JPH04243546A - Manufacture of hydrogenation catalyst for hydrocarbon oil - Google Patents

Manufacture of hydrogenation catalyst for hydrocarbon oil

Info

Publication number
JPH04243546A
JPH04243546A JP3021517A JP2151791A JPH04243546A JP H04243546 A JPH04243546 A JP H04243546A JP 3021517 A JP3021517 A JP 3021517A JP 2151791 A JP2151791 A JP 2151791A JP H04243546 A JPH04243546 A JP H04243546A
Authority
JP
Japan
Prior art keywords
acid
catalyst
periodic table
metals
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3021517A
Other languages
Japanese (ja)
Inventor
Tetsuo Kamo
哲郎 加茂
Yuuki Kanai
勇樹 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP3021517A priority Critical patent/JPH04243546A/en
Publication of JPH04243546A publication Critical patent/JPH04243546A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To provide a method for producing a hydrogenation catalyst for hydrocarbon oil processing having an outstandingly higher catalytic activity than any catalyst which has hitherto been proposed and permitting reduction of the hydrocarbon operating cost. CONSTITUTION:As a base medium is used a catalyst supported on its carrier as an activated metal the group VI metal (Mo or W) and the group VIII metal (Co or Ni) in the periodic table or the catalyst containing phosphorus in addition thereto. To this catalyst are added at least one kind of glycolic acid, tartaric acid and the other specific carboxylic acids in an amt. of 0.3-3.5 times the total mols of the activated metals and mercaptoacetic acid, mercaptosuccinic acid or other specific org. sulfur compound in an amt. of at least 0.1 time the amt. required to change the activated metal into the sulfide form. The catalyst is thereafter dried at a temp. not higher than 200 deg.C to produce a hydrogenation catalyst. This permits an extremely easy production of the hydrogenation catalyst which can perform a high degree of the hydrogenation capable of desulfurization and denitrification of hydrocarbon oil under a milder operating condition than in the conventional operation.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、軽油の低硫黄化の要求
にもこたえ得る高活性な炭化水素油の水素化処理用触媒
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a highly active catalyst for hydrotreating hydrocarbon oil that can meet the demand for lower sulfur in gas oil.

【0002】0002

【従来の技術】炭化水素油の水添、脱硫、脱窒素、分解
などを行なう水素化処理に使用される触媒として、アル
ミナ、シリカ