JPH0424457B2 - - Google Patents

Info

Publication number
JPH0424457B2
JPH0424457B2 JP61186235A JP18623586A JPH0424457B2 JP H0424457 B2 JPH0424457 B2 JP H0424457B2 JP 61186235 A JP61186235 A JP 61186235A JP 18623586 A JP18623586 A JP 18623586A JP H0424457 B2 JPH0424457 B2 JP H0424457B2
Authority
JP
Japan
Prior art keywords
fibers
fiber
crimped
unopened
sheet material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61186235A
Other languages
Japanese (ja)
Other versions
JPS6342952A (en
Inventor
Ietsugu Shinjo
Hiroaki Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP61186235A priority Critical patent/JPS6342952A/en
Publication of JPS6342952A publication Critical patent/JPS6342952A/en
Publication of JPH0424457B2 publication Critical patent/JPH0424457B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、補強用シート材料に関し、更に詳し
くは、繊維強化プラスチツクス(以下単に
「FRP」と言う)や、繊維強化コンクリート(以
下単に「FRC」と言う)に利用され、方向性の
極めて少ない高強度の繊維強化材料が得られる非
ガラス系の補強用シート材料に関する。 [従来の技術] 合成樹脂やコンクリート等のマトリツクスをガ
ラス繊維や炭素繊維等の繊維材料で補強すること
により、高性能、高機能の複合材料を得ることが
種々開発され、これらは、軽合金等の金属材料あ
るいは、コンクリート等の建築構造材料に代る、
より軽量、且つ、より高強度、高弾性の高機能材
料として、近年、その重要性がますます高まつて
いる。 従来、これらの補強用繊維材料としては、ガラ
ス、炭素、ボロン等の無機繊維が主流であつた
が、近年新しい技術開発により、アラミド、直鎖
ポリエチレン、あるいは、ポリビニルアルコール
等の有機繊維の利用も種々検討されている。ま
た、これらの繊維材料の形態としては、連続長繊
維からなる糸状体、連続あるいは切断された繊維
からなるシート状体、あるいは、繊維長が10mmの
短繊維や、粒状、フレーク状等の分散体等が知ら
れている。 これらのもののうち、本発明と共通するシート
状材料としては、各種原材料からなる織物や、短
繊維を湿式抄造することで得られるシート、ある
いは切断されたガラス繊維を集積固着したチヨツ
プドストランドマツトが知られている。 [発明が解決しようとする問題点] 補強用シート材料のうち前記の織物は、高強度
の製品が得られる優れたものであるが、加工コス
トが高く経済性に劣り、又、樹脂やコンクリート
等のマトリツクスの含有率の変化や含浸性に劣る
という欠点があり、又、縦、横方向と斜め方向と
の機械的性質の差が大きく、均一性に劣る。湿式
抄造によるシートは、短繊維の繊維長が非常に短
いため、屈曲強度等の機械的性質に劣り、又、マ
トリツクスの含浸性にも劣り、気泡が発生し易
く、製品の品質管理上の問題があつた。 前記のガラス繊維からなるチヨツプドストラン
ドマツトは、織物のような方向性がなく、又、マ
トリツクスの含有率の変化や含浸性にも優れ、且
つ、低コストのため、織物に比べて若干製品強度
が低い点を除いて補強用シート材料として好適な
ものと考えられる。 しかしながら、ガラス繊維以外の繊維を用いた
もので前記チヨツプドストランドマツトに匹敵す
るものは見当らない。その理由としては、非ガラ
ス系の例えば炭素繊維は、収束されたトウを切断
することが困難で粉塵が生じ易かつたり、あるい
は、切断できたとしてもシート化が困難であつた
りし、又、他の無機繊維の場合は50mm程度の長さ
の繊維を得ることが困難であるためと考えられ、
一方、有機繊維の場合には、繊維を収束状態で残
存させたまま、シート化することが困難と考えら
れていたためと推定される。 このため、本発明は、非ガラス系の繊維長が25
乃至150mmの繊維を利用して、従来において得る
ことができなかつたガラス繊維製チヨツプドスト
ランドマツトに匹敵、あるいは更にそれを上回る
強度を有し、且つ、ガラス繊維によつては得られ
ない耐アルカリ性や、軽量性等の諸性質を製品に
付与することができる補強用シート材料を得るこ
とを目的とする。 [問題点を解決するための手段] 繊維長が25乃至150mmの捲縮のない開繊された
ステープル繊維群と、複数本の繊維が収束状態で
存在する捲縮のない未開繊ステープル繊維群とが
20:70〜80:10の組成比で混在し、各繊維間が捲
縮を有する接着性繊維により結合されており、か
つ全繊維の少なくとも30重量%が捲縮のない繊維
であつて、捲縮を有する接着性繊維が全構成繊維
の2乃至50重量%であることを特徴とする非ガラ
ス系の補強用シート材料に関する。 [作用] 本発明は、繊維長が25乃至150mmの非ガラス系
のステープル繊維を利用する。これらの繊維とし
ては、炭素繊維や金属繊維等の無機繊維、あるい
は、アラミド繊維、ポリビニルアルコール繊維、
直鎖ポリエチレン繊維等の合成繊維等、マトリツ
クスを補強する性質のあるものならば何でも良い
が、特にFRP用としては、炭素繊維又はアラミ
ド繊維が好適であり、FRC用としては、ビニロ
ン繊維が好適と考えられる。 これらの繊維材料は、マトリツクスを補強し、
曲げ強度等の機械的性質を高め、高強度、高弾性
を製品に付与する作用を有する。 次に本発明の要旨である、複数本の繊維が収束
状態で存在することの必要性及びこれらの構造を
得るための手段について説明すると、捲縮加工さ
れた繊維を用いて通常のカーデイング法等の開繊
手段により不織布を形成した場合、各単繊維は収
束することなく実質的に全ての繊維が開繊され、
均質な不織布となる。一般的に、本発明の目的と
異なり、シートをマトリツクスと複合体としない
場合には、全ての繊維が極めて均等に分散される
ため、不織布は方向性がなく全体が均一強度のも
のとなり好ましく、収束した繊維の残存は、強度
が不均一となるので好ましくない。しかし、本発
明者等は、本発明の目的のようにマトリツクスと
複合体を形成する場合には、収束繊維の残存は、
シート密度を高め、マトリツクス中の繊維の充填
量を増やし、且つ、収束繊維の剛直性等により、
高強度、高弾性を製品に与えるための必須の要件
であることを見出し、従来は好ましくないとされ
ていた収束状態の未開繊繊維群を積極的に残存せ
しめて、高性能の製品が得られる補強用シート材
料を完成したものである。 次に、これらの収束する未開繊繊維群をシート
中に残存させる手段についていくつかの例を示す
と、全構成繊維中の少なくとも30重量%以上の捲
縮のないステープル繊維を用いて、積極的に開繊
不良を生じせしめて、周知のカード法やランダム
法でシート形成する方法、あるいは、開繊機のク
リアランスを大きくとる等して、未開繊状態を故
意に生じせしめる方法等が考えられるが、既存の
設備をそのまま利用して均一な分散状態で方向性
の無いシートを安定して生産することのできるこ
とから、捲縮の無い繊維を利用することが最も有
利である。しかも、捲縮の無い繊維を利用してシ
ートを形成した場合、未開繊繊維群がシート全体
に均一に分散され、且つ多方向に配列するので、
極めて高強度高弾性で方向性の無い優秀な補強用
シート材料を得ることができる。 これらの捲縮の無い繊維を利用する場合、その
配合量は、製品の用途目的に応じて任意に設定で
きるが、少なくとも30重量%以上含むことが未開
繊繊維群の残存性が良好で且つ製品性能を高める
ことができるため望ましく、特に、FRP用とし
ては65乃至95重量%、FRC用としては40乃至80
重量%含むことが好適と考えられる。なお、開繊
されたステープル繊維群と未開繊ステープル繊維
