JPH04245608A - Magnetic field orientation molding press - Google Patents

Magnetic field orientation molding press

Info

Publication number
JPH04245608A
JPH04245608A JP2927991A JP2927991A JPH04245608A JP H04245608 A JPH04245608 A JP H04245608A JP 2927991 A JP2927991 A JP 2927991A JP 2927991 A JP2927991 A JP 2927991A JP H04245608 A JPH04245608 A JP H04245608A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
cavity
pole
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2927991A
Other languages
Japanese (ja)
Inventor
Satoru Nakatsuka
哲 中塚
Itsuro Tanaka
逸郎 田中
Shinichi Kijima
来島 愼一
Koichiro Sawa
沢 孝一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2927991A priority Critical patent/JPH04245608A/en
Publication of JPH04245608A publication Critical patent/JPH04245608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To improve surface magnetic field even for a sintered magnet, by decreasing the area of the magnetic field applying surface of one magnetic pole of a main pole or an opposite pole which are arranged so as to face each other via a cavity, as compared with the other pole. CONSTITUTION:While synthetic resin magnet material introduced in a cavity 1 is in a softened state, a magnetic field is applied. Magnetic lines of force permeate said material so as to converge in the central lower part in the cavity 1. Magnetic powder in the magnetic material converges, along the direction of the magnetic lines of force, in the central part of the lower part of the cavity. As to the shapes of a main pole 3 and an opposite pole 4, the area of one magnetic field applying surface is made narrower than the other. Thereby magnetic field is made to converge above the central part of an action surface of a magnet, and the magnetic flux after magnetization can be concentrated, so that the surface magnetic field on the action surface of a magnet can be remarkably increased.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、異方性磁石製造用の
磁場配向成形機に関し、とくに合成樹脂磁石や焼結磁石
中における磁粉の配向方向を効果的に制御することによ
り、着磁後の磁石の作用面における表面磁界の向上を図
ろうとするものである。 【0002】 【従来の技術】健康器具用磁石としては、これまで希土
類系またはフェライト系の焼結磁石あるいはプラスチッ
ク磁石が使用されてきた。上記の磁石のうち、とくに表
面磁界が強いものは希土類系の焼結磁石、ついで同じく
希土類系のプラスチック磁石であり、これらに比べると
フェライト系焼結磁石は性能が幾分、またフェライト系
プラスチック磁石は性能がかなり劣り、それぞれ用途に
応じて使い分けされてきた。すなわちコストの高い希土
類系磁石は高級用途に、又コストの低いフェライト系磁
石は低級用途に使用されてきたが、いずれにせよそれら
を作製する磁場配向金型における磁力線方向は厚み方向
であり、従って磁粉の配向方向も厚み方向であるため、
磁気特性は使用原料の善し悪しによって決まっていた。 【0003】このようにプラスチック磁石は、複雑な形
状のものでも容易に成形でき、また軽量で一体成形も可
能という利点はそなえるものの、焼結磁石に比べると磁
石の表面磁界が低く、吸着力が弱いところに問題を残し
ていた。 【0004】 【発明が解決しようとする課題】この発明の目的は、プ
ラスチック磁石のもつ上記の問題を有利に解決するだけ
でなく、通常磁気特性が良好とされる焼結磁石について
もその表面磁界の一層の向上を実現できる磁場配向成形
機を提案するところにある。 【0005】 【課題を解決するための手段】すなわちこの発明は、成
形金型のキャビティ内に導入した磁石材料に磁場を印加
し、該材料中の磁粉を所定の方向に配向させる磁場配向
成形機であって、該キャビティを挟んで対向配置とされ
る主極及び対極のいずれか一方の磁極の磁場印加面の面
積を、他方のそれに対して減少したことからなる磁場配
向成形機である。 【0006】この発明の磁場配向成形機は、合成樹脂磁
石及び焼結磁石の製造に用いてとりわけ好適なものであ
る。たとえば合成樹脂磁石を製造する場合、磁粉として
は、フェライト系磁粉や希土類系磁粉など従来公知のも
のいずれもが使用でき、その粒子形状については平均粒
径が 1.5μm 程度で、圧縮密度:3.20以上の
ものが好ましい。また合成樹脂についても、従来公知の
ものいずれもが使用でき、その代表例を示すと次のとお
りである。 ポリアミド−6およびポリアミド−12などのポリアミ
ド系合成樹脂。ポリ塩化ビニル、塩化ビニル酢酸ビニル
共重合体、ポリメチルメタクリレート、ポリスチレン、
ポリエチレンおよびポリプルピレンなどの単独または共
重合したビニル系合成樹脂。ポリウレタン、シリコーン
、ポリカーボネート、PBT、PET、ポリエーテルエ
ーテルケトン、塩素化ポリエチレンおよびハイパロンな
どの合成樹脂。プロピレン、ネオプレン、スチレンブタ
ジエンおよびアクリロニトリルブタジエンなどのゴム。 エポキシ系樹脂。フェノール系合成樹脂。さらに磁粉と
バインダーである合成樹脂との配合比率は、磁粉:90
に対し、合成樹脂:10程度とするのが望ましい。なお
その他にも、従来から常用される可塑剤や坑酸化剤、表
面処理剤などを目的に応じて適量使用できるのはいうま
でもない。 【0007】一方、焼結磁石としては、従来公知のもの
いずれもが適合する。 【0008】 【作用】この発明では、成形金型の磁気回路に工夫を加
え、磁石材料中における磁粉の配向方向を制御すること
によって、表面磁界の向上を図る。具体的には、キャビ
ティを挟んで対向配置とされる主極及び対極のいずれか
一方の磁極の磁場印加面の面積を、他方のそれに対して
減少することによって、成形金型キャビティ内の磁力線
