JPH04244948A - Method for measuring moisture content over wide range in flow injection analysis - Google Patents

Method for measuring moisture content over wide range in flow injection analysis

Info

Publication number
JPH04244948A
JPH04244948A JP1129991A JP1129991A JPH04244948A JP H04244948 A JPH04244948 A JP H04244948A JP 1129991 A JP1129991 A JP 1129991A JP 1129991 A JP1129991 A JP 1129991A JP H04244948 A JPH04244948 A JP H04244948A
Authority
JP
Japan
Prior art keywords
absorbance
concentration
cell
wavelength
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1129991A
Other languages
Japanese (ja)
Inventor
Kiyozo Kinoshita
木下 喜代三
Naoto Nakao
直人 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOTO DENSHI KOGYO KK
Original Assignee
KYOTO DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOTO DENSHI KOGYO KK filed Critical KYOTO DENSHI KOGYO KK
Priority to JP1129991A priority Critical patent/JPH04244948A/en
Publication of JPH04244948A publication Critical patent/JPH04244948A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure concn. over a wide range without changing the length of a cell by spectrally diffracting incident light after the transmission through the cell and extracting the wavelength showing absorbancy optimum to measurement. CONSTITUTION:A predetermined amount of a solution to be tested is added to the reagent flowing through a cell 2 and light of a multi-wavelength is projected on the cell 2 from a light source 1 and the transmitted light thereof is spectrally diffracted into many wavelengths by a spectroscope 3. The respective lights are respectively inputted to many photodetectors arranged to a multi- wavelength simultaneous photometric detector 40. The outputs from the respective photodetectors are inputted to an amplifying signal processing circuit 4 and a required wavelength showing measurable absorbancy is extracted and concn. is calculated on the basis of said absorbancy and outputted to be displayed on an indication part 5. By this constitution, concn. can be measured over a wide range without changing the size of the cell.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明はフローインジェション
分析法におけるカールフィシャ試薬を用いた水分濃度測
定方法に関し、特に測定レンジを自動設定できる広範囲
濃度の水分測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a method for measuring moisture concentration using a Karl Fischer reagent in flow injection analysis, and more particularly to a method for measuring moisture over a wide range of concentrations in which the measurement range can be automatically set.

【0002】0002

【従来の技術】図4は吸光度法による濃度測定の概念図
を示すものである。目的とする物質の濃度に応じて着色
(通常は試薬を添加して発色反応を起こさせる)された
被試験液が所定長さLのセル2に充填され、該セル2に
光源1より分光器3を介して所定波長λの光を入射する
と受光素子4には透過率に応じた出力が得られる。
2. Description of the Related Art FIG. 4 shows a conceptual diagram of concentration measurement using an absorbance method. A test liquid colored according to the concentration of the target substance (usually by adding a reagent to cause a coloring reaction) is filled into a cell 2 of a predetermined length L, and a spectrometer is applied to the cell 2 from a light source 1. When light of a predetermined wavelength λ is incident on the light receiving element 4 through the light receiving element 3, an output corresponding to the transmittance is obtained.

【0003】上記吸光度法による濃度測定法において、
波長λにおける吸光度Mは M=logIr /I=εCL  …  (1) Ir
 :波長λにおける基準透過率(純水の透過率)I  
:波長λにおける透過率 ε  :波長λにおけるモル吸光係数 C  :濃度 L  :セル長 で与えられる。
[0003] In the above concentration measurement method using the absorbance method,
The absorbance M at the wavelength λ is M=logIr/I=εCL... (1) Ir
: Standard transmittance at wavelength λ (transmittance of pure water) I
: Transmittance ε at wavelength λ : Molar extinction coefficient C at wavelength λ : Concentration L : Given by cell length.