群との組成比は20:70〜80:10の範囲にある必要
があり、未開繊ステープル繊維の量がこれより少
ないと、十分の曲げ強度や曲げ弾性率が得られ
ず、未開繊ステープル繊維の量がこれより多いと
ウエブ形成性が悪くなり、不均一なシート材料と
なつてしまう。開繊されたステープル繊維群と未
開繊ステープル繊維群とのとくに望ましい組成比
の範囲は40:50〜70:20である。 次に、シート形状を保つために配合される捲縮
を有する接着性繊維について説明すると、これも
又、本発明のシート材料が使用される用途や目的
に応じて適宜選択することが可能であり、溶剤や
加熱により可塑化あるいは溶融して接着性を発現
するものであれば何でも良い。これらの繊維材料
としては、ポリオレフイン系、ポリエステル系、
ポリアミド系、塩化ビニル系やあるいはこれらの
複合繊維等の熱可塑性繊維や、水溶性ポリビニル
アルコール繊維、ジメチルホルムアマイド可溶の
アラミド繊維等の溶剤可溶性繊維を利用すること
ができ、作業性等の観点から熱可塑性繊維であれ
ばポリオレフイン系複合繊維、又溶剤可溶性繊維
であればポリビニルアルコール繊維を利用するこ
とが有利である。 これらの接着性繊維は、シート形状を保持して
作業性を向上すると共に、開繊時の落綿を防ぐ作
用を有するものであるが、シートを単独で使用す
るものではないのでマトリツクス含浸工程までの
作業性が確保できる程度の形状保持作用があれば
十分であり、配合率が高い場合には、シートの形
状保持性は増すが製品の品質を低下せしめる場合
があるので、通常2乃至50重量%の範囲内で、必
要最小限の配合量であることが望ましい。 又、シート重量が200g/m2を越えるような高
重量のシートの場合は、接着性繊維によりシート
を接着する以前、あるいは、接着性繊維が可塑化
している状態でニードルパンチ機等で20乃至200
本/cm2程度の軽い針刺し処理を行つておくと、層
間剥離の生じない、形状保持性に優れたシートが
得られ、且つ、接着性繊維の配合量を更に減らし
て製品性能を高めることが可能なため好適な手段
ということができる。 以下、本発明の補強用シート材料について、更
に具体的に説明するが、本発明は下記の実施例に
限定されるものではない。 [実施例] 繊維長が51mmで、繊維径が7μmの捲縮のない
炭素繊維90重量%と、捲縮加工されたポリオレフ
イン系複合繊維(2デニール、51mm長)とを混綿
し、カード法により開繊されたステープル繊維群
と複数本の繊維が収束状態で存在する未開繊繊維
群とが混在する450g/m2のウエブを形成した。 このウエブに、ニードルパンチ機により約50
本/cm2の針刺し処理を行つた後、ヒユージングオ
ーブンで加熱して該複合繊維の低融点成分を溶融
し、次いで、常温乃至複合繊維の低融点成分の融
点以下の温度で圧着して各繊維間を接着せしめ
て、本発明による補強用シート材料を得た。 生産工程において、ウエブ形成性、針刺し性等
の作業性には全く問題がなく、落綿等の発生も実
質的に皆無であり、又、得られたシートは、全体
に収束した未開繊の炭素繊維が散在しており、極
めて均質なものであつた。 得られた450g/m2のシートに、不飽和ポリエ
ステル樹脂〔大日本インキ(株)製、商品名ポリライ
トFH−123N〕をハンドレイアツプ法により約
2500g/m2含浸し、これを同様に2層積層し、常
温で硬化せしめた後、60℃の温度で5時間アフタ
ーキユアーを行つて、重量が約6000g/m2の本発
明による補強用シート材料を利用したFRPを作
成した。 このものについてJIS K−7203の硬質プラスチ
ツクの曲げ試験方法に準じて、曲げ強度及び曲げ
弾性率を測定し、その結果を第1表に示した。 又、これとの比較のために、本発明の補強用シ
ート材料の代りに450g/m2のガラス繊維チヨツ
プドストランドマツトを用いて実施例と同一の樹
脂を用いて同一厚みになるようにFRPを作成し、
実施例と同じ試験を行つて、その結果も第1表に
示した。 第1表からも明らかなように、本発明の補強用
シート材料を用いたFRPは、従来のガラスチヨ
ツプドストランドマツトを利用したものに比べて
繊維含有率が半分以下で同一厚みの製品が得ら
れ、しかも、比較例のものよりも遥かに軽量で、
且つ強度、弾性率とも高く、機械的性質も、経済
性も従来のものよりも格段に優れたものであつ
た。
[Industrial Application Field] The present invention relates to reinforcing sheet materials, and more specifically, to fiber reinforced plastics (hereinafter simply referred to as "FRP") and fiber reinforced concrete (hereinafter simply referred to as "FRC"). The present invention relates to a non-glass reinforcing sheet material from which a high-strength fiber-reinforced material with extremely little directionality can be obtained. [Prior art] Various methods have been developed to obtain high performance and highly functional composite materials by reinforcing matrices such as synthetic resins and concrete with fibrous materials such as glass fiber and carbon fiber. Instead of metal materials or building structural materials such as concrete,
In recent years, its importance has been increasing as a highly functional material that is lighter, has higher strength, and has higher elasticity. Conventionally, inorganic fibers such as glass, carbon, and boron have been the mainstream for these reinforcing fiber materials, but with new technological developments in recent years, organic fibers such as aramid, linear polyethylene, and polyvinyl alcohol are also being used. Various methods are being considered. In addition, the forms of these fiber materials include filaments made of continuous long fibers, sheets made of continuous or cut fibers, short fibers with a fiber length of 10 mm, and dispersions such as granules and flakes. etc. are known. Among these materials, sheet-like materials common to the present invention include woven fabrics made of various raw materials, sheets obtained by wet-forming short fibers, and chopped strands made by accumulating and fixing cut glass fibers. Matsuto is known. [Problems to be Solved by the Invention] Of the reinforcing sheet materials, the above-mentioned woven