を所定の方向に集束させるのである。かくしてキャビテ
ィ内に装入された磁石材料について、その磁粉の配向方
向を磁力線の方向に揃える、すなわち磁石の作用面の中
央部上方に集束させることができので、着磁後における
磁束を絞ることができ、その結果磁石の作用面における
表面磁界の著しい向上が実現されるのである。 【0009】図1に、この発明に従う、射出成形用金型
をそなえる磁場配向成形機の好適例を模式で示し、図中
番号1はダイ2に設けたキャビティ、3は主極、4は対
極(補助極)であり、この例では、対極4の磁場印加面
の面積を主極3のそれに対して減少させた構造とする一
方、キャビティ1は逆円錐台形状としてある。また5は
固定盤、6はタイバー、7は移動盤、8は励磁コイルで
あり、図中に矢印で磁力線の方向を示す。なお9はノズ
ルタッチ、10はスプルーランナーであり、11は突き
出しピン、12は突き出しプレイトである。 【0010】図中、主極3,対極4,固定盤5,タイバ
ー6,移動盤7,突き出しピン11および突き出しプレ
イト12については強磁性体が使用され、一方ダイ2と
しては非磁性体が用いられる。ここに強磁性体としては
、S55C,S50C,S40C等の炭素鋼、SKD1
1,SKD61等のダイス鋼、その他パメンジュール、
純鉄等が使用できるが、耐摩耗性向上のため表面硬化処
理を施すことは一層有利である。一方非磁性体としては
、ステンレス鋼、銅ベリリウム合金、ハイマンガン鋼、
青銅、真ちゅう及び非磁性超鋼N−7等が有利に適合し
、これらにも必要に応じ耐摩耗性向上のため表面硬化処
理を施すことは有利である。 【0011】さて図1に示したところにおいて、射出成
形によってキャビティ1内に導入された合成樹脂磁石材
料が軟化状態にある内に、該磁石材料に対し、磁場を印
加すると、磁力線はキャビティ1内においてその中央部
下方に集束するように透過し、磁石材料中の磁粉はこの
磁力線の方向に沿って、キャビティ下方の中央部に集束
するように配向するのである。 【0012】ここに主極及び対極の形状は、一方の磁場
印加面の面積が他方の磁場印加面の面積よりも狭ければ
よく、例えば対極の面積を主極の面積よりも狭くした場
合には、図2のa及びbに示したようなバリエイション
が考えられる。 【0013】また上記の例では、キャビティ形状が逆円
錐台の場合について主に説明したが、キャビティ形状は
この場合だけに限るものではなく、主極の面積と対極の
面積とを逆転させた円錐台形をはじめとして、図3(a
), (b)及び(c) に示すような三角錐台や四角
錐台のような多角錐台および半球台であっても、また同
図(d), (e)に示すような通常の円柱や直方体で
あっても良く、要は、キャビティ内での磁力線の方向を
、キャビティの上下面のいずれか一方に集束させてやれ
ば良いのである。 【0014】とはいうもののキャビティの斜面勾配は、
キャビティ内で発生する磁力線の方向と等しくすること
がとりわけ好ましい。というのは上記のような斜面勾配
とすれば、磁石製品とした場合に磁石斜面からの磁気漏
れが最も少なく、作用面における表面磁界を最も強くす
ることができるからである 【0015】以上、成形金型として主に射出成形用金型
を用いる場合について説明したが、磁気回路金型の必要
な部分を他の成形用に変更すれば、図4に示すような圧
縮成形用金型、さらには押し出し成形用金型を利用でき
るのは言うまでもない。なお図4に示したところにおい
て、番号13は磁気回路のヨークを兼ねた成形機フレー
ム(磁性材)、14は上パンチプレートブッシュ(磁性
材)、15は上パンチプレート(磁性材)、16はダイ
コントロールシリンダー、17は上パンチ(磁性材)、
18は下パンチ(磁性材)、19はダイ(非磁性材)、
20はダイプレート(非磁性材)、21は上コイル、2
2は下コイル、そして23が成形体である。 【0016】 【実施例】図1に示した射出成形用金型をそなえる磁場
配向成形機を用い、図5に示す寸法になる円錐台形の合
成樹脂磁石を、以下の条件で成形した。なお合成樹脂磁
石の磁粉配向方向は図中に矢印で示したとおりである。 原料 ・磁粉:フェライト磁粉(平均粒径 1.5μm のマ
グネトプランバイト系ストロンチウム系フェライト・合
成樹脂:ポリアミド12 ・可塑剤:TTS(イソプロピルトリイソステアロイル
チタネート) プラマグ配合 ・磁粉        :66 vol%・ポリアミド
12:33 vol% ・TTS      :1 vol% 成形条件 ・キャビティ内磁場  :1〜1.4 ×104 Oe
・金型温度          :100 ℃・射出シ
リンダー温度:300 ℃ ・射出圧            :1.5 トン/c
m2 基本磁気回路 図6に示す 1−1, 1−2 および 1−3 (適
合例) と 1−4 (比較例)  【0017】得られた磁石製品の表面磁界について調べ
た結果を表1に示す。 【0018】 【表1】 【0019】同表より明らかなように、この発明に従う
磁場配向成形機を用いて、合成樹脂磁石中の磁粉を磁石
作用面の上方に集束させることにより、作用面における
表面磁界を大幅に向上させることができる。 【0020】以上、実施例では、射出成形用金型をそな
える磁場配向成形機を用いて合成樹脂磁石を作製する場
合について主に説明したが、前掲図4に示した圧縮成形
用金型をそなえる磁場配向成形機を用い、同様にして合
成樹脂磁石さらには焼結磁石用グリーンを作製すること
もできる。 【0021】 【発明の効果】かくしてこの発明によれば、磁石材料中
の磁粉を所定方向に効果的に配向させることができ、ひ
いては着磁後の永久磁石の作用面における表面磁界を従
来よりも格段に向上させることができる。
[0001] [Industrial Application Field] This invention relates to a magnetic field orientation molding machine for manufacturing anisotropic magnets, and in particular, it can be used to effectively control the orientation direction of magnetic particles in synthetic resin magnets or sintered magnets. The objective is to improve the surface magnetic field on the working surface of the magnet after magnetization by controlling the magnetic field. [0002] As magnets for health appliances, rare earth or ferrite sintered magnets or plastic magnets have so far been used. Among the above magnets, those with particularly strong surface magnetic fields are rare-earth sintered magnets, followed by rare-earth plastic magnets.Compared to these, ferrite-based sintered magnets have somewhat better performance, and ferrite-based plastic magnets have considerably inferior performance, and each has been used differently depending on its purpose. In other words, expensive rare earth magnets have been used for high-grade applications, and low-cost ferrite magnets have been used for low-grade applications, but in any case, the direction of the magnetic field lines in the magnetically oriented molds used to manufacture them is the thickness direction, so Since the orientation direction of magnetic particles is also in the thickness direction,