【0004】一方、図5はこの発明が適用されるフロー
インジェクション分析法の概要を示す原理図である。細
管(例えば1mmφ)10の一方の端から試薬を一定の
速度、例えば1ml/min で流すようにし、該試薬
は混合器20を介して吸光光度計30に流入された後排
出される。この試薬に対して混合器20の前段に設けら
れた定量コック11で被試験液が所定量注入され、混合
器20で上記試薬と混合されて所定の発色反応又は退色
反応を起こして、吸光度計30に流入される。これによ
って吸光度計30は目的とする物質の濃度に応じた出力
吸光度を示すことになる。ここで、濃度と吸光度との関
係を予め標準液で測定しておくと、上記被試験液の示す
吸光度から濃度が求められることになる。ここにおいて
、例えば試薬としてカールフィッシャー試薬を用いると
、被試験液中の水分濃度の測定が可能となる。
On the other hand, FIG. 5 is a principle diagram showing an outline of the flow injection analysis method to which the present invention is applied. A reagent is caused to flow from one end of a thin tube (for example, 1 mmφ) 10 at a constant rate, for example, 1 ml/min, and the reagent flows into an absorptiometer 30 via a mixer 20 and is then discharged. A predetermined amount of the test liquid is injected into this reagent using a metering cock 11 provided at the front stage of the mixer 20, and is mixed with the above reagent in the mixer 20 to cause a predetermined coloring reaction or fading reaction. 30. As a result, the absorbance meter 30 shows an output absorbance corresponding to the concentration of the target substance. Here, if the relationship between concentration and absorbance is measured in advance using a standard solution, the concentration can be determined from the absorbance shown by the test solution. Here, for example, if Karl Fischer reagent is used as a reagent, the water concentration in the test liquid can be measured.

【0005】このフローインジェクション法分析法によ
る濃度測定法は電位差滴定法、あるいは電流滴定法がバ
ッチ式であるのに対してインジェクションを繰り返すこ
とによって連続測定できる利点がある点で有益である。 更に、吸光度法による濃度測定において、2つの近接す
る波長λ0 、λ1 の光に対応する吸光度M0 、M
1 はそれぞれ M0 =logI00/I0 =ε0 CL…  (2
) M1 =logI10/I1 =ε1 CL…  
(3) ε0 ,ε1 :それぞれ波長λ0 ,λ1 
におけるモル吸光係数 C        :測定対象物質の濃度L     
   :測定セル長 I00,I10:それぞれ波長λ0 ,λ1 における
基準透過率 で表すことができ、この(2) 式、(3) 式より、
S=M0 −M1 =(ε0 −ε1 )CL  … 
(4)が得られ、これにより両波長λ0 、λ1 の吸
光度差Sが求められ、濃度Cを決定できる。この方法は
、図6に示す試薬の劣化による吸光度の変化(曲線α0
 に対してα1 又はα2 と変化した場合)があって
も、上記吸光度差S自体は同じ(即ち、曲線α0 のS
=M0 −M1 、曲線α1 のS=M01−M11又
は曲線α2 のS=M02−M12)  であるので、
空試験をしないで正確な濃度Cが得られる点で有益であ
る。
The concentration measurement method based on the flow injection analysis method is advantageous in that, unlike the potentiometric titration method or the amperometric titration method, which is a batch method, it has the advantage of being able to perform continuous measurements by repeating injections. Furthermore, in concentration measurement using the absorbance method, the absorbances M0 and M corresponding to light of two adjacent wavelengths λ0 and λ1 are
1 are respectively M0 = logI00/I0 = ε0 CL... (2
) M1 = logI10/I1 = ε1 CL...
(3) ε0, ε1: Wavelength λ0, λ1, respectively
molar extinction coefficient C: concentration L of the substance to be measured
:Measurement cell length I00, I10: Can be expressed by the reference transmittance at wavelengths λ0 and λ1, respectively. From equations (2) and (3),
S=M0 −M1 =(ε0 −ε1)CL…
(4) is obtained, and from this, the absorbance difference S between both wavelengths λ0 and λ1 is obtained, and the concentration C can be determined. This method is based on the change in absorbance due to reagent deterioration (curve α0
Even if the absorbance difference S changes to α1 or α2), the absorbance difference S itself remains the same (that is, if
= M0 - M1 , S of curve α1 = M01-M11 or S of curve α2 = M02-M12), so
This method is advantageous in that an accurate concentration C can be obtained without performing a blank test.

【0006】更に、懸濁粒子による影響を考慮すると、
上記波長λ0 、λ1 における吸光度M0 、M1 
はそれぞれ M0 =ε0 CL+ΔA0   〔ΔA0 :波長λ
0 における散乱分〕 M1 =ε1 CL+ΔA1   〔ΔA1 :波長λ
1 における散乱分〕 となる。ここでΔA0 ≒ΔA1 とすると、上記(4
) 式を演算する際に、懸濁粒子による影響はほぼ除去
されることが判る。
Furthermore, considering the influence of suspended particles,
Absorbance M0, M1 at the above wavelengths λ0, λ1
are respectively M0 = ε0 CL + ΔA0 [ΔA0: wavelength λ
0 scattering component] M1 = ε1 CL + ΔA1 [ΔA1: Wavelength λ
The scattering amount at 1 is as follows. Here, if ΔA0 ≒ ΔA1, then the above (4
) When calculating the equation, it can be seen that the influence of suspended particles is almost eliminated.

