JPH04245112A - Manufacture of oxide superconductive material - Google Patents

Manufacture of oxide superconductive material

Info

Publication number
JPH04245112A
JPH04245112A JP3011125A JP1112591A JPH04245112A JP H04245112 A JPH04245112 A JP H04245112A JP 3011125 A JP3011125 A JP 3011125A JP 1112591 A JP1112591 A JP 1112591A JP H04245112 A JPH04245112 A JP H04245112A
Authority
JP
Japan
Prior art keywords
substrate
silver
critical current
current density
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3011125A
Other languages
Japanese (ja)
Inventor
Kazuhiko Hayashi
和彦 林
Satoru Takano
悟 高野
Noriyuki Yoshida
葭田 典之
Norikata Hayashi
憲器 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3011125A priority Critical patent/JPH04245112A/en
Publication of JPH04245112A publication Critical patent/JPH04245112A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To easily realize a long size and enhance a critical current density by forming an oxide superconductive film on a substrate made of metal or an alloy manufactured by one-way coagulation by a chemical deposition method or a solution application method. CONSTITUTION:In order to coagulate silver as a substrate material in one direction, molten silver 2 is filled into a heated pipe-lie graphite crucible 1, and the lower end of the crucible 1 is brought into contact with water 3, for coagulation. An oxide superconductive film is formed on the resultant silver substrate by a chemical deposition method or solution application method. Since a one-way coagulant has a high dislocation density due to its high growing speed, a dislocation density of the oxide superconductive film becomes high. Consequently, it is possible to efficiently manufacture a long size oxide superconductive material having a high critical current density. Furthermore, it is possible to easily provide satisfactory flexibility because the substrate is made of metal or an alloy.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、酸化物超電導材料の
製造方法に関するもので、特に、基板上に形成された膜
として与えられる酸化物超電導材料の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide superconducting material, and more particularly to a method for producing an oxide superconducting material provided as a film formed on a substrate.

【0002】0002

【従来の技術】近年、臨界温度の高い酸化物超電導材料
が次々に発見され、線材化を初めとする実用化のための
研究が活発に行なわれている。取分け、線材化のため、
多くの方法が検討されている。
BACKGROUND OF THE INVENTION In recent years, oxide superconducting materials with high critical temperatures have been discovered one after another, and active research is being conducted to put them into practical use, including the production of wires. In particular, for making wire rods,
Many methods are being considered.

【0003】線材化のための代表的な方法として、原料
粉末を銀パイプ中に充填し、伸線、圧延、および熱処理
を適宜実施して、テープ状の線材を得る、銀シース法が
ある。この方法は、長尺化が容易なこと、圧延時の機械
的配向により比較的高い臨界電流密度が得られることか
ら、線材化の手段として有力である。
[0003] A typical method for forming wire rods is the silver sheath method, in which a raw material powder is filled into a silver pipe, and wire drawing, rolling, and heat treatment are appropriately performed to obtain a tape-shaped wire rod. This method is effective as a means for making wire rods because it is easy to lengthen the wire and a relatively high critical current density can be obtained due to mechanical orientation during rolling.

【0004】しかしながら、上述した銀シース法によっ
て得られた線材の臨界電流密度は、外部磁場ゼロの条件
下では、5万A/cm2 弱であり、1T(テスラ)の
磁場下では、最大1万A/cm2 程度であり、ケーブ
ルやマグネットに広く利用するには不十分である。
However, the critical current density of the wire obtained by the above-mentioned silver sheath method is a little less than 50,000 A/cm2 under the condition of zero external magnetic field, and up to 10,000 A/cm2 under the magnetic field of 1 T (Tesla). This is about A/cm2, which is insufficient for widespread use in cables and magnets.

【0005】なお、溶液塗布法による線材化も検討され
ているが、臨界電流密度の点で、銀シース法に比べ大き
く劣っている。
[0005] Although a solution coating method is being considered to produce a wire, it is significantly inferior to the silver sheath method in terms of critical current density.