Magnetic properties were determined by the quality of the raw materials used. As described above, plastic magnets have the advantage that they can be easily molded into complex shapes, are lightweight, and can be molded in one piece, but compared to sintered magnets, the surface magnetic field of the magnet is lower and the attraction force is lower. I was left with problems in my weak areas. SUMMARY OF THE INVENTION It is an object of the present invention to not only advantageously solve the above-mentioned problems of plastic magnets, but also to improve the surface magnetic field of sintered magnets, which are generally considered to have good magnetic properties. Our goal is to propose a magnetic field orientation molding machine that can achieve further improvements in performance. [Means for Solving the Problems] That is, the present invention provides a magnetic field orientation molding machine that applies a magnetic field to a magnetic material introduced into a cavity of a molding die and orients magnetic particles in the material in a predetermined direction. In this magnetic field orientation molding machine, the area of the magnetic field application surface of either the main pole or the counter pole, which are arranged facing each other with the cavity in between, is reduced compared to that of the other magnetic pole. The magnetic field orientation molding machine of the present invention is particularly suitable for use in producing synthetic resin magnets and sintered magnets. For example, when manufacturing synthetic resin magnets, any conventionally known magnetic powder such as ferrite magnetic powder or rare earth magnetic powder can be used, and the particle shape has an average particle size of about 1.5 μm and a compressed density of 3. .20 or more is preferred. Furthermore, as for the synthetic resin, any conventionally known synthetic resin can be used, and representative examples thereof are as follows. Polyamide-based synthetic resins such as polyamide-6 and polyamide-12. Polyvinyl chloride, vinyl chloride vinyl acetate copolymer, polymethyl methacrylate, polystyrene,
Single or copolymerized vinyl-based synthetic resins such as polyethylene and polypropylene. Synthetic resins such as polyurethane, silicone, polycarbonate, PBT, PET, polyetheretherketone, chlorinated polyethylene and Hypalon. Rubbers such as propylene, neoprene, styrene butadiene and acrylonitrile butadiene. Epoxy resin. Phenolic synthetic resin. Furthermore, the blending ratio of magnetic powder and synthetic resin as a binder is magnetic powder: 90
On the other hand, synthetic resin: desirably about 10. In addition, it goes without saying that conventionally used plasticizers, antioxidants, surface treatment agents, and the like can be used in appropriate amounts depending on the purpose. On the other hand, any conventionally known sintered magnet is suitable. [0008] According to the present invention, the surface magnetic field is improved by modifying the magnetic circuit of the molding die and controlling the orientation direction of magnetic particles in the magnet material. Specifically, by reducing the area of the magnetic field application surface of either the main pole or the counter pole, which are arranged to face each other across the cavity, compared to the other, the lines of