【0007】[0007]

【発明が解決しようとする課題】図7はセル長を同一に
した場合の波長(nm)と吸光度との関係を、濃度をパ
ラメータとして示したものである。濃度によって測定可
能な吸光度を示す波長の範囲が著しく異なっている。逆
にいうと単一波長で測定可能な濃度範囲は極めて限定さ
れる。そこで、波長を固定して測定可能な濃度のレンジ
を広げようとする場合、カールフィシャ試薬濃度が同一
のとき、上記(1) 式よりセル長Lを変えるしか方法
がないが、モル吸光係数εが著しく小さい範囲ではセル
長を著しく大きくしなければ測定可能な吸光度にならな
い。 ところが、フローインジェクション法の場合はセル長を
変化させることは管径を変化させることを意味する。し
かしながら管径を変えることは被試験液と試薬との分散
による混合状態をも変化させることを意味し、測定条件
の同一性が確保できない難点がある上、管径を変え得る
構造も複雑であり、測定作業も面倒である。
FIG. 7 shows the relationship between wavelength (nm) and absorbance when the cell length is the same, using concentration as a parameter. The range of wavelengths that exhibit measurable absorbance differs significantly depending on the concentration. Conversely, the concentration range that can be measured with a single wavelength is extremely limited. Therefore, when trying to widen the measurable concentration range by fixing the wavelength, the only way to do so is to change the cell length L according to equation (1) above when the Karl Fischer reagent concentration is the same. In extremely small ranges, absorbance cannot be measured unless the cell length is significantly increased. However, in the case of the flow injection method, changing the cell length means changing the tube diameter. However, changing the tube diameter means changing the mixing state due to the dispersion of the test liquid and reagent, which has the disadvantage that it is difficult to ensure the same measurement conditions, and the structure that allows changing the tube diameter is also complicated. , measurement work is also troublesome.

【0008】この発明は上記従来の事情に鑑みて提案さ
れたものであって、セル長を変えることなく広範囲な濃
度測定レンジを得ることができる方法を提供することを
目的とするものである。
The present invention has been proposed in view of the above-mentioned conventional circumstances, and it is an object of the present invention to provide a method capable of obtaining a wide concentration measurement range without changing the cell length.

【0009】[0009]

【課題を解決するための手段】この発明は上記目的を達
成するために以下の手段を採用している。すなわち、所
定径の細管中に流れる試薬に対して、所定量の被試験液
を添加して吸光度計によって濃度検出を行うフローイン
ジェクション分析法において、吸光度計のセルを透過し
た多波長成分の光の中、測定可能な吸光度を示す波長の
光を抽出し、該光の示す吸光度に基づいて濃度測定を行
うものである。
[Means for Solving the Problems] The present invention employs the following means to achieve the above object. In other words, in the flow injection analysis method, in which a predetermined amount of test liquid is added to a reagent flowing in a thin tube of a predetermined diameter, and the concentration is detected by an absorbance meter, the multi-wavelength components of light transmitted through the absorbance meter cell are In this method, light having a wavelength that exhibits a measurable absorbance is extracted, and the concentration is measured based on the absorbance that the light exhibits.

【0010】また、  上記測定可能な吸光度を示す波
長として近接する2つの波長を用い、該2つの波長の示
す吸光度差に基づいて濃度を測定する差吸光度法を用い
ることもできる。
It is also possible to use a differential absorbance method in which two adjacent wavelengths are used as wavelengths exhibiting measurable absorbance and the concentration is measured based on the difference in absorbance between the two wavelengths.

【0011】[0011]

【作用】吸光度セルに広い波長範囲の多波長を照射する
と、その中の特定の領域で測定可能な吸光度を示す。従
って、上記入射光をセル通過後に多波長に分光し、それ
ぞれの波長に対応する吸光度から測定に最も適した吸光
度を示す波長を抽出することによって測定レンジを自在
に決定することができる。この方法を差吸光度法に適用
する場合には、上記吸光度に変えて、測定に適した差吸
光度を示す2つの波長が抽出される。
[Operation] When an absorbance cell is irradiated with multiple wavelengths in a wide wavelength range, a measurable absorbance is exhibited in a specific region within the cell. Therefore, the measurement range can be freely determined by splitting the incident light into multiple wavelengths after passing through the cell and extracting the wavelength exhibiting the most suitable absorbance for measurement from the absorbance corresponding to each wavelength. When this method is applied to a differential absorbance method, two wavelengths exhibiting a differential absorbance suitable for measurement are extracted instead of the absorbance described above.