【0006】一方、薄膜化の研究で、4百万A/cm2
 以上の臨界電流密度を有する薄膜が得られている。し
かしながら、このような高特性の薄膜は、チタン酸スト
ロンチウム等の酸化物の単結晶上でしか形成できない。 また、大型の酸化物単結晶の作製は、技術的に困難であ
る上に、このような材料は、フレキシビリティがなく、
曲げることができない。したがって、基板として酸化物
単結晶を用いる限り、線材となり得る長尺材料や加速空
洞等の大型材料を作製することができない。
On the other hand, in research on thinning the film, 4 million A/cm2
Thin films having critical current densities above the above have been obtained. However, such a thin film with high properties can only be formed on a single crystal of an oxide such as strontium titanate. In addition, the production of large oxide single crystals is technically difficult, and such materials lack flexibility and
cannot be bent. Therefore, as long as an oxide single crystal is used as a substrate, a long material that can be used as a wire or a large material such as an acceleration cavity cannot be manufactured.

【0007】[0007]

【発明が解決しようとする課題】それゆえに、この発明
の目的は、長尺化が容易で、かつ広範な用途に使用でき
る臨界電流密度を有する、酸化物超電導材料の製造方法
を提供しようとすることである。
[Problems to be Solved by the Invention] Therefore, an object of the present invention is to provide a method for manufacturing an oxide superconducting material that can be easily made into a long length and has a critical current density that can be used in a wide range of applications. That's true.

【0008】[0008]

【課題を解決するための手段】この発明による酸化物超
電導材料の製造方法では、一方向凝固によって作製した
金属または合金からなる基板を用いることが第1の特徴
である。また、この発明では、上述のような基板上に酸
化物超電導膜を形成するため、化学的蒸着法または溶液
塗布法が用いられることを第2の特徴としている。
[Means for Solving the Problems] The first feature of the method for producing an oxide superconducting material according to the present invention is that a substrate made of a metal or alloy produced by unidirectional solidification is used. A second feature of the present invention is that a chemical vapor deposition method or a solution coating method is used to form an oxide superconducting film on the substrate as described above.

【0009】なお、この明細書において用いられる「一
方向凝固」とは、溶融金属または合金の凝固過程で固液
界面に一方向に大きな温度勾配を与えて、液相中での任
意の結晶核発生を防止し、固液界面でのみ結晶成長を生
じさせて、組織に一方向の方向性を与える方法を意味し
ている。
Note that "unidirectional solidification" as used in this specification means that a large temperature gradient is applied to the solid-liquid interface in one direction during the solidification process of the molten metal or alloy, so that any crystal nuclei in the liquid phase are This refers to a method that prevents crystal growth from occurring and causes crystal growth only at the solid-liquid interface, giving the structure a unidirectional orientation.

【0010】また、「化学的蒸着法」とは、膜を構成す
る元素の化合物蒸気を基板表面に導入し、この化合物を
熱、光またはプラズマにより分解して、基板上に膜を形
成する方法を意味するものとする。
[0010] "Chemical vapor deposition" is a method in which a vapor of a compound of an element constituting a film is introduced onto the surface of a substrate, and this compound is decomposed by heat, light, or plasma to form a film on the substrate. shall mean.

【0011】また、「溶液塗布法」は、水または有機溶
媒に化合物を溶解した溶液を基板上に塗布し、この化合
物を熱、光またはプラズマ等により分解して、基板上に
膜を形成する方法を意味するものとする。溶液塗布法の
具体的な例としては、浸漬法、スプレー法、スピンコー
ト法、スプレーパイロリシス法等が挙げられる。
[0011] Also, in the "solution coating method", a solution of a compound dissolved in water or an organic solvent is applied onto a substrate, and this compound is decomposed by heat, light, plasma, etc. to form a film on the substrate. shall mean the method. Specific examples of the solution coating method include a dipping method, a spray method, a spin coating method, a spray pyrolysis method, and the like.