fabrics are excellent in that they can yield high-strength products, but they have high processing costs and are poor in economic efficiency, and they also cannot be used with resins, concrete, etc. There are disadvantages such as changes in matrix content and poor impregnation properties, and there is also a large difference in mechanical properties in the vertical, horizontal, and diagonal directions, resulting in poor uniformity. Sheets produced by wet papermaking have very short short fiber lengths, so they are inferior in mechanical properties such as bending strength, and are also inferior in matrix impregnation, making them prone to air bubbles, which poses problems in product quality control. It was hot. The chopped strand mat made of glass fibers described above has no directionality like woven fabrics, has excellent matrix content change and impregnability, and is low cost, so it is slightly more expensive than woven fabrics. It is considered to be suitable as a reinforcing sheet material, except for the fact that the product strength is low. However, nothing comparable to the chopped strand mat using fibers other than glass fiber has been found. The reason for this is that non-glass fibers, such as carbon fibers, are difficult to cut into bundled tows and tend to generate dust, or even if they can be cut, it is difficult to form them into sheets. This is thought to be because it is difficult to obtain fibers with a length of about 50 mm in the case of other inorganic fibers.
On the other hand, in the case of organic fibers, it is presumed that it is difficult to form them into a sheet while leaving the fibers in a converged state. Therefore, in the present invention, the non-glass fiber length is 25
Using fibers of 150mm to 150mm, it has a strength comparable to or even exceeding that of glass fiber chopped strand mats, which could not be obtained conventionally, and which cannot be obtained with glass fibers. The object of the present invention is to obtain a reinforcing sheet material that can impart various properties such as alkali resistance and light weight to products. [Means for solving the problem] A group of unopened staple fibers with a fiber length of 25 to 150 mm without crimps, and a group of unopened staple fibers without crimps in which a plurality of fibers exist in a converged state. but
They are mixed at a composition ratio of 20:70 to 80:10, each fiber is bonded by crimped adhesive fibers, and at least 30% by weight of all fibers are non-crimped fibers. The present invention relates to a non-glass reinforcing sheet material characterized in that adhesive fibers having shrinkage account for 2 to 50% by weight of the total constituent fibers. [Function] The present invention utilizes non-glass staple fibers having a fiber length of 25 to 150 mm. These fibers include inorganic fibers such as carbon fibers and metal fibers, aramid fibers, polyvinyl alcohol fibers,
Any synthetic fibers such as linear polyethylene fibers may be used as long as they have the property of reinforcing the matrix, but carbon fibers or aramid fibers are particularly suitable for FRP, and vinylon fibers are suitable for FRC. Conceivable. These fibrous materials reinforce the matrix and
It has the effect of increasing mechanical properties such as bending strength and imparting high strength and high elasticity to products. Next, to explain the need for multiple fibers to exist in a converged state, which is the gist of the present invention, and the means for obtaining this structure, we will explain the need for a plurality of fibers to exist in a converged state and the means for obtaining this structure. When a nonwoven fabric is formed by the opening means, substantially all the fibers are opened without convergence of each single fiber,