magnetic force inside the mold cavity can be reduced. It focuses it in a predetermined direction. In this way, the orientation direction of the magnetic particles of the magnetic material charged into the cavity can be aligned in the direction of the lines of magnetic force, that is, it can be focused above the center of the working surface of the magnet, so that the magnetic flux after magnetization can be narrowed down. As a result, a significant improvement in the surface magnetic field at the working surface of the magnet is realized. FIG. 1 schematically shows a preferred example of a magnetic field orientation molding machine equipped with an injection mold according to the present invention. In the figure, number 1 is a cavity provided in a die 2, 3 is a main pole, and 4 is a counter pole. (auxiliary pole), and in this example, the area of the magnetic field application surface of the counter electrode 4 is reduced compared to that of the main pole 3, while the cavity 1 has an inverted truncated conical shape. Further, 5 is a fixed plate, 6 is a tie bar, 7 is a movable plate, and 8 is an excitation coil, and the direction of the lines of magnetic force is indicated by an arrow in the figure. Note that 9 is a nozzle touch, 10 is a sprue runner, 11 is an ejection pin, and 12 is an ejection plate. In the figure, a ferromagnetic material is used for the main pole 3, counter electrode 4, fixed plate 5, tie bar 6, movable plate 7, ejector pin 11 and ejector plate 12, while a non-magnetic material is used for the die 2. It will be done. Here, as the ferromagnetic material, carbon steel such as S55C, S50C, S40C, SKD1
1. Die steel such as SKD61, other pamendur,
Although pure iron or the like can be used, it is more advantageous to perform surface hardening treatment to improve wear resistance. On the other hand, non-magnetic materials include stainless steel, copper beryllium alloy, high manganese steel,
Bronze, brass, non-magnetic super steel N-7, etc. are advantageously suitable, and it is also advantageous to subject these to surface hardening treatment if necessary to improve wear resistance. Now, in the place shown in FIG. 1, when a magnetic field is applied to the synthetic resin magnet material introduced into the cavity 1 by injection molding while it is in a softened state, the lines of magnetic force are The magnetic particles in the magnet material are oriented along the direction of the lines of magnetic force so as to be focused at the center below the cavity. Here, the shape of the main pole and the counter electrode is such that the area of one magnetic field application surface is smaller than the area of the other magnetic field application surface. For example, when the area of the counter electrode is made narrower than the area of the main pole, Variations as shown in FIGS. 2a and 2b are possible. Furthermore, in the above example, the case where the cavity shape is an inverted truncated cone was mainly explained, but the cavity shape is not limited to this case, and the cavity shape is also a conical shape in which the area of the main pole and the area of the opposite pole are reversed. Including the trapezoid, Figure 3 (a
), (b) and (c), such as polygonal truncated pyramids and quadrangular truncated pyramids, and hemispherical truncated pyramids, as shown in (d) and (e) of the same figure. It may be a cylinder or a rectangular parallelepiped, and the point is that the direction of the magnetic lines of force within the cavity may be focused on either the upper or lower surface of the cavity. However, the slope slope of the cavity is