【0012】0012

【実施例】図1はこの発明の光学系の概要を示す概念図
である。光源1から多波長の光(例えば白色光)がセル
2に入射され、セル2よりの透過光が分光器3で多波長
に分光され、それぞれの光が受光素子を多数配列した多
波長同時測光検出器40のそれぞれの受光素子に入力さ
れる。各受光素子よりの出力は以下に説明する増幅・信
号処理回路4に入力された後、指示部5で表示される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a conceptual diagram showing an outline of the optical system of the present invention. Multi-wavelength light (for example, white light) is incident on a cell 2 from a light source 1, and the transmitted light from the cell 2 is split into multiple wavelengths by a spectrometer 3. Each light is multi-wavelength simultaneous photometry using a large number of light-receiving elements arranged. The light is input to each light receiving element of the detector 40. The output from each light-receiving element is input to an amplification/signal processing circuit 4, which will be described below, and then displayed on an instruction section 5.

【0013】図2はこの発明の電気系を示すブロック図
である。以下上記(2) 式、(3) 式、(4) 式
で示した差吸光度法に従って説明する。上記多波長同時
測光検出器40の各素子      からの出力は増幅
信号処理回路4を構成するプリアンプ41に入力されこ
こで増幅される。このプリアンプ41は各波長に対応す
る数だけ設けるか、あるいは各波長に対応する受光素子
出力を時分割的に増幅する構成とされる。このプリアン
プ41の出力は透過率変換手段42に入力され、プリア
ンプ41の出力に応じて各波長の透過率Iが得られると
ともに、上記プリアンプ41の出力は基準透過率発生手
段43にも入力され、ここで各波長に対応する基準透過
率I0 (純水の透過率)が得られる。上記透過率Iと
基準透過率I0 とから、吸光度演算手段44では上記
(1) 式に従って各波長の吸光度が算出される。そし
て、次段の測定波長決定手段45では、各波長における
吸光度を比較し、測定に適した吸光度を示す近接した2
つの波長λ0 、λ1 が選定され、該波長λ0 、λ
1 に対応する吸光度M0 、M1 が出力される。こ
のとき、各吸光度M0 、M1 はキャリブレーション
メモリ46より、上記2つの波長λ0 、λ1 の標準
液(水分濃度既知の検量液)における吸光度が読み出さ
れて、上記各波長λ0 、λ1 の吸光度M0 、M1
 に対してキャリブレーションがかけられる。その後、
差吸光度演算手段47で両吸光度の差がとられ、濃度演
算手段48で該差吸光度Sより濃度Cが求められ、表示
部で表示される。
FIG. 2 is a block diagram showing the electrical system of the present invention. The following description will be made according to the differential absorbance method shown in the above equations (2), (3), and (4). The output from each element of the multi-wavelength simultaneous photometry detector 40 is input to a preamplifier 41 constituting the amplified signal processing circuit 4 and amplified there. The number of preamplifiers 41 corresponding to each wavelength may be provided, or the preamplifiers 41 may be configured to time-divisionally amplify the light receiving element output corresponding to each wavelength. The output of this preamplifier 41 is input to the transmittance converting means 42, and the transmittance I of each wavelength is obtained according to the output of the preamplifier 41, and the output of the preamplifier 41 is also input to the reference transmittance generating means 43, Here, the reference transmittance I0 (transmittance of pure water) corresponding to each wavelength is obtained. From the above transmittance I and the reference transmittance I0, the absorbance calculation means 44 calculates the absorbance of each wavelength according to the above equation (1). Then, in the next stage measurement wavelength determination means 45, the absorbance at each wavelength is compared, and two adjacent wavelengths showing absorbance suitable for measurement are compared.
Two wavelengths λ0, λ1 are selected, and the wavelengths λ0, λ1 are selected.
The absorbances M0 and M1 corresponding to 1 are output. At this time, each absorbance M0, M1 is read out from the calibration memory 46 as the absorbance in the standard solution (calibration solution with known water concentration) at the two wavelengths λ0, λ1, and the absorbance M0 at each of the wavelengths λ0, λ1 is read out from the calibration memory 46. , M1
Calibration is applied to. after that,
A difference absorbance calculation means 47 calculates the difference between the two absorbances, and a concentration calculation means 48 calculates the concentration C from the difference absorbance S, which is displayed on the display section.

