JPH0424519A - Displacement detecting apparatus - Google Patents

Displacement detecting apparatus

Info

Publication number
JPH0424519A
JPH0424519A JP13004190A JP13004190A JPH0424519A JP H0424519 A JPH0424519 A JP H0424519A JP 13004190 A JP13004190 A JP 13004190A JP 13004190 A JP13004190 A JP 13004190A JP H0424519 A JPH0424519 A JP H0424519A
Authority
JP
Japan
Prior art keywords
light
measured
pulses
displacement
tan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13004190A
Other languages
Japanese (ja)
Inventor
Akio Tanaka
昭夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13004190A priority Critical patent/JPH0424519A/en
Publication of JPH0424519A publication Critical patent/JPH0424519A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To make it possible to perform the highly accurate measurement of displace ment independent of the characteristics of light such as wavelengths and the amount of light by emitting laser light on a body to be measured through a reflecting body which is driven by electric pulses, and detecting the displacement based on the changed value of the numbers of pulses before and after the movement of the body to be measured. CONSTITUTION:The position of a body to be measured at the time the number of pulses, when the reflected light is incident on a light detecting sensor 12, becomes N1 is made to be the position of Fa. Then, the expression of relation tan theta1 = b/a holds true. Meanwhile, when the body to be measured is moved to the position of Fb by a distance X, tan theta2 = (b + X)/a is obtained. The number of pulses at the position of Fb from the start of the light detection is made to be N2. Then, the amount of displacement becomes X = a(tan theta2 - tan theta1). Then the number of pulses corre sponding to one rotation of a rotary shaft 14a of a pulse motor is made to be No. Then, theta1 = 2pi X (N1/No) [radian] and theta2 = 2pi X (N2/No) [radian] are obtained. The amount of the displacement X is given as the functions of the pulse numbers N1 and N2. Since the displacement is detected based on the pulse numbers N1 and N2 in this way, the displacement can be detected without the effects of temperature, light density and the like.

Description

【発明の詳細な説明】 [発明の目的コ 〔産業上の利用分野〕 本発明は、被測定体にレーザ光を照射し、被測定体から
の反射光を用いて被測定体の移動量を検出する変位検出
装置に関する。
[Detailed Description of the Invention] [Purpose of the Invention [Industrial Application Field] The present invention irradiates a measured object with a laser beam and uses reflected light from the measured object to measure the amount of movement of the measured object. The present invention relates to a displacement detection device for detecting displacement.

〔従来の技術〕[Conventional technology]

従来、レーザ光を利用した変位検出装置としては、マイ
ケルソン型干渉計を適用したものが考えられている。
Conventionally, as a displacement detection device using laser light, a device using a Michelson interferometer has been considered.

かかる装置は、第5図に示すように、光源1から出射さ
れた光がビームスプリッタ−2で2分割されて、一方は
そのまま透過して移動鏡3へ導かれ、他方は反射されて
固定鏡4へ導かれる。移動鏡3および固定鏡4でそれぞ
れ反射して再びビームスプリッタ−2に入射し、そこで
互いに干渉して干渉縞を生じる。この干渉縞は移動鏡3
を図示矢印方向へ移動させることにより変化する。そこ
で、上記干渉縞を検出器5の受光面に形成して、移動鏡
3の移動による干渉縞の変化を検出し、それをカウンタ
で捕らえて積算することにより、光の波長λを基準とし
て移動距離を測定できる。
As shown in FIG. 5, in this device, light emitted from a light source 1 is split into two by a beam splitter 2, one of which passes through and is guided to a movable mirror 3, and the other is reflected and sent to a fixed mirror. Leads to 4. The beams are reflected by the movable mirror 3 and the fixed mirror 4 and enter the beam splitter 2 again, where they interfere with each other to produce interference fringes. This interference fringe is the movable mirror 3
It changes by moving in the direction of the arrow shown. Therefore, by forming the above-mentioned interference fringes on the light receiving surface of the detector 5, detecting the change in the interference fringes due to the movement of the movable mirror 3, and capturing and integrating them with a counter, the interference fringes are moved based on the wavelength λ of the light. Can measure distance.

また、被測定対象物が移動することによる光路変化を利
用した変位検出装置も考えられている。
Displacement detection devices that utilize changes in the optical path due to movement of the object to be measured have also been considered.