It becomes a homogeneous non-woven fabric. In general, unlike the purpose of the present invention, when the sheet is not made into a composite with a matrix, all the fibers are dispersed very evenly, so the nonwoven fabric has no directionality and has uniform strength throughout, which is preferable. Remaining converged fibers are not preferable because the strength becomes non-uniform. However, the present inventors have found that when forming a composite with a matrix as the purpose of the present invention, the remaining convergent fibers are
By increasing the sheet density, increasing the amount of fiber filling in the matrix, and the rigidity of the convergent fibers,
We discovered that these are essential requirements for providing products with high strength and high elasticity, and by proactively retaining unspread fibers in a converged state, which was previously thought to be undesirable, we were able to obtain high-performance products. This is a completed reinforcing sheet material. Next, some examples of means for making these converging unopened fibers remain in the sheet are as follows. Possible methods include a method of causing fiber opening defects in the fibers and forming a sheet using the well-known card method or random method, or a method of intentionally causing an unspread state by increasing the clearance of the fiber opening machine, etc. It is most advantageous to use non-crimped fibers because it is possible to stably produce sheets with no directionality in a uniformly dispersed state using existing equipment. Moreover, when a sheet is formed using non-crimped fibers, the unopened fibers are uniformly dispersed throughout the sheet and are arranged in multiple directions.
An excellent reinforcing sheet material with extremely high strength, high elasticity, and no directionality can be obtained. When using these non-crimped fibers, the blending amount can be set arbitrarily depending on the purpose of the product, but it is preferable to contain at least 30% by weight to ensure that the unopened fiber group has good persistence and that the product It is desirable because it can improve performance, especially 65 to 95% by weight for FRP and 40 to 80% by weight for FRC.
It is considered suitable to contain % by weight. The composition ratio of the opened staple fiber group and the unopened staple fiber group must be in the range of 20:70 to 80:10, and if the amount of unopened staple fiber is less than this, sufficient bending will occur. Strength and flexural modulus cannot be obtained, and if the amount of unopened staple fibers is larger than this, the web formability will be poor, resulting in a non-uniform sheet material. A particularly desirable composition ratio range of the opened staple fiber group and the unopened staple fiber group is 40:50 to 70:20. Next, the crimped adhesive fibers that are blended to maintain the sheet shape will be explained. This can also be selected as appropriate depending on the use and purpose for which the sheet material of the present invention is used. Any material may be used as long as it can be plasticized or melted with a solvent or heated to exhibit adhesive properties. These fiber materials include polyolefin, polyester,
