その詳細については後の実施例の項で述べ
る。[Means for Solving the Problems] In the present invention for solving the above-mentioned problems, as shown in FIG. PLL control oscillation circuit 1 that generates
will be established. The PLL control oscillation circuit 1 may have a standard configuration, and includes a VCO 11 that oscillates at a frequency F1', a frequency divider 12 that divides the oscillation frequency F1', and a phase comparison of the divided frequency with a reference frequency fr. The oscillation frequency of the VCO is stabilized by adding this phase difference component to the VCO 11 as a DC control voltage Vc through the LPF 14 and the phase detector 13 which outputs a phase difference component. This oscillation frequency stability mainly depends on the stability of the reference frequency fr, but in the present invention, the oscillation frequency f2 of the second local oscillator 2 during reception is divided by the frequency divider 15 and used.
This f2 has sufficient functionality for transmitting and receiving SSB waves, which require much more severe frequency stability than FM waves, so there is no problem with the stability of the reference frequency and fr. However, in order to obtain the desired frequency F1' with the VCO 11, it is necessary to set the division ratios of the frequency dividers 12 and 15 so that F1' and fr have an integer relationship, but the details will be explained later. This will be described in the Examples section.
【0017】発振周波数F1 ′を周波数変調するには
マイクロホン増幅器よりの音声信号を制御電圧Vc に
重畳して行うが、この形式は比較的簡単に周波数安定度
の良いFM波が得られるので最近は多く使用されている
。Frequency modulation of the oscillation frequency F1' is carried out by superimposing the audio signal from the microphone amplifier on the control voltage Vc, but this method is relatively easy to obtain an FM wave with good frequency stability, so it has recently been used. Used a lot.
【0018】このようにして作られた周波数F1 ′の
FM信号をミクサM1 の中間周波側より加え、局部発
振器3の発振周波数f1 と混合してミクサM1 の高
周波側に運用周波数のFM信号を出力し、電力増幅器P
Aを通してアンテナより送出するのである。The FM signal of frequency F1' created in this way is added to the intermediate frequency side of mixer M1, mixed with the oscillation frequency f1 of local oscillator 3, and outputted as the FM signal of the operating frequency to the high frequency side of mixer M1. and power amplifier P
It is transmitted from the antenna through A.
【0019】[0019]
【作用】図1において、運用周波数をF0 とすれば、
周波数変換方式の無線送受信機の受信状態における周波
数関係は
F1 =F0 ±f1
であり、送信時には上式を変形して[Operation] In Figure 1, if the operating frequency is F0, then
The frequency relationship in the receiving state of a frequency conversion type radio transmitter/receiver is F1 = F0 ±f1, and when transmitting, the above equation is modified to
【数1】より、送信・受信共に全く同一の運用周波数と
なることが判るが、本発明のFM変調回路においても周
波数F1 のFM信号をミクサM1の中間周波側から加
えることにより得られる運用周波数F0 のFM送信信
号を高周波電力増幅器PAにて増大してアンテナより送
出し、同一運用周波数による送受信が行えるのである。From [Equation 1], it can be seen that the operating frequency is exactly the same for both transmission and reception, but in the FM modulation circuit of the present invention, the operating frequency can also be obtained by adding the FM signal of frequency F1 from the intermediate frequency side of mixer M1. The FM transmission signal of F0 is amplified by the high frequency power amplifier PA and sent out from the antenna, allowing transmission and reception at the same operating frequency.
【0020】[0020]
【実施例】図2は本発明を適用した無線送受信機の回路
構成例であり、主としてFM送信状態での回路構成を示
してある。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 shows an example of the circuit configuration of a radio transmitter/receiver to which the present invention is applied, mainly showing the circuit configuration in an FM transmission state.
【0021】各段の周波数関係について述べると、先づ
運用周波数F0 は0〜30MHz の範囲が連続して
使用が可能である。[0021] Regarding the frequency relationship of each stage, first, the operating frequency F0 can be continuously used in the range of 0 to 30 MHz.