It is particularly preferred that the direction be equal to the direction of the magnetic lines of force occurring within the cavity. This is because, if the slope gradient is as described above, magnetic leakage from the magnet slope will be minimized in the case of a magnetic product, and the surface magnetic field on the working surface can be maximized. Although we have explained the case where an injection molding mold is mainly used as the mold, if the necessary parts of the magnetic circuit mold are changed for other molding purposes, a compression molding mold as shown in Fig. 4, or even a compression molding mold as shown in FIG. Needless to say, an extrusion mold can be used. In addition, in the place shown in FIG. 4, number 13 is the molding machine frame (magnetic material) that also serves as the yoke of the magnetic circuit, 14 is the upper punch plate bush (magnetic material), 15 is the upper punch plate (magnetic material), and 16 is the molding machine frame (magnetic material). Die control cylinder, 17 is upper punch (magnetic material),
18 is a lower punch (magnetic material), 19 is a die (non-magnetic material),
20 is a die plate (non-magnetic material), 21 is an upper coil, 2
2 is a lower coil, and 23 is a molded body. EXAMPLE Using a magnetic field orientation molding machine equipped with the injection mold shown in FIG. 1, a truncated cone-shaped synthetic resin magnet having the dimensions shown in FIG. 5 was molded under the following conditions. The orientation direction of the magnetic particles of the synthetic resin magnet is as indicated by the arrow in the figure. Raw materials/magnetic powder: Ferrite magnetic powder (magnetoplumbite strontium ferrite with average particle size of 1.5 μm/Synthetic resin: Polyamide 12/Plasticizer: TTS (isopropyl triisostearoyl titanate) Plamag combination/Magnetic powder: 66 vol%/Polyamide 12 : 33 vol% ・TTS: 1 vol% Molding conditions ・Magnetic field in cavity: 1 to 1.4 × 104 Oe
・Mold temperature: 100 ℃ ・Injection cylinder temperature: 300 ℃ ・Injection pressure: 1.5 ton/c
m2 Basic magnetic circuit 1-1, 1-2 and 1-3 (compatible examples) and 1-4 (comparative example) shown in Figure 6 [0017] Table 1 shows the results of investigating the surface magnetic field of the obtained magnetic products. show. [Table 1] [0019] As is clear from the same table, by using the magnetic field orientation molding machine according to the present invention to focus the magnetic powder in the synthetic resin magnet above the magnet working surface, the magnetic particles on the working surface are The surface magnetic field can be significantly improved. [0020] In the above embodiments, the case where a synthetic resin magnet is manufactured using a magnetic field orientation molding machine equipped with an injection molding mold has been mainly explained. Using a magnetic field orientation molding machine, synthetic resin magnets and even green for sintered magnets can also be produced in the same manner. [0021] Thus, according to the present invention, the magnetic particles in the magnet material can be effectively oriented in a predetermined direction, and the surface magnetic field on the working surface of the permanent magnet after magnetization can be increased more than before. It can be improved significantly.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明に従う射出成形用金型をそなえる磁場
配向成形機の模式図である。
FIG. 1 is a schematic diagram of a magnetic field orientation molding machine equipped with an injection mold according to the present invention.