【0014】上記濃度演算手段48には、例えば図3に
示すように、例えば標準液(水分濃度既知の検量液)よ
り求められた2つの波長λ0 、λ1 における差吸光
度Sとの関係を記憶させたメモリを用いることができる
。表1はメタノール15μl中の水分濃度を測定した場
合の3つの試料■■■についての本発明の実施例を示す
ものである。各試料とも濃度は5回の測定結果の平均値
を示すものである。表1における標準偏差は、5回の各
測定値の標準偏差であり、また、変動計数は標準偏差/
濃度平均値×100%の値を示す。この表1によると標
準偏差及び変動計数ともに小さく、濃度にかかわらずほ
ぼ満足できる値を示していることが理解できる。
The concentration calculating means 48 stores the relationship between the absorbance difference S at two wavelengths λ0 and λ1 obtained from, for example, a standard solution (calibration solution with known water concentration), as shown in FIG. 3, for example. memory can be used. Table 1 shows examples of the present invention for three samples (■■■) in which the water concentration in 15 μl of methanol was measured. The concentration of each sample is the average value of the results of 5 measurements. The standard deviation in Table 1 is the standard deviation of each measurement value five times, and the coefficient of variation is the standard deviation/
The value is the concentration average value x 100%. According to Table 1, it can be seen that both the standard deviation and the coefficient of variation are small, indicating almost satisfactory values regardless of the concentration.

【0015】[0015]

【表1】[Table 1]

【0016】以上、差吸光度法についてのみ説明したが
、この発明は差吸光度法によらない場合、すなわち1つ
の波長を用いる従来からの吸光度法に適用できることも
もちろんである。この場合上記測定波長決定手段45で
は適正な吸光度を示す1つの波長のみが決定され、また
差吸光度演算手段47は不要となる。更に、濃度演算手
段48としては吸光度Mと濃度Cとの関係を記憶したメ
モリを用いる。
Although only the differential absorbance method has been described above, the present invention can of course be applied to cases other than the differential absorbance method, that is, to the conventional absorbance method using one wavelength. In this case, the measurement wavelength determination means 45 determines only one wavelength that shows appropriate absorbance, and the difference absorbance calculation means 47 becomes unnecessary. Further, as the concentration calculating means 48, a memory storing the relationship between the absorbance M and the concentration C is used.

【0017】[0017]

【発明の効果】以上説明したようにこの発明は、吸光度
法による濃度測定に際して多波長の光をセルに透過させ
、その中から測定に適した吸光度を示す波長が示す該吸
光度を用いて濃度測定ができるので、きわめて広い範囲
での濃度測定ができ、また、セル長を変化させる等構造
的に複雑になり、かつ、測定誤差を生じ易い要素を含ま
ない利点がある。
Effects of the Invention As explained above, the present invention allows light of multiple wavelengths to be transmitted through a cell when measuring concentration using the absorbance method, and uses the absorbance of a wavelength that exhibits absorbance suitable for measurement to measure concentration. Therefore, the concentration can be measured over a very wide range, and there is an advantage that it does not include structurally complicated elements such as changing the cell length and elements that are likely to cause measurement errors.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の光学系概念図である。FIG. 1 is a conceptual diagram of an optical system of the present invention.

【図2】本発明の電気系概念図である。FIG. 2 is a conceptual diagram of the electrical system of the present invention.

【図3】濃度と吸光度の関係を示すグラフである。FIG. 3 is a graph showing the relationship between concentration and absorbance.

【図4】吸光度法の概念図である。FIG. 4 is a conceptual diagram of the absorbance method.

【図5】フローインジェクション分析方法概念図である
FIG. 5 is a conceptual diagram of a flow injection analysis method.

【図6】試薬劣化による吸光度と波長の関係を示すグラ
フである。
FIG. 6 is a graph showing the relationship between absorbance and wavelength due to reagent deterioration.

【図7】吸光度と波長の関係を示すグラフである。FIG. 7 is a graph showing the relationship between absorbance and wavelength.