【0012】0012

【作用】本発明者は、たとえばY−Ba−Cu−O系酸
化物超電導材料の有機酸塩溶液塗布法の実験から、市販
の銀単結晶基板面上に溶液塗布法により形成された酸化
物超電導膜が、5万A/cm2 程度の臨界電流密度を
達成していることを見出している。しかしながら、通常
の銀単結晶は、ブリッジマン法などにより作製されるた
め、その長さないしは大きさには限界があった。
[Function] From experiments on organic acid salt solution coating methods for Y-Ba-Cu-O based oxide superconducting materials, the present inventors discovered that oxides formed by solution coating methods on commercially available silver single crystal substrates. It has been discovered that a superconducting film achieves a critical current density of about 50,000 A/cm2. However, since ordinary silver single crystals are produced by the Bridgman method or the like, there is a limit to their length or size.

【0013】これに対して、一方向凝固材は、ブリッジ
マン法などによる単結晶に比べ、結晶性は劣るものの、
明確な粒界がないか、極めて少ない。このことに注目し
て、本発明者は、たとえば銀の一方向凝固材からなる基
板上に、化学的蒸着法または溶液塗布法により酸化物超
電導膜を形成したところ、驚くべきことに、一方向凝固
材上の酸化物超電導膜は、市販の銀単結晶上の酸化物超
電導膜よりも、高い臨界電流密度を示すことを見出した
。この発明で用いる一方向凝固材は、成長速度が速いた
め、転位密度が高く、これによって、酸化物超電導膜の
転位密度が、上述の市販の銀単結晶基板上の膜に比べて
高くなり、ピンニング点の増大につながり、臨界電流密
度を高くしたものと推察される。
[0013] On the other hand, although the unidirectionally solidified material has inferior crystallinity compared to the single crystal produced by the Bridgman method,
There are no or very few distinct grain boundaries. Taking note of this, the present inventor formed an oxide superconducting film by chemical vapor deposition or solution coating on a substrate made of a unidirectionally solidified silver material, and surprisingly found that We have found that an oxide superconducting film on a solidified material exhibits a higher critical current density than a commercially available oxide superconducting film on a silver single crystal. Since the unidirectionally solidified material used in this invention has a high growth rate, it has a high dislocation density, and as a result, the dislocation density of the oxide superconducting film is higher than that of the film on the commercially available silver single crystal substrate mentioned above. It is presumed that this leads to an increase in pinning points and increases the critical current density.

【0014】なお、この明細書において、「臨界電流密
度」の数値を挙げるときは、特にことわらない限り、外
部磁場ゼロ、温度77K(液体窒素による冷却温度)で
の通常の4端子法の輸送電流密度を示している。
[0014] In this specification, unless otherwise specified, when the numerical value of "critical current density" is cited, it refers to the normal four-terminal transport method at zero external magnetic field and a temperature of 77 K (temperature cooled by liquid nitrogen). Shows current density.

【0015】[0015]

【発明の効果】このように、この発明によれば、容易に
長尺化できる一方向凝固材を基板として用い、しかも、
このような基板上に酸化物超電導膜を形成するために、
長尺化や大型化が容易な化学的蒸着法または溶液塗布法
を用いている。したがって、高い臨界電流密度を有する
長尺化された酸化物超電導材料を能率的に製造すること
ができる。特に、臨界電流密度に関しては、市販の銀単
結晶上の酸化物超電導膜より高い特性を示すことができ
る。また、一方向凝固によって作製した基板は、金属ま
たは合金から構成されることになるので、適当なフレキ
シビリティを与えることが、容易である。
As described above, according to the present invention, a unidirectionally solidified material that can be easily made into a long length is used as a substrate, and furthermore,
In order to form an oxide superconducting film on such a substrate,
A chemical vapor deposition method or a solution coating method is used, which makes it easy to increase the length and size. Therefore, a long oxide superconducting material having a high critical current density can be efficiently manufactured. In particular, regarding critical current density, it can exhibit higher characteristics than commercially available oxide superconducting films on silver single crystals. Furthermore, since the substrate produced by unidirectional solidification is made of metal or alloy, it is easy to provide appropriate flexibility.