Thermoplastic fibers such as polyamide-based, vinyl chloride-based, or composite fibers thereof, and solvent-soluble fibers such as water-soluble polyvinyl alcohol fibers and dimethylformamide-soluble aramid fibers can be used, and from the viewpoint of workability etc. It is advantageous to use polyolefin composite fibers for thermoplastic fibers, and polyvinyl alcohol fibers for solvent-soluble fibers. These adhesive fibers maintain the sheet shape and improve workability, and also have the effect of preventing cotton from falling during fiber opening, but since the sheet is not used alone, it is difficult to use until the matrix impregnation process. It is sufficient to have a shape-retaining effect to ensure workability.If the blending ratio is high, the shape-retaining property of the sheet increases, but it may reduce the quality of the product. It is desirable that the minimum amount is within the range of %. In addition, in the case of a heavy sheet with a sheet weight exceeding 200 g/m 2 , it is necessary to process the sheet with a needle punch machine etc. for a 200
By performing a light needle pricking process of approximately 2 cm2, a sheet with excellent shape retention and no delamination can be obtained, and the product performance can be improved by further reducing the amount of adhesive fiber blended. Since it is possible, it can be said to be a suitable means. The reinforcing sheet material of the present invention will be explained in more detail below, but the present invention is not limited to the following examples. [Example] 90% by weight of non-crimped carbon fibers with a fiber length of 51 mm and a fiber diameter of 7 μm were mixed with crimped polyolefin composite fibers (2 denier, 51 mm length), and processed by the carding method. A web of 450 g/m 2 was formed in which a group of opened staple fibers and an unopened fiber group in which a plurality of fibers were present in a converged state were mixed. Approximately 50
After needle-pricking the fibers/cm 2 , the composite fibers are heated in a fusing oven to melt the low melting point components of the composite fibers, and then compressed at room temperature or at a temperature below the melting point of the low melting component of the composite fibers. Each fiber was bonded to each other to obtain a reinforcing sheet material according to the present invention. During the production process, there were no problems with workability such as web formation and needle stickability, and there was virtually no occurrence of cotton shedding, and the obtained sheet contained unopened carbon fibers converged throughout. The fibers were scattered and extremely homogeneous. About 450 g/m 2 of the obtained sheet was coated with unsaturated polyester resin [manufactured by Dainippon Ink Co., Ltd., trade name Polylite FH-123N] by hand lay-up method.
A reinforcing material according to the present invention having a weight of approximately 6000 g/m 2 was impregnated with 2500 g/m 2 , laminated in two layers in the same manner, and cured at room temperature, and then after-cured at a temperature of 60°C for 5 hours. We created FRP using sheet materials. The bending strength and bending elastic modulus of this product were measured according to JIS K-7203 bending test method for hard plastics, and the results are shown in Table 1. For comparison, a glass fiber chopped strand mat of 450 g/m 2 was used in place of the reinforcing sheet material of the present invention, and the same resin as in the example was used to obtain the same thickness. Create FRP in
The same tests as in the examples were conducted and the results are also shown in Table 1. As is clear from Table 1, FRP using the reinforcing sheet material of the present invention has less than half the fiber content and the same thickness compared to that using conventional glass chopped strand mats. is obtained, and it is much lighter than the comparative example.
In addition, it had high strength and elastic modulus, and was significantly superior in mechanical properties and economical efficiency to conventional products.