【0022】第1中間周波数は70.455MHz と
非常に高いが、これはイメージ妨害の除去とスプリアス
低減に効果がある為で、さらに運用周波数F0 を60
MHz まで拡張できる便宜もある。第1局部発振周波
数f1 はf1 =F0 +F1 =(0〜30)+7
0.455=70.455〜100.455MHz と
これ又非常に高いが、PLL制御発振器3とその発振周
波数を設定する電子的同調手段4とにより、安定細密に
発振周波数が得られている。The first intermediate frequency is very high at 70.455 MHz, but this is because it is effective in removing image interference and reducing spurious.
It also has the advantage of being able to extend up to MHz. The first local oscillation frequency f1 is f1 = F0 + F1 = (0 to 30) + 7
0.455=70.455 to 100.455 MHz, which is also very high, but a stable and precise oscillation frequency is obtained by the PLL controlled oscillator 3 and the electronic tuning means 4 that sets its oscillation frequency.
【0023】第1中間周波数F1 は受信時には第2ミ
クサM2 にて455kHz の第2中間周波数F2
となり、FM受信モードではリミッタ増幅器を経てデス
クリミネータで復調されて音声信号AFを出力する。第
2ミクサM2 のための第2局部発振周波数は
F1 −F2 =70.455−0.455=70MH
z であり、SSB通信の場合に要求される100Hz
以下の周波数変動は約1.4×10−6以下ということ
になり、水晶発振器であっても決して安易な値では無い
のである。そこで本実施例の回路では第2局部発振周波
数f2 を第1局部発振器3のPLL回路に取込むこと
により、f1 に±Δfの変動が生じた場合にf2 に
も±Δfの変化を生じ、結果として第1中間周波数がF
1 ±Δfとなり、第2中間周波数F2は
F2 =(F1 ±Δf)−(f2 ±Δf)=F1
=f2 であるから、第2中間周波数F2 にはΔfの
影響が及ばないという原理によっている。この方法は当
業者間では周波数ドリフトキャンセル方式として既知で
あるから、詳細な説明は省略する。During reception, the first intermediate frequency F1 is converted to a second intermediate frequency F2 of 455 kHz by the second mixer M2.
In the FM reception mode, the signal is demodulated by a discriminator via a limiter amplifier and output as an audio signal AF. The second local oscillation frequency for the second mixer M2 is F1 - F2 = 70.455 - 0.455 = 70MH
z, which is 100Hz required for SSB communication.
The following frequency fluctuation is about 1.4 x 10-6 or less, which is not an easy value even for a crystal oscillator. Therefore, in the circuit of this embodiment, by incorporating the second local oscillation frequency f2 into the PLL circuit of the first local oscillator 3, when f1 fluctuates by ±Δf, f2 also changes by ±Δf. , the first intermediate frequency is F
1 ±Δf, and the second intermediate frequency F2 is F2 = (F1 ±Δf) - (f2 ±Δf) = F1
= f2, this is based on the principle that the second intermediate frequency F2 is not influenced by Δf. Since this method is known as a frequency drift cancellation method among those skilled in the art, detailed explanation will be omitted.
【0024】本題の周波数変調回路としては第2局部発
振器2の発振周波数70MHz を分周器15により1
4,000分周して得た5kHz を基準周波数fr
としたPLL制御発振周波数変調回路1である。In the frequency modulation circuit of this subject, the oscillation frequency of 70 MHz of the second local oscillator 2 is divided into 1 by the frequency divider 15.
5kHz obtained by dividing the frequency by 4,000 is the reference frequency fr
This is a PLL controlled oscillation frequency modulation circuit 1.