【0016】したがって、この発明は、ケーブルやマグ
ネットに使用する超電導線の製造に有利に適用すること
ができる。また、この発明は、加速空洞等の大型材料の
製造にも有利に適用することができる。
Therefore, the present invention can be advantageously applied to the production of superconducting wires used in cables and magnets. The invention can also be advantageously applied to the manufacture of large materials such as acceleration cavities.

【0017】また、酸化物超電導材料は、希少な液体ヘ
リウムを使用しなくて済む超電導材料として注目されて
いるが、コヒーレンス長が短く、臨界電流密度の向上が
困難であったが、この発明によれば、この問題をも解決
し、酸化物超電導材料を工業材料として実用化するのに
極めて有用である。
In addition, oxide superconducting materials are attracting attention as superconducting materials that do not require the use of rare liquid helium, but their coherence length is short and it is difficult to improve critical current density. According to the present invention, this problem is also solved and it is extremely useful for putting oxide superconducting materials into practical use as industrial materials.

【0018】[0018]

【実施例】この発明では、一方向凝固によって作製した
金属または合金からなる基板が用意される。このような
基板の材料として、たとえば銀が用いられる。銀を一方
向凝固させるため、たとえば、図1に示すように、加熱
したパイプ状の黒鉛坩堝1に銀溶湯2を流し込み、坩堝
1の下端に水3を接触させて凝固される。銀の一方向凝
固方法としては、この方法以外の方法も使用することが
でき、たとえば、ノズルより銀溶湯を流出させ、流出部
分において水をかけて凝固させ、凝固したたとえば板材
を連続的に引出す方法も適用できる。長尺の基板を得る
ためには、特にこの後者の方法が適している。本発明者
による研究の結果では、凝固界面の温度勾配をより大き
くした方が、その上に形成された酸化物超電導膜の臨界
電流密度が高くなる傾向がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a substrate made of metal or alloy produced by unidirectional solidification is prepared. For example, silver is used as a material for such a substrate. In order to solidify silver in one direction, for example, as shown in FIG. 1, molten silver 2 is poured into a heated pipe-shaped graphite crucible 1, and water 3 is brought into contact with the lower end of the crucible 1 to solidify the silver. As a unidirectional silver solidification method, methods other than this method can also be used. For example, molten silver is flowed out from a nozzle, water is poured on the flow part to solidify it, and the solidified material, for example, a plate, is continuously pulled out. method can also be applied. This latter method is particularly suitable for obtaining long substrates. According to the results of research conducted by the present inventors, the larger the temperature gradient at the solidification interface, the higher the critical current density of the oxide superconducting film formed thereon tends to be.

【0019】また、酸化物超電導膜の臨界電流密度は、
基板として、一方向凝固させたままのものを用いたとき
最も高い値が得られるが、一方向凝固によって得られた
板材に圧延または伸線等の処理をして得られた基板を用
いても、高い臨界電流密度を与えるのに効果があること
も見出している。たとえば、基板を含めたオーバーオー
ルの臨界電流密度を高くするためには、基板の断面積が
小さい方が好ましい。この点で、一方向凝固させて得ら
れた板材に対して、さらに圧延または伸線等の処理を施
して、断面積が小さくされた基板を使用することも有意
義である。
Furthermore, the critical current density of the oxide superconducting film is:
The highest value is obtained when a substrate that has been unidirectionally solidified is used, but even when a substrate obtained by rolling or wire drawing is used on a plate material obtained by unidirectional solidification, , have also been found to be effective in providing high critical current densities. For example, in order to increase the overall critical current density including the substrate, it is preferable that the cross-sectional area of the substrate be small. In this respect, it is also meaningful to use a substrate whose cross-sectional area is reduced by subjecting the plate material obtained by unidirectional solidification to further processing such as rolling or wire drawing.