この装置は、第6図に示すように、レーザー発光ダイオ
ード6からのレーザ光が図中実線で示す光路を通って被
測定対象物の表面F1で反射し受光レンズ7を介して位
置検出センサ8の受光面の一点に入射する。また、被測
定対象物をその表面がF2となるまで移動させると、レ
ーザー発光ダイオード6からのレーザ光は図中2点破線
で示す光路を通って、位置検出センサ8の受光面の所定
位置に入射する。この時、位置検出センサ8への反射光
の入射位置は、移動前後で異なる。そこで、位置検出セ
ンサ8における変化量を検出することにより被測定対象
物の移動量を検出している。
As shown in FIG. 6, in this device, a laser beam from a laser light emitting diode 6 passes through an optical path indicated by a solid line in the figure, is reflected at the surface F1 of the object to be measured, and passes through a light receiving lens 7 to a position detection sensor 8. is incident on one point on the light receiving surface. Furthermore, when the object to be measured is moved until its surface reaches F2, the laser light from the laser light emitting diode 6 passes through the optical path shown by the two-dot broken line in the figure and reaches a predetermined position on the light receiving surface of the position detection sensor 8. incident. At this time, the incident position of the reflected light on the position detection sensor 8 differs before and after the movement. Therefore, by detecting the amount of change in the position detection sensor 8, the amount of movement of the object to be measured is detected.

しかしながら、上記マイケルソン型干渉計を適用した変
位検出装置は、測長結果が光の波長λの関数であるため
、例えば光路媒体の温度変化によって波長λが変化する
と、その変化分がそのまま測定誤差となって測定値に表
れる。
However, in the displacement detection device using the above Michelson interferometer, the length measurement result is a function of the wavelength λ of the light, so if the wavelength λ changes due to a change in the temperature of the optical path medium, for example, that change will directly result in a measurement error. This appears in the measured value.

また、第6図に示す従来例では、位置検出センサ8が温
度依存性、光量依存性を持つため、温度。
Furthermore, in the conventional example shown in FIG. 6, the position detection sensor 8 has temperature dependence and light intensity dependence.

光量が変化すると誤差が増大してしまう。As the amount of light changes, the error increases.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

したがって、従来よりある変位検出装置は、測定精度が
波長や光量といった光の持つ特性に依存しているため、
光そのものを極めて安定化させなければならず、高精度
な変位測定を行うのが困難であるという問題があった。
Therefore, since the measurement accuracy of conventional displacement detection devices depends on the characteristics of light such as wavelength and light intensity,
There was a problem in that the light itself had to be extremely stabilized, making it difficult to measure displacement with high precision.

本発明は以上のような実情に鑑みてなされたもので、光
の持つ特性に依存しないパラメータによる変位検出を可
能とし、極めて高精度でしかも幅広いレンジの測定を容
易に可能とする変位検出装置を提供することを目的とす
る。
The present invention has been made in view of the above-mentioned circumstances, and provides a displacement detection device that enables displacement detection using parameters that do not depend on the characteristics of light, and that easily enables measurement with extremely high precision and a wide range. The purpose is to provide.

[発明の構成コ 〔課題を解決するための手段〕 本発明は上記課題を解決するために、レーザ光を発生さ
せる光源と、電気的パルスで駆動され前記光源からのレ
ーザ光を被f#J定体に照射させる反射体と、前記被測
定体からの反射光を受光する受光手段と、前記レーザ光
を発生してから前記反射光を受光するまでの間に前記反
射体に与えられるパルス数を、前記被測定体の移動前後
の各々の位置で検出し、この検出された両パルス数の変
化値に基づいて前記被測定体の移動量を検出する手段と
を備える構成とした。
[Structure of the Invention [Means for Solving the Problems] In order to solve the above problems, the present invention includes a light source that generates a laser beam, and a light source that is driven by an electric pulse and receives the laser beam from the light source. A reflector for irradiating a fixed object, a light receiving means for receiving reflected light from the object to be measured, and a number of pulses given to the reflector during a period from generating the laser beam to receiving the reflected light. is detected at each position before and after the movement of the object to be measured, and means for detecting the amount of movement of the object to be measured based on the change value of the detected number of pulses.