【0025】このPLL回路1はVCO11と、その発
振周波数F1 ′を14,091分周する分周器12と
、分周された周波数を基準周波数fr と位相比較する
位相検波器13と、その位相差出力をLPF14を通し
て得た制御直流電圧Vc をVCOに加えて発振周波数
を制御する構成であり、マイクロホン出力を増幅器MA
にて増幅した音声信号を制御電圧Vc に重畳して加え
ることによりVCO発振周波数F1 ′は周波数変調さ
れるのである。This PLL circuit 1 includes a VCO 11, a frequency divider 12 that divides its oscillation frequency F1' by 14,091, a phase detector 13 that compares the phase of the divided frequency with a reference frequency fr, and The configuration is such that the oscillation frequency is controlled by adding the control DC voltage Vc obtained from the phase difference output through the LPF 14 to the VCO, and the microphone output is connected to the amplifier MA.
By superimposing and adding the amplified audio signal to the control voltage Vc, the VCO oscillation frequency F1' is frequency modulated.
【0026】発振周波数F1 ′は基準周波数fr と
分周器12の分周比により決まるから、
F1 ′=fr ×14,091=5×14,09
1=70.455MHz となり、第1中間周波数F1
と一致するから、第1ミクサM1 で第1局部発振周
波数f1 と混合して、受信時と同一の運用周波数F0
のFM信号波を電力増幅器PAを通してアンテナに供
給するのである。Since the oscillation frequency F1' is determined by the reference frequency fr and the division ratio of the frequency divider 12, F1'=fr×14,091=5×14,09
1=70.455MHz, and the first intermediate frequency F1
, the first mixer M1 mixes it with the first local oscillation frequency f1 to obtain the same operating frequency F0 as at the time of reception.
FM signal waves are supplied to the antenna through the power amplifier PA.
【0027】ここで使用するPLL制御発振周波数変調
回路1は周波数安定度も変調歪もVCXO形式より優れ
ているが、そのためには十分に安定な基準周波数fr
を必要とするものであり、本発明では基準周波数fr
として第2局部発振器を利用しているので、以下にその
関連を考察する。The PLL controlled oscillation frequency modulation circuit 1 used here has better frequency stability and modulation distortion than the VCXO type, but for this purpose a sufficiently stable reference frequency fr is required.
In the present invention, the reference frequency fr
Since the second local oscillator is used as the second local oscillator, the relationship will be discussed below.
【0028】元来本実施例のような多モード無線送受信
機では周波数安定度は最も条件の厳しいSSB波に合わ
せて設計されているので、各発振器の周波数安定度はF
M波に対しては十分の余裕があるが、本例回路で使用さ
れている周波数ドリフトキャンセル動作の影響を調べて
見る。PLL発振器1において
であるから、f2 がΔfだけ変化した場合はこの場合
のf1 ′は前述のトリフトキャンセル動作により
f1 ′=f1 ±Δf である。
ミクサM1 の出力周波数F0 ′は[0028] Since the frequency stability of a multi-mode wireless transmitter/receiver like this embodiment is originally designed to suit the SSB wave, which has the most severe conditions, the frequency stability of each oscillator is F.
Although there is sufficient margin for M waves, the influence of the frequency drift canceling operation used in this example circuit will be investigated. In the PLL oscillator 1, when f2 changes by Δf, f1' in this case becomes f1'=f1 ±Δf due to the above-mentioned drift canceling operation. The output frequency F0' of mixer M1 is
【数2】となるので、第2局部発振周波数がΔfだけ変
動した場合の運用周波数F0 ′は正規の運用周波数F
0 に対して−0.0065Δfと、周波数の変動はΔ
fの100分の1以下に減少して居り、完全なドリフト
キャンセルでは無いけれども、十分にドリフトを抑圧し
ていることが判る。[Equation 2] Therefore, when the second local oscillation frequency fluctuates by Δf, the operating frequency F0' is the normal operating frequency F
-0.0065Δf for 0, and the frequency fluctuation is Δ
It has been reduced to less than 1/100 of f, and although it is not a complete drift cancellation, it can be seen that the drift is sufficiently suppressed.