【0020】また、この発明が適用される酸化物超電導
材料としては、Y−Ba−Cu−O系、Bi−Sr−C
a−Cu−O系、Tl−Ba−Ca−Cu−O系、等が
あり、いずれの場合であっても、この発明の効果を期待
できる。
Further, as oxide superconducting materials to which this invention is applied, Y-Ba-Cu-O system, Bi-Sr-C
There are a-Cu-O type, Tl-Ba-Ca-Cu-O type, etc., and the effects of the present invention can be expected in either case.

【0021】なお、Tl−Ba−Cu−O系では、Tl
の毒性のために安全対策が必要である。また、77Kで
の臨界電流密度に関しては、Y−Ba−Cu−O系がB
i−Sr−Ca−Cu−O系に勝るようである。したが
って、この発明が適用される酸化物超電導材料としては
、Y−Ba−Cu−O系が最も適しているといえる。
[0021] In the Tl-Ba-Cu-O system, Tl
Safety measures are necessary due to the toxicity of Regarding the critical current density at 77K, the Y-Ba-Cu-O system is
It seems to be superior to the i-Sr-Ca-Cu-O system. Therefore, it can be said that Y--Ba--Cu--O system is most suitable as the oxide superconducting material to which this invention is applied.

【0022】また、この発明によって基板上に酸化物超
電導膜を形成するとき、この酸化物超電導膜の厚みは、
1回当たり10μm以下であることが好ましい。なぜな
ら、化学的蒸着法または溶液塗布法のいずれであっても
、臨界電流密度が、膜厚の増加とともに低下し、10μ
mを超えると、他の方法によって得られた酸化物超電導
材料の臨界電流密度を下回ることがあるからである。 ただし、溶液塗布法では、溶液塗布および焼成を繰り返
すことにより、高い臨界電流密度を維持しながら、厚膜
化することも可能である。
Further, when an oxide superconducting film is formed on a substrate according to the present invention, the thickness of this oxide superconducting film is as follows:
It is preferable that the thickness is 10 μm or less per time. This is because, in either chemical vapor deposition or solution coating, the critical current density decreases with increasing film thickness, and
This is because if it exceeds m, the critical current density may fall below the critical current density of oxide superconducting materials obtained by other methods. However, in the solution coating method, by repeating solution coating and baking, it is possible to increase the thickness while maintaining a high critical current density.

【0023】以下にこの発明に従って実施した実験例に
ついて説明する。 実験例1 銀基板の作製実験から、銀によれば、一方向から冷却す
るだけで、容易に大きな単結晶状の材料が得られること
が判明した。このようにして作製した銀材料は、市販の
銀単結晶に比べて転位密度が1桁以上大きいけれども、
明確な粒界が見られなかった。
Experimental examples carried out according to the present invention will be explained below. Experimental Example 1 From experiments on the production of silver substrates, it was found that with silver, a large single-crystalline material can be easily obtained by simply cooling from one direction. Although the silver material produced in this way has a dislocation density that is more than an order of magnitude higher than that of commercially available silver single crystals,
No clear grain boundaries were observed.

【0024】そこで、図2に示すフローティングゾーン
メルティング法で作製した銀基板を使用した。すなわち
、厚み1.5mm、幅10mmの銀テープ4を、速度5
0mm/分で引上げながら、この銀テープ4の両面に対
して、100Wの赤外線ランプ5を照射し、長さ1mm
の範囲に集光させて、溶融部6を形成した。銀テープ4
は、溶融部6の表面張力によって保持され、その状態で
連続して60cmのテープ状の銀基板7を得ることがで
きた。
Therefore, a silver substrate produced by the floating zone melting method shown in FIG. 2 was used. In other words, a silver tape 4 having a thickness of 1.5 mm and a width of 10 mm is placed at a speed of 5.
While pulling the silver tape 4 at a rate of 0 mm/min, a 100 W infrared lamp 5 was irradiated on both sides of the silver tape 4 to a length of 1 mm.
The melted part 6 was formed by focusing the light in the range of . silver tape 4
was held by the surface tension of the melted part 6, and a 60 cm tape-shaped silver substrate 7 could be obtained continuously in this state.