〔作 用〕[For production]

本発明は以上のような手段を講じたことにより、光源か
らのレーザ光が電気的パルスで駆動されている反射体を
介して被測定体に照射される。
By taking the above measures, the present invention irradiates the object to be measured with laser light from a light source via a reflector driven by an electrical pulse.

被測定体からの反射光は受光手段で受光され、レーザ光
を発生してから前記反射光を受光するまでの間に前記反
射体に与えられるパルス数が計数される。そして、被測
定体移動後に再び同様にしてパルス数が計数され、被測
定体移動前後のパルス数の変化値から被測定体の移動量
が求められる。
The reflected light from the object to be measured is received by a light receiving means, and the number of pulses applied to the reflector is counted from the time when the laser beam is generated until the time when the reflected light is received. Then, after the object to be measured is moved, the number of pulses is counted again in the same manner, and the amount of movement of the object to be measured is determined from the change in the number of pulses before and after the object to be measured is moved.

よって、光の持つ特性に依存しないパルス数によって、
変位検出が行われることになる。
Therefore, depending on the number of pulses that does not depend on the characteristics of light,
Displacement detection will be performed.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第1図は本発明の実施例となる変位検出装置の概略的な
構成を示す図である。同図に示す10は、半導体レーザ
を光源としパルス駆動される光発射体であり、この光発
射体10から出射されたレーザ光は被測定体Faで反射
した後、集光レンズ11に入射される。この集光レンズ
11の集光位置にはフォトトランジスタ、フォトダイオ
ードのいずれかからなる光検出センサ12が設置されて
いる。演算部13は、光発射体10から送られてくるパ
ルスデータと光検出センサ12から送られてくる光検出
信号とに基づいて被測定体の移動量を検出する機能を有
する。
FIG. 1 is a diagram showing a schematic configuration of a displacement detection device according to an embodiment of the present invention. Reference numeral 10 shown in the figure is a light projectile which is pulse-driven using a semiconductor laser as a light source.The laser light emitted from this light projector 10 is reflected by the object to be measured Fa and then enters a condenser lens 11. Ru. A photodetection sensor 12 made of either a phototransistor or a photodiode is installed at the condensing position of the condensing lens 11. The calculation unit 13 has a function of detecting the amount of movement of the object to be measured based on the pulse data sent from the light projector 10 and the photodetection signal sent from the photodetection sensor 12.

光発射体10は、第2図に示すように、パルスモータ1
4と、このパルスモータ14を駆動するタメノ一定のパ
ルスを発生させてパルスモータ14へ出力すると共にパ
ルスモータ14へ与エタパルス数を演算部13へ出力す
るパルスモータ駆動回路15と、パルスモータ14の回
転軸14aに取付けられその側面に互いに角度の異なる
複数の反射ミラー16a〜16cが設けられた回転体1
7と、この回転体17に対してレーザ光を入射させる半
導体レーザ光源18とからなる。なお、回転体17と反
射ミラー16とから反射体を構成している。
The light projectile 10 is connected to a pulse motor 1 as shown in FIG.
4, a pulse motor drive circuit 15 that generates a constant pulse to drive the pulse motor 14, outputs it to the pulse motor 14, and outputs the number of pulses applied to the pulse motor 14 to the calculation unit 13; A rotating body 1 attached to a rotating shaft 14a and provided with a plurality of reflecting mirrors 16a to 16c at different angles on the side surface thereof.
7, and a semiconductor laser light source 18 that makes laser light incident on the rotating body 17. Note that the rotating body 17 and the reflecting mirror 16 constitute a reflecting body.

次に、この様に構成された本実施例の作用にっいて第3
図を参照して説明する。
Next, a third explanation will be given of the operation of this embodiment configured in this way.
This will be explained with reference to the figures.

あるイニシャル設定を基準として、パルスモータ14を
回転させると、パルスモータ14へ与えられるパルスと
同数のパルスがパルスモータ駆動回路15から演算部1
3へ伝送され、被測定体Faからの反射光が光検出セン
サ4で検出されるとその光検出信号が演算部13へ入力
されて、反射光が光検出センサ4に入射したときのパル
ス数N1が演算部23にて検出される。
When the pulse motor 14 is rotated based on a certain initial setting, the same number of pulses as those given to the pulse motor 14 are sent from the pulse motor drive circuit 15 to the calculation unit 1.
3, and when the reflected light from the object to be measured Fa is detected by the photodetection sensor 4, the photodetection signal is input to the calculation unit 13, and the number of pulses when the reflected light enters the photodetection sensor 4 is calculated. N1 is detected by the calculation unit 23.