【表】 なお、未開繊ステープル繊維の配合量と、各々
の補強用シート材料を用いて得られた繊維強化プ
ラスチツクスの曲げ強度及び曲げ弾性率との関係
を以下に記載する。ここでのデータは、実施例を
基準にしており、実施例における炭素繊維の未開
繊ステープル繊維群の量をカーデイングの条件を
変更することによつて、10%、20%、30%、50
%、7%と変化させたものである。上記実施例の
未開繊ステープル繊維量は20%のものに該当す
る。
[Table] The relationship between the blending amount of unopened staple fibers and the flexural strength and flexural modulus of fiber-reinforced plastics obtained using each reinforcing sheet material is described below. The data here are based on the examples, and by changing the carding conditions, the amount of the unopened staple fiber group of carbon fibers in the examples was changed to 10%, 20%, 30%, 50%.
%, 7%. The amount of unopened staple fiber in the above example corresponds to 20%.

【表】 上記のように、未開繊ステープル繊維量の増加
に伴つて曲げ強度及び曲げ弾性率は増加していく
が、未開繊ステープル繊維群の割合が高くなるに
つれて、曲げ強度及び曲げ弾性率の増加率はにぶ
る。しかも、未開繊ステープル繊維量が増える
と、ウエブ形成性が悪くなり、接着性繊維も均一
に分散しにくくなるため、70%では実際の製造に
おいてはかなり困難となる。作製する繊維強化プ
ラスチツクスに要求される強度、及び補強用シー
ト材料の生産性を考慮すると、未開繊ステープル
繊維の量は10〜70%、好ましくは20〜50%の範囲
にあるのがよい。 [効果] 本発明の補強用シート材料は、従来はガラス繊
維によつてのみ得られた、高性能でしかも低価格
のチヨツプドストランドマツトを、他の繊維材料
によつても作成可能としたものである。 このため、例えば炭素繊維を主としたシート材
料の場合には、ガラス繊維以上に軽量でしかも高
強度高弾性のFRP製品が得られ、ガラス繊維に
よつては得ることのできない耐アルカリ性や電磁
波遮蔽性を具備した製品を従来よりも格段安価に
得られたり、あるいは、アラミド繊維やポリビニ
ルアルコール繊維等の合成繊維を利用して、作業
性が従来よりも格段に優れ、しかも同一重量にお
いて、ガラス繊維によるものよりも遥かに高性能
の製品が得られるものである。 従つて、本発明の補強用シート材料は、補強用
シート材料として本質的に必要とされる機能を全
て具備し、しかも、生産性、経済性、汎用性等に
優れた極めて有用性の高いものである。
[Table] As shown above, the flexural strength and flexural modulus increase as the amount of unspread staple fibers increases, but as the proportion of unspread staple fibers increases, the flexural strength and flexural modulus decrease. The rate of increase is slow. Moreover, as the amount of unopened staple fibers increases, the web forming properties deteriorate and adhesive fibers become difficult to disperse uniformly, so it is quite difficult to use 70% in actual production. Considering the strength required for the fiber-reinforced plastics to be produced and the productivity of the reinforcing sheet material, the amount of unopened staple fibers is preferably in the range of 10 to 70%, preferably 20 to 50%. [Effects] The reinforcing sheet material of the present invention enables high-performance and low-cost chopped strand mats, which were conventionally obtained only from glass fibers, to be made from other fiber materials. This is what I did. For this reason, for example, in the case of sheet materials mainly made of carbon fiber, FRP products can be obtained that are lighter than glass fiber, yet have high strength and high elasticity, and have alkali resistance and electromagnetic shielding properties that cannot be obtained with glass fiber. It is possible to obtain products with excellent properties at a much lower cost than before, or by using synthetic fibers such as aramid fibers and polyvinyl alcohol fibers, workability is much better than before, and at the same weight, glass fibers can be obtained. It is possible to obtain a product with far higher performance than that produced by conventional methods. Therefore, the reinforcing sheet material of the present invention has all the functions essentially required as a reinforcing sheet material, and is highly useful with excellent productivity, economy, versatility, etc. It is.