【0025】この長さ60cmの銀基板のその長さ方向
にわたる結晶方位を、X線回折法を用いて調査した。そ
の結果、表面は、ほぼ全長にわたって(100)面であ
り、[011]方向がそのテープ状銀基板の長手方向に
揃っていることがわかった。
The crystal orientation of this 60 cm long silver substrate along its length was investigated using an X-ray diffraction method. As a result, it was found that the surface was a (100) plane over almost the entire length, and the [011] direction was aligned with the longitudinal direction of the tape-shaped silver substrate.

【0026】次に、この銀基板上に、次に示すような条
件の有機酸塩塗布法により、Y−Ba−Cu−O系超電
導膜を作製した。 *******   塗布溶液:ラウリン酸イットリウム       
             2.80wt%     
       ラウリン酸バリウム         
               1.08wt%   
         ラウリン酸銅          
                    5.11w
t%            プロピオン酸:ピリジン
(2:1)          残部  塗布法:浸漬
−熱分解(大気中600℃、1分)を3回繰り返し  
焼成:酸素中950℃、10分 ******* 得られた酸化物超電導膜の膜厚は、1.6μmとなり、
臨界電流密度は、7万5千A/cm2 を示した。
Next, a Y--Ba--Cu--O based superconducting film was formed on this silver substrate by an organic acid salt coating method under the following conditions. ******* Application solution: Yttrium laurate
2.80wt%
barium laurate
1.08wt%
copper laurate
5.11w
t% Propionic acid:Pyridine (2:1) Balance Coating method: Dipping-pyrolysis (600°C in the air, 1 minute) repeated 3 times
Firing: 950°C in oxygen for 10 minutes******* The thickness of the obtained oxide superconducting film was 1.6 μm,
The critical current density was 75,000 A/cm2.

【0027】実験例2 実験例1における浸漬−熱分解の繰り返し回数を変えて
、臨界電流密度の膜厚による影響を調査した。図3に示
すように、膜厚の増加とともに、臨界電流密度が低下し
、10μmを超えると、臨界電流密度が6千A/cm2
 となり、実用に絶え得ないレベルにまで低下した。
Experimental Example 2 The number of repetitions of immersion and thermal decomposition in Experimental Example 1 was varied to investigate the influence of film thickness on critical current density. As shown in Figure 3, as the film thickness increases, the critical current density decreases, and when it exceeds 10 μm, the critical current density decreases to 6,000 A/cm2.
As a result, it has fallen to a level where it cannot be put into practical use.

【0028】実験例3 実験例1と同じ基板、溶液および最終焼成条件を使用し
ながら、その他の各種の溶液塗布法により、Y−Ba−
Cu−O系酸化物超電導膜を作製した。塗布法、塗布条
件および臨界電流密度が、以下の表1に示されている。
Experimental Example 3 Using the same substrate, solution and final firing conditions as in Experimental Example 1, Y-Ba-
A Cu-O based oxide superconducting film was produced. The coating method, coating conditions and critical current density are shown in Table 1 below.

【0029】[0029]

【表1】[Table 1]

【0030】実験例4 種々の銀の一方向凝固材を基板とし、化学的蒸着法によ
り、Y−Ba−Cu−O系酸化物超電導膜を作製した。
Experimental Example 4 Y--Ba--Cu--O based oxide superconducting films were fabricated by chemical vapor deposition using various unidirectionally solidified silver materials as substrates.