【0029】本発明の実施上の唯一の条件はPLL発振
変調器1の基準周波数はfr を第2局部発振周波数f
2 と第1中間周波数F1 の双方に対して整数比の関
係になるように選定することである。本実施回路ではf
r を5kHz に取っているが、本回路では変調用途
としてLPF14の時定数を十分に大きく設定してある
為に、fr を低く設定することに支障は無いのである
。The only condition for implementing the present invention is that the reference frequency of the PLL oscillation modulator 1 is fr and the second local oscillation frequency f
2 and the first intermediate frequency F1 so as to have an integer ratio relationship. In this implementation circuit, f
Although r is set to 5 kHz, in this circuit, the time constant of the LPF 14 is set sufficiently large for modulation purposes, so there is no problem in setting fr low.
【0030】[0030]
【発明の効果】本発明のFM送信回路では、多重変換方
式の多モード無線送受信機の第2局部発振器を基準周波
数源とするPLL制御発振周波数変調器で製生した第1
中間周波数のFM信号波を第1ミクサで受信時と同じ運
用周波数として送信する構成であるので、(1)周波数
安定度が良く、歪の少ないFM波が得られる。
(2)同一周波数送受信が自動的に行える。
(3)第2局部発振周波数の変動を第1局部発振周波数
で補償する周波数ドリフトキャンセル方式の場合にも、
完全キャンセルでは無いが十分のドリフト低減効果が得
られる。等の効果があるものである。Effects of the Invention In the FM transmitting circuit of the present invention, the first oscillation frequency modulator produced by a PLL-controlled oscillation frequency modulator whose reference frequency source is the second local oscillator of a multi-mode radio transceiver using a multiplex conversion method.
Since the configuration is such that the FM signal wave at the intermediate frequency is transmitted at the same operating frequency as the first mixer receives it, (1) an FM wave with good frequency stability and little distortion can be obtained. (2) Transmission and reception of the same frequency can be performed automatically. (3) Even in the case of a frequency drift cancellation method in which fluctuations in the second local oscillation frequency are compensated for by the first local oscillation frequency,
Although it is not a complete cancellation, a sufficient drift reduction effect can be obtained. It has the following effects.
【図1】本発明のFM送信回路の基本構成図[Fig. 1] Basic configuration diagram of the FM transmitting circuit of the present invention
【図2】本
発明の実施例図[Figure 2] Example diagram of the present invention
【図3】(A)は多重変換送受信機の受信状態の構成図
(B)は送信状態の構成図[Figure 3] (A) is a block diagram of the receiving state of the multiplex conversion transceiver (B) is a block diagram of the transmitting state
1 PLL制御発振周波数変調回路2 水
晶発振器
3 PLL発振器
11 VCO
12,15 分周器
13 位相検波器
14 LPF
M1 ,M2 ミクサ段
F1 ,F2 中間周波数
f1 ,f2 局部発振周波数fr
基準周波数
F0 運用周波数1 PLL control oscillation frequency modulation circuit 2 Crystal oscillator 3 PLL oscillator 11 VCO 12, 15 Frequency divider 13 Phase detector 14 LPF M1, M2 Mixer stage F1, F2 Intermediate frequency f1, f2 Local oscillation frequency fr
Reference frequency F0 Operating frequency
Claims (1)
数に変換する第1ミクサの第1局部発振器にPLL制御
の可変周波数発振器を用い、第1中間周波数を第2中間
周波数に変換する第2ミクサの第2局部発振器に固定周
波数発振器を用いる多重変換スーパーヘテロダイン式の
多モード無線送受信機において、FM送信モード時には
、前記第2局部発振周波数を基源とする基準周波数によ
り制御されたPLL発振器のVCOに変調信号を加えて
第1中間周波数と等しいFM信号を発生し、これを第1
ミクサの中間周波側に加え、第1ミクサにて第1局部発
振周波数と混合して、運用周波数のFM波を送出するF
M送信回路。1. At the time of reception, a PLL-controlled variable frequency oscillator is used as the first local oscillator of the first mixer that converts the reception frequency to the first intermediate frequency, and a second mixer that converts the first intermediate frequency to the second intermediate frequency. In a multi-conversion superheterodyne multimode radio transceiver using a fixed frequency oscillator as the second local oscillator of a mixer, in the FM transmission mode, the PLL oscillator is controlled by a reference frequency based on the second local oscillator frequency. A modulation signal is applied to the VCO to generate an FM signal equal to the first intermediate frequency, and this is applied to the first intermediate frequency.