Claims (1)

【特許請求の範囲】[Claims] 1 繊維長が25乃至150mmの捲縮のない開繊され
たステープル繊維群と、複数本の繊維が収束状態
で存在する捲縮のない未開繊ステープル繊維群と
が20:70〜80:10の組成比で混在し、各繊維間が
捲縮を有する接着性繊維により結合されており、
かつ全繊維の少なくとも30重量%が捲縮のない繊
維であつて、捲縮を有する接着性繊維が全構成繊
維の2乃至50重量%であることを特徴とする非ガ
ラス系の補強用シート材料。
1 A non-crimped, opened staple fiber group with a fiber length of 25 to 150 mm and a non-crimped, unopened staple fiber group in which multiple fibers exist in a converged state are mixed in a ratio of 20:70 to 80:10. The composition ratio is mixed, and each fiber is bonded by crimped adhesive fibers,
A non-glass reinforcing sheet material characterized in that at least 30% by weight of the total fibers are non-crimped fibers, and crimped adhesive fibers account for 2 to 50% by weight of the total constituent fibers. .
JP61186235A 1986-08-07 1986-08-07 Reinforcing sheet material Granted JPS6342952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61186235A JPS6342952A (en) 1986-08-07 1986-08-07 Reinforcing sheet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61186235A JPS6342952A (en) 1986-08-07 1986-08-07 Reinforcing sheet material