【符号の説明】[Explanation of symbols]

2      セル 30    吸光度計 2 Cell 30 Absorbance meter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  所定径の細管中に流れる被試験液また
は試験溶液に対して、所定量の試薬または被試験液を添
加して吸光度計によって濃度検出を行うフローインジェ
クション分析法でかつカールフィシャ試薬を用いた水分
測定において、吸光度計のセルを透過した多波長成分の
光の中、測定可能な吸光度の光を抽出し、該光の示す吸
光度に基づいて濃度測定を行うことを特徴とするフロー
インジェクション分析法における広範囲濃度の水分測定
方法。
Claim 1: A flow injection analysis method in which a predetermined amount of reagent or test solution is added to the test solution or test solution flowing in a thin tube of a predetermined diameter, and the concentration is detected by an absorbance meter, and a Karl Fischer reagent is used. In the moisture measurement using flow injection, light with a measurable absorbance is extracted from the multi-wavelength component light that has passed through the cell of the absorbance meter, and the concentration is measured based on the absorbance shown by the light. Method for measuring moisture over a wide range of concentrations in analytical methods.
【請求項2】  上記測定可能な吸光度を示す波長とし
て近接する2つの波長を用い、該2つの波長の示す吸光
度差に基づいて濃度を測定する請求項1に記載のフロー
インジェクション分析法における広範囲濃度の水分測定
方法。
2. The wide range concentration in the flow injection analysis method according to claim 1, wherein two adjacent wavelengths are used as wavelengths exhibiting measurable absorbance, and the concentration is measured based on the absorbance difference between the two wavelengths. Moisture measurement method.
JP1129991A 1991-01-31 1991-01-31 Method for measuring moisture content over wide range in flow injection analysis Pending JPH04244948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1129991A JPH04244948A (en) 1991-01-31 1991-01-31 Method for measuring moisture content over wide range in flow injection analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1129991A JPH04244948A (en) 1991-01-31 1991-01-31 Method for measuring moisture content over wide range in flow injection analysis

Publications (1)

Publication Number Publication Date
JPH04244948A true JPH04244948A (en) 1992-09-01

Family

ID=11774118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1129991A Pending JPH04244948A (en) 1991-01-31 1991-01-31 Method for measuring moisture content over wide range in flow injection analysis

Country Status (1)

Country Link
JP (1) JPH04244948A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006215013A (en) * 2005-01-07 2006-08-17 Shibata Kagaku Kk Device for measuring transmitted light amount and device for measuring relative absorbance and its measurement method
JP2011174921A (en) * 2005-01-07 2011-09-08 Shibata Kagaku Kk Device for measuring transmitted light amount and device for measuring relative absorbance, and measuring methods thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006215013A (en) * 2005-01-07 2006-08-17 Shibata Kagaku Kk Device for measuring transmitted light amount and device for measuring relative absorbance and its measurement method
JP2011174921A (en) * 2005-01-07 2011-09-08 Shibata Kagaku Kk Device for measuring transmitted light amount and device for measuring relative absorbance, and measuring methods thereof

Similar Documents

Publication Publication Date Title
US4373818A (en) Method and device for analysis with color identification test paper
US5886347A (en) Analytical method for multi-component aqueous solutions and apparatus for the same
US6320662B1 (en) Determination of light absorption pathlength in a vertical-beam photometer
US5696580A (en) Method of and apparatus for measuring absorbance, component concentration or specific gravity of liquid sample
US4684805A (en) Method and apparatus for measuring stable isotopes
US6339472B1 (en) Determination of light absorption pathlength in a vertical-beam photometer
JPH06100549B2 (en) Quantitative measurement method of sample parameters
JPH08304272A (en) Method and instrument for optical measurement
JPS58174833A (en) Fluorescent luminous intensity meter
JPH022097B2 (en)
US3988591A (en) Photometric method for the quantitative determination of a material or substance in an analysis substance and photoelectric photometer for the performance of the aforesaid method
JPH0666808A (en) Chromogen measurement method
US4877583A (en) Fluorescent analyzer
JPS5852550A (en) Dissolution method for ghost peak of flow injection analysis
US4715710A (en) Pump colorimetric analyzer
JPH04244948A (en) Method for measuring moisture content over wide range in flow injection analysis
US4733084A (en) Method of detection and quantitative determination of sulfur and sulfur monitor using the method
US3583813A (en) Spectrophotometer
CN112014341B (en) Method for measuring ultralow transmittance of liquid by spectrometer
JPH08313429A (en) Cell for spectrophotometer
JPH0810244A (en) Optical measuring instrument of light scattering and absorbing body
Aberásturi et al. UV-visible first-derivative spectrophotometry applied to an analysis of a vitamin mixture
US4417812A (en) Circuit arrangement for determining the characteristics of liquids and/or gases, in particular the hemoglobin content of the blood
JPH0843301A (en) Method and device for measuring absorbance, component concentration or specific gravity of liquid sample
JPH0535378B2 (en)