ここで、パルス数がN1となった時点での被測定体の位
置が第1図に示すFaの位置であるとする。すなわち、
光発射体10から被測定体Faまでの図中水平方向の距
離がa、垂直方向の距離がb、被測定体へのレーザ光の
入射角がθ1であるとすると、 tanθ、 −b/a という関係式が成立する。
Here, it is assumed that the position of the object to be measured at the time when the number of pulses reaches N1 is the position Fa shown in FIG. That is,
Assuming that the distance in the horizontal direction in the figure from the light projectile 10 to the object to be measured Fa is a, the distance in the vertical direction is b, and the angle of incidence of the laser beam on the object to be measured is θ1, tan θ, -b/a The following relational expression holds true.

一方、被測定体が第1図に示すFbの位置に距離Xだけ
移動したとすると、レーザ光の入射角はθ2となり、こ
の時の関係式は、 tan  θ2 −  (b + X)  / aとな
る。なお、Fbの位置における光検出時のスタートから
のパルス数をN2とする。
On the other hand, if the object to be measured moves by a distance X to the position Fb shown in Fig. 1, the incident angle of the laser beam becomes θ2, and the relational expression at this time is tan θ2 − (b + X) / a. Become. Note that the number of pulses from the start at the time of light detection at the Fb position is assumed to be N2.

したがって、変位量Xは X−a(tanθ2−tanθI)−(1)となる。今
、説明を簡単にするために、スタートにおける反射ミラ
ー16の反射角を0とすれば、θ1はN1より次の如く
与えられる。すなわち、パルスモータの回転軸14gの
1回転に相当するパルス数をNoとすると、 θ1−2πX(Nl/No)   [ラジアンコ・・・
(2) となる。θ2の場合も同様に、 θ2 = 2 πX (N 2 / N o )   
[ラジアンコ・・・(3) となる。
Therefore, the displacement amount X is X-a(tan θ2-tan θI)−(1). Now, to simplify the explanation, assuming that the reflection angle of the reflection mirror 16 at the start is 0, θ1 is given by N1 as follows. That is, if the number of pulses corresponding to one revolution of the rotation shaft 14g of the pulse motor is No, then θ1-2πX(Nl/No) [Radian...
(2) becomes. Similarly, in the case of θ2, θ2 = 2 πX (N 2 / No)
[Radianco...(3) becomes.

よって、以上から変位量Xはパルス数Nl。Therefore, from the above, the displacement amount X is the number of pulses Nl.

N2の関数として与えられる。It is given as a function of N2.

そこで、本実施例では演算部13にて、被測定体の移動
前後で上記パルス数Nl、N2をそれぞれ検出し、この
検出結果を上記(2)、(3)式にそれぞれ代入してθ
1.θ2をそれぞれ求める。
Therefore, in this embodiment, the calculation unit 13 detects the pulse numbers Nl and N2 before and after the movement of the object to be measured, respectively, and substitutes these detection results into the above equations (2) and (3), respectively.
1. Find θ2 respectively.

そして、予め知ることのできる距離aとθ1θ2を(1
)式に代入する事により、変位量Xを求めている。
Then, the distance a and θ1θ2, which can be known in advance, are (1
), the amount of displacement X is obtained.

この様に本実施例によれば、光の特性に依存しないパル
ス数Nl、N2に基づいて変位検出を行なっているので
、温度、光濃度等の影響を受けることなく極めて高精度
な変位検出を行なうことができる。
In this way, according to this embodiment, displacement detection is performed based on the number of pulses Nl and N2 that do not depend on the characteristics of light, so extremely high precision displacement detection is possible without being affected by temperature, light density, etc. can be done.

また、光検出センサ12は単に光の入射の検出にのみ用
いているため、変位検出精度は光検出センサ自体の経年
変化やドリフトはに直接影響を受けない。
Furthermore, since the photodetection sensor 12 is used only to detect the incidence of light, the displacement detection accuracy is not directly affected by aging or drift of the photodetection sensor itself.