【図2】この発明における主極と対極との組合せを示し
た図である。
FIG. 2 is a diagram showing a combination of a main electrode and a counter electrode in the present invention.

【図3】この発明に従うキャビティの好適形状を示した
図である。
FIG. 3 is a diagram showing a preferred shape of a cavity according to the present invention.

【図4】この発明に従う圧縮成形用金型をそなえる磁場
配向成形機の模式図である。
FIG. 4 is a schematic diagram of a magnetic field orientation molding machine equipped with a compression molding mold according to the present invention.

【図5】実施例で作製した合成樹脂磁石の寸法、形状を
示した図である。
FIG. 5 is a diagram showing dimensions and shapes of synthetic resin magnets produced in Examples.

【図6】実施例における主極と対極との組合せ及びキャ
ビティ形状を示した図である。
FIG. 6 is a diagram showing a combination of a main electrode and a counter electrode and a cavity shape in an example.

【符号の説明】[Explanation of symbols]

1  キャビティ 2  ダイ 3  主極 4  対極(補助極) 5  固定盤 6  タイバー 7  移動盤 8  励磁コイル 9  ノズルタッチ 10  スプルーランナー 11  突き出しピン 12  突き出しプレイト 13  成形機フレーム 14  上パンチプレートブッシュ 15  上パンチプレート 16  ダイコントロールシリンダー 17  上パンチ 18  下パンチ 19  ダイ 20  ダイプレート 21  上コイル 22  下コイル 23  成形体 1 Cavity 2 Die 3 Main pole 4 Counter electrode (auxiliary electrode) 5 Fixed plate 6 Tie bar 7. Moving board 8 Excitation coil 9 Nozzle touch 10 Sprue runner 11 Eject pin 12 Protrusion plate 13 Molding machine frame 14 Upper punch plate bush 15 Upper punch plate 16 Die control cylinder 17 Upper punch 18 Lower punch 19 Die 20 Die plate 21 Upper coil 22 Lower coil 23 Molded object