In addition to the intermediate frequency side of the mixer, the F is mixed with the first local oscillation frequency in the first mixer to send out the FM wave of the operating frequency.
M transmission circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2922891A JPH077921B2 (en) | 1991-01-31 | 1991-01-31 | FM transmitter circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2922891A JPH077921B2 (en) | 1991-01-31 | 1991-01-31 | FM transmitter circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04245814A true JPH04245814A (en) | 1992-09-02 |
JPH077921B2 JPH077921B2 (en) | 1995-01-30 |
Family
ID=12270364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2922891A Expired - Fee Related JPH077921B2 (en) | 1991-01-31 | 1991-01-31 | FM transmitter circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH077921B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5826174A (en) * | 1996-01-23 | 1998-10-20 | Simple Technology, Inc. | Method and apparatus for improving data transmission over a wireless system by optical spectrum positioning |
US6839548B1 (en) * | 1996-03-01 | 2005-01-04 | International Business Machines Corporation | Radio transmitter |
-
1991
- 1991-01-31 JP JP2922891A patent/JPH077921B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5826174A (en) * | 1996-01-23 | 1998-10-20 | Simple Technology, Inc. | Method and apparatus for improving data transmission over a wireless system by optical spectrum positioning |
US6839548B1 (en) * | 1996-03-01 | 2005-01-04 | International Business Machines Corporation | Radio transmitter |
Also Published As
Publication number | Publication date |
---|---|
JPH077921B2 (en) | 1995-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3173788B2 (en) | Digital transmission equipment and direct conversion receiver | |
US5446421A (en) | Local oscillator phase noise cancelling modulation technique | |
EP0546088B1 (en) | Frequency modulated synthesizer using low frequency offset mixed vco | |
EP0196697B1 (en) | Am receiver | |
KR20010014349A (en) | Dc offset compensation for zero if quadrature demodulator | |
JPS623621B2 (en) | ||
JPH0151100B2 (en) | ||
CA2158774A1 (en) | Method and circuit for creating frequencies for a radio telephone | |
US6922402B1 (en) | Mutual frequency locking across a link | |
CA2118810C (en) | Radio having a combined pll and afc loop and method of operating the same | |
JP2001217745A (en) | Movable phone transceiver | |
JPH04245814A (en) | Fm transmission circuit | |
US7474709B2 (en) | Frequency shift keying modulator and applications thereof | |
JP3898839B2 (en) | Transmitter | |
US6526262B1 (en) | Phase-locked tracking filters for cellular transmit paths | |
JP3825317B2 (en) | FM modulator using both phase-locked loop and quadrature modulator | |
JP3284666B2 (en) | Time division multiplex digital wireless communication device | |
JPS6366089B2 (en) | ||
JP2558265B2 (en) | Improvement on FM demodulator | |
JPH0730332A (en) | Fm modulator | |
JP2692440B2 (en) | FSK data reception method | |
KR100387068B1 (en) | Phase loked loop of mobile communication station | |
JPH07177051A (en) | Fm radio telephone equipment | |
US6137997A (en) | Circuit for receiving and transmitting signals and method | |
JPS5853239A (en) | Radio communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100130 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100130 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110130 Year of fee payment: 16 |
|
LAPS | Cancellation because of no payment of annual fees |