さらに、パルス当たりの回転角を任意に設定する事によ
り、大きな変位量から微小な変位量まで幅広いレンジの
測定が可能となる。
Furthermore, by arbitrarily setting the rotation angle per pulse, it is possible to measure a wide range from large displacements to minute displacements.

また、演算部13におけるイニシャル設定や構成はデジ
タルで行われるためマイクロコンピュータと容易に対応
をとることができ、作業の効率化を簡単に図ることがで
きる。
Further, since the initial settings and configuration in the calculation section 13 are performed digitally, it can be easily corresponded to a microcomputer, and work efficiency can be easily improved.

なお、上記実施例では回転体17と反射ミラー16から
なる反射体を回転移動させているが、インチウオーマ−
やブツシャ−により反復移動させるようにしても本発明
の作用効果を得ることができる。
In the above embodiment, the reflector consisting of the rotating body 17 and the reflecting mirror 16 is rotated, but the inch warmer
The effects of the present invention can also be obtained by repeatedly moving it with a pusher or pusher.

第4図は本発明をレベル計に適用した適用例を示す図で
ある。なお、第1図および第2図に示す部分と同一部分
には同一の符号を付している。
FIG. 4 is a diagram showing an application example in which the present invention is applied to a level meter. Note that the same parts as those shown in FIGS. 1 and 2 are given the same reference numerals.

この適用例は、支点20によりその一端が支えられた片
持ちはり21に反射ミラー22が設けられている。パル
スモータ14の回転軸にカム23が取付けられていて、
このカム23が片持ちはり21の可動端に当接されてい
る。片持ちはり21はカム23の回転によって往復運動
を行なうように構成されている。反射ミラー22は、レ
ーザ光源18からの反射光をタンク24内へ導く。タン
ク24内の液面には反射部材25を浮かせておき、入側
開口部26より入射した入射光をタンク24内に設けら
れた投光レンズ26によって反射部材25上に集光して
いる。反射部材25での反射光は出側開口部28を通っ
て光検出センサ12に入射される。
In this application example, a reflecting mirror 22 is provided on a cantilever beam 21 whose one end is supported by a fulcrum 20. A cam 23 is attached to the rotating shaft of the pulse motor 14,
This cam 23 is in contact with the movable end of the cantilever beam 21. The cantilever beam 21 is configured to perform reciprocating motion by the rotation of the cam 23. Reflection mirror 22 guides reflected light from laser light source 18 into tank 24 . A reflecting member 25 is floated on the liquid surface in the tank 24, and incident light entering from the entrance opening 26 is focused onto the reflecting member 25 by a projection lens 26 provided in the tank 24. The light reflected by the reflecting member 25 passes through the exit opening 28 and enters the light detection sensor 12 .

この様に構成されるレベル計では、パルスモータ14の
回転に対応させて反射ミラー22を往復運動させて一定
のストロークで反射光を液面に照射する。そして、液位
が異なるときのパルス数に基づいて液面の変位量を検出
する。
In the level meter configured in this manner, the reflection mirror 22 is moved back and forth in response to the rotation of the pulse motor 14, and the liquid surface is irradiated with reflected light with a constant stroke. Then, the amount of displacement of the liquid level is detected based on the number of pulses when the liquid level is different.

[発明の効果コ 以上詳記したように本発明によれば、光の持つ特性に依
存しないパルス数に基づいて変位検出を行うことができ
、極めて高精度でしかも幅広いレンジの変位測定を可能
とする変位検出装置を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, displacement can be detected based on the number of pulses that does not depend on the characteristics of light, making it possible to measure displacement with extremely high precision and over a wide range. A displacement detection device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例となる変位検出装置の構成図、
第2図は同実施例の光発射体の構成図、第3図は同実施
例の動作説明図、第4図は本発明をレベル計に適用した
適用例を示す図、第5図はマイケルソン型干渉計の原理
図、第6図は光路変化を利用した従来の変位検出装置の
概略図である。 10・・・光発射体、11・・・集光レンズ、12・・
・光検出センサ、13・・・演算部、14・・・パルス
モータ、15・・・パルスモータ駆動回路、16・・・
反射ミラー 17・・・回転体、18・・・半導体レー
ザ光源。
FIG. 1 is a configuration diagram of a displacement detection device according to an embodiment of the present invention,
Fig. 2 is a configuration diagram of the light projectile of the same embodiment, Fig. 3 is an explanatory diagram of the operation of the same embodiment, Fig. 4 is a diagram showing an example of application of the present invention to a level meter, and Fig. 5 is a Michael FIG. 6, which is a diagram of the principle of a Sonn type interferometer, is a schematic diagram of a conventional displacement detection device that utilizes a change in optical path. 10... Light projectile, 11... Condensing lens, 12...
- Light detection sensor, 13... Calculation unit, 14... Pulse motor, 15... Pulse motor drive circuit, 16...
Reflection mirror 17... Rotating body, 18... Semiconductor laser light source.