Publications (2)

Publication Number Publication Date
JPS6342952A JPS6342952A (en) 1988-02-24
JPH0424457B2 true JPH0424457B2 (en) 1992-04-27

Family

ID=16184718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61186235A Granted JPS6342952A (en) 1986-08-07 1986-08-07 Reinforcing sheet material

Country Status (1)

Country Link
JP (1) JPS6342952A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105339540A (en) * 2013-02-20 2016-02-17 西格里汽车碳素纤维有限两合公司 Fiber-based carrier structure for liquids and solid particles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50160565A (en) * 1974-06-24 1975-12-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50160565A (en) * 1974-06-24 1975-12-25

Also Published As

Publication number Publication date
JPS6342952A (en) 1988-02-24

Similar Documents

Publication Publication Date Title
EP1675892B1 (en) Development of thermoplastic composites using wet use chopped strand (wucs)
CN103813893B (en) Fiber-reinforced resin composition
JP2009503284A (en) Double-dispersed fiber structure for nonwoven mats with chopped strands
CN105723023B (en) Elastic non-woven pad
US5047288A (en) Nonwoven fabric comprising single filaments and filament bundles that yield improved impact resistant molded articles
US3063883A (en) Reinforced resin laminates
CN105755845B (en) It is a kind of for corium fabric regenerated leather of flooring laminate base and preparation method thereof
JPH0424457B2 (en)
EP0345797A2 (en) Moldable fibrous mat and process for making the same
US20050250403A1 (en) Mat made from natural fibres and glass
US20210277654A1 (en) Heartwood for sandwich panel, sandwich panel, and method for producing sandwich panel
JPH0137503B2 (en)
CN112026213A (en) Manufacturing method of super-strong bamboo fiber composite board
Alimuzzaman Nonwoven flax fibre reinforced PLA biodegradable composites
JPH0241427A (en) Production of forming material
JPH037308A (en) Unwoven cloth for reinforcing resin and forming sheet made by using the same unwoven cloth
JPH0246056B2 (en)
CN109720013A (en) A kind of fire retardant nonwoven fabric
US6828024B1 (en) Epoxy film former string binder
JPS63211351A (en) Conductive reinforcing sheet material
JPH0825490A (en) Fiber reinforced plastic molding surface material and fiber reinforced plastic molding using the same
JPS5962112A (en) Preparation of carbon fiber reinforced thermoplastic resin molded product
CN115368512A (en) Resin glass fiber for UV-CIPP repair
JP5280260B2 (en) Fiber molded body
CN114701212A (en) Bamboo fiber composite felt, preparation method thereof and special-shaped curved surface composite felt

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term