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  成形金型のキャビティ内に導入した磁
石材料に磁場を印加し、該材料中の磁粉を所定の方向に
配向させる磁場配向成形機であって、該キャビティを挟
んで対向配置とされる主極及び対極のいずれか一方の磁
極の磁場印加面の面積を、他方のそれに対して減少した
ことを特徴とする磁場配向成形機。
1. A magnetic field orientation molding machine that applies a magnetic field to a magnetic material introduced into a cavity of a molding die to orient magnetic particles in the material in a predetermined direction, the machine comprising: A magnetic field orientation molding machine characterized in that the area of the magnetic field application surface of either the main pole or the counter pole is reduced compared to that of the other magnetic pole.
JP2927991A 1991-01-31 1991-01-31 Magnetic field orientation molding press Pending JPH04245608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2927991A JPH04245608A (en) 1991-01-31 1991-01-31 Magnetic field orientation molding press

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2927991A JPH04245608A (en) 1991-01-31 1991-01-31 Magnetic field orientation molding press

Publications (1)

Publication Number Publication Date
JPH04245608A true JPH04245608A (en) 1992-09-02

Family

ID=12271832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2927991A Pending JPH04245608A (en) 1991-01-31 1991-01-31 Magnetic field orientation molding press

Country Status (1)

Country Link
JP (1) JPH04245608A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102470777A (en) * 2009-08-28 2012-05-23 蒂森克鲁伯快速运输有限公司 Magnet pole for magnetic levitation vehicles, and method for the production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102470777A (en) * 2009-08-28 2012-05-23 蒂森克鲁伯快速运输有限公司 Magnet pole for magnetic levitation vehicles, and method for the production thereof
CN102470777B (en) * 2009-08-28 2014-06-25 蒂森克鲁伯快速运输有限公司 Magnet pole for magnetic levitation vehicles, and method for the production thereof

Similar Documents

Publication Publication Date Title
US4327346A (en) Anisotropic polymeric magnet in the tubular form and process for producing the same
US5416457A (en) Lateral orientation anisotropic magnet
US4441875A (en) Mold apparatus for forming article under influence of magnetic field
JPH04245608A (en) Magnetic field orientation molding press
US3881853A (en) Apparatus for fabricating an integral rotor assembly
JPS5944975B2 (en) Manufacturing method of anisotropic resin magnet
JP2686616B2 (en) Injection molding machine for anisotropic plastic magnets
JPH04267308A (en) Focused orientation type polar anisotropic disclike magnet and magnetic orienting mold
JPH04244766A (en) Focus composite orientation disclike magnet and magnetic field orientation molding machine
JP3045882B2 (en) Focusing composite orientation type disc-shaped magnet and magnetic field orientation molding machine
JPS59127823A (en) Resin magnet molding equipment
JPH0423410A (en) Anisotropic rare earth magnet and manufacture thereof
JPH0343707Y2 (en)
JPH04247606A (en) Focus-orientation type disk magnet and magnetic field orientation molding device
RU2043864C1 (en) Apparatus for powder magnets pressing
JPH0594921A (en) Metal mold for manufacture of multipolar anisotropic magnet
JPH0626169B2 (en) Method and apparatus for forming rare earth magnet in magnetic field
JPS6225410A (en) Manufacture of permanent magnet
JPS6213015A (en) Manufacture of magnet
JPS5849012B2 (en) Manufacturing method of anisotropic cylindrical polymer magnet
JPS5849011B2 (en) Manufacturing method of anisotropic cylindrical polymer magnet
JPH05144650A (en) Manufacture of magnet
JPH04267307A (en) Focused orientation type ring-shaped magnet
JPH05326251A (en) Closed inner face magnetic path type
JPH05343219A (en) Magnet for signal use