Claims (1)

【特許請求の範囲】[Claims] レーザ光を発生させる光源と、電気的パルスで駆動され
前記光源からのレーザ光を被測定体に照射させる反射体
と、前記被測定体からの反射光を受光する受光手段と、
前記レーザ光を発生してから前記反射光を受光するまで
の間に前記反射体に与えられるパルス数を、前記被測定
体の移動前後の各々の位置で検出し、この検出された両
パルス数の変化値に基づいて前記被測定体の移動量を検
出する手段とを具備したことを特徴とする変位検出装置
a light source that generates a laser beam; a reflector driven by an electrical pulse that irradiates the object to be measured with the laser beam from the light source; and a light receiving means that receives the reflected light from the object to be measured;
The number of pulses given to the reflector during the period from generation of the laser beam to reception of the reflected light is detected at each position before and after the movement of the object to be measured, and the number of both detected pulses is A displacement detection device comprising means for detecting the amount of movement of the object to be measured based on a change value of.
JP13004190A 1990-05-18 1990-05-18 Displacement detecting apparatus Pending JPH0424519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13004190A JPH0424519A (en) 1990-05-18 1990-05-18 Displacement detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13004190A JPH0424519A (en) 1990-05-18 1990-05-18 Displacement detecting apparatus

Publications (1)

Publication Number Publication Date
JPH0424519A true JPH0424519A (en) 1992-01-28

Family

ID=15024667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13004190A Pending JPH0424519A (en) 1990-05-18 1990-05-18 Displacement detecting apparatus

Country Status (1)

Country Link
JP (1) JPH0424519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708576A (en) * 2018-11-15 2019-05-03 北方重工装备(沈阳)有限公司 A kind of two-way positioning position in storehouse determining device of the automobile-used laser of discharging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708576A (en) * 2018-11-15 2019-05-03 北方重工装备(沈阳)有限公司 A kind of two-way positioning position in storehouse determining device of the automobile-used laser of discharging

Similar Documents

Publication Publication Date Title
US4461576A (en) Optical measuring system
US5546185A (en) Angle detecting apparatus for detecting angle of inclination of scanning mirror provided on michelson interferometer
CN110579284B (en) Interference type laser wavelength measuring device and use method thereof
JP3310945B2 (en) Non-contact surface shape measurement method
KR100434445B1 (en) Tree demensional shape/surface illumination measuring apparatus
JPH0424519A (en) Displacement detecting apparatus
JPH095059A (en) Flatness measuring device
RU2270979C2 (en) Device for determination of inner surface contour of object
CN210689822U (en) Device for measuring laser wavelength by using interference principle
EP0609419B1 (en) Interferometric probe for distance measurement
KR100332035B1 (en) distance measuring apparatus and method using double pass of homodyne laser
KR20070015267A (en) Light displacement measuring apparatus
JPS62502421A (en) Equipment for orienting, inspecting and/or measuring two-dimensional objects
JPH08178632A (en) Surface shape measuring device
JPH05500853A (en) Method and apparatus for determining glass tube wall thickness
Norgia et al. Proximity sensor using self-mixing effect
CN110749380A (en) Device and method for measuring laser wavelength by using interference principle
JPH07270121A (en) Position sensor
SU1508092A1 (en) Apparatus for measuring displacements
JP3061160B2 (en) Laser interference displacement measurement device
JPH0357914A (en) Optical probe
CN114894124A (en) Interferometric angle measuring system and measuring method
CN110779629A (en) Laser wavelength measuring device and method based on interference mode
SU1241062A1 (en) Laser meter of linear shifts of surface
SU1379610A1 (en) Spherometer