【0031】化学的蒸着法は、次の条件により実施した
。 *******   原料および蒸発温度  Y(thd)    13
0℃                      B
a            350℃        
              Cu         
   120℃  (thd:2,2,6,6−tet
ramethyl−3,5−heptanediona
to)  キャリヤガスおよび流量  Ar     
   7.5×10−6m3 /s  酸素ガス流量 
                       4.
2×10−6m3 /s  圧力          
                      1to
rr  温度                   
             850℃  成膜速度  
                         
 200オングストローム/分  成膜時間     
                       1時
間******* 基板を作製するための凝固法およびその作製条件ならび
に臨界電流密度は、以下の表2に示すとおりである。
The chemical vapor deposition method was carried out under the following conditions. ******* Raw material and evaporation temperature Y (thd) 13
0℃ B
a 350℃
Cu
120℃ (thd:2,2,6,6-tet
ramethyl-3,5-heptanediona
to) Carrier gas and flow rate Ar
7.5×10-6m3/s Oxygen gas flow rate
4.
2×10-6m3/s pressure
1to
rr temperature
850℃ Film formation rate

200 angstrom/min film formation time
1 hour ***** The solidification method for producing the substrate, its production conditions, and critical current density are as shown in Table 2 below.

【0032】[0032]

【表2】[Table 2]

【0033】実験例5 実験例4の引出し法により得られた長尺の銀基板を圧延
して、厚み0.1mm、幅15mmの銀テープを作製し
た。次いで、この銀テープ上に、ゾルゲル法によりBi
−Pb−Sr−Ca−Cu−O系酸化物超電導膜を形成
して、超電導線を作製した。
Experimental Example 5 The long silver substrate obtained by the drawing method of Experimental Example 4 was rolled to produce a silver tape having a thickness of 0.1 mm and a width of 15 mm. Next, Bi was applied onto this silver tape by the sol-gel method.
- A superconducting wire was produced by forming a Pb-Sr-Ca-Cu-O based oxide superconducting film.

【0034】ゾルゲル法では、Bi、Pb、Cuのアセ
チルアセトナート、ジメトキシストロンチウム、ジメト
キシカルシウムを、Bi、Pb、Sr、Ca、Cuがそ
れぞれモル比で1.9:0.4:2:2:3となるよう
に、キシレン中に溶解し、100℃で5時間の加熱によ
りゾル化した。次いで、上述の銀テープを、このゾル溶
液中に通過させて、ゾル溶液を塗布し、十分に乾燥した
。次いで、酸素中、950℃で30分の焼成により、ゾ
ルをセラミック化した。
In the sol-gel method, acetylacetonate of Bi, Pb, and Cu, dimethoxystrontium, and dimethoxycalcium are used in a molar ratio of Bi, Pb, Sr, Ca, and Cu, respectively, of 1.9:0.4:2:2: 3 was dissolved in xylene and heated at 100° C. for 5 hours to form a sol. Next, the above-mentioned silver tape was passed through this sol solution to apply the sol solution and thoroughly dried. Next, the sol was made into a ceramic by firing at 950° C. for 30 minutes in oxygen.

【0035】このようにして得られた超電導線において
、酸化物超電導膜の膜厚は5〜20μmとばらついてい
たが、臨界電流100A、平均臨界電流密度6万8千A
/cm2 、オーバーオールの臨界電流密度8千8百A
/cm2 の特性を得ることができた。
In the superconducting wire thus obtained, the thickness of the oxide superconducting film varied from 5 to 20 μm, but the critical current was 100 A and the average critical current density was 68,000 A.
/cm2, overall critical current density 8,800 A
/cm2 could be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例に含まれる一方向凝固によ
って基板を作製するためのステップを示す説明図である
FIG. 1 is an explanatory diagram showing steps for producing a substrate by unidirectional solidification included in one embodiment of the present invention.

【図2】この発明の一実施例に含まれる一方向凝固によ
って基板を作製するためのステップの他の例を示す説明
図である。
FIG. 2 is an explanatory diagram showing another example of steps for producing a substrate by unidirectional solidification included in one embodiment of the present invention.

【図3】この発明の一実施例に含まれる溶液塗布法によ
る酸化物超電導膜の形成ステップにおいて得られた酸化
物超電導膜の膜厚と臨界電流密度との関係を示す図であ
る。
FIG. 3 is a diagram showing the relationship between the film thickness and critical current density of an oxide superconducting film obtained in the step of forming an oxide superconducting film by a solution coating method included in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  黒鉛坩堝 2  銀溶湯 3  水 4  銀テープ 5  赤外線ランプ 6  溶融部 7  銀基板 1 Graphite crucible 2 Molten silver 3 Water 4 Silver tape 5 Infrared lamp 6 Melting part 7 Silver substrate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  一方向凝固によって作製した金属また
は合金からなる基板を用意し、化学的蒸着法または溶液
塗布法により前記基板上に酸化物超電導膜を形成する、
各ステップを備える、酸化物超電導材料の製造方法。
1. A substrate made of a metal or alloy produced by unidirectional solidification is prepared, and an oxide superconducting film is formed on the substrate by a chemical vapor deposition method or a solution coating method.
A method for producing an oxide superconducting material, comprising steps.
JP3011125A 1991-01-31 1991-01-31 Manufacture of oxide superconductive material Withdrawn JPH04245112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3011125A JPH04245112A (en) 1991-01-31 1991-01-31 Manufacture of oxide superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3011125A JPH04245112A (en) 1991-01-31 1991-01-31 Manufacture of oxide superconductive material

Publications (1)

Publication Number Publication Date
JPH04245112A true JPH04245112A (en) 1992-09-01

Family

ID=11769299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3011125A Withdrawn JPH04245112A (en) 1991-01-31 1991-01-31 Manufacture of oxide superconductive material

Country Status (1)

Country Link
JP (1) JPH04245112A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231233A (en) * 2008-03-25 2009-10-08 Kobe Steel Ltd MANUFACTURING METHOD OF RE-Ba-Cu-O-BASED SUPERCONDUCTIVE TAPE WIRE MATERIAL, AND PLASMA TREATMENT DEVICE USED FOR IT

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231233A (en) * 2008-03-25 2009-10-08 Kobe Steel Ltd MANUFACTURING METHOD OF RE-Ba-Cu-O-BASED SUPERCONDUCTIVE TAPE WIRE MATERIAL, AND PLASMA TREATMENT DEVICE USED FOR IT

Similar Documents

Publication Publication Date Title
JP4223076B2 (en) Controlled conversion of metal oxyfluoride to superconducting oxide
JP3587956B2 (en) Oxide superconducting wire and its manufacturing method
JP2002505032A5 (en)
US5527765A (en) Superconducting YBa2 Cu3 O7-x produced at low temperatures
US5248662A (en) Laser ablation method of preparing oxide superconducting films on elongated substrates
Yamada Liquid-phase epitaxy processing of RBa2Cu3O7− δ
KR920005516B1 (en) Method of making a body with superconductive oxide body
JP3881732B2 (en) Method for producing oxide superconductor composite
JPH04245112A (en) Manufacture of oxide superconductive material
KR100721901B1 (en) Superconducting article and its manufacturing method
JPH04245114A (en) Manufacture of oxide superconductive material
JP3053238B2 (en) Method for producing Bi-based oxide superconductor
JP2501281B2 (en) Method for producing superconductor with high critical current density
JP2822328B2 (en) Superconductor manufacturing method
JPH03112810A (en) Production of oxide superconducting film
JP2822329B2 (en) Superconductor manufacturing method
JPH04295080A (en) Production of bi-containing oxide superconductor
JP2000264788A (en) Oxide superconductive film, electric device using same and their production
KR100338359B1 (en) A Fabrication Technique for Epitaxial Thick Films of High Temperature Superconductor by the Partial Melting Method
JP3182798B2 (en) Manufacturing method of oxide superconductor
JP2004319256A (en) Silver tape, its manufacturing method, and superconducting wire
JPH05135629A (en) Oxide superconductive wire rod and manufacture thereof
Wang et al. Fabrication of YBa 2 Cu 3 O 7− x Superconducting Wires by Spray Deposition
JPH04296408A (en) Oxide superconducting wire rod and manufacture thereof
JPH03290307A (en) Production of thick superconductive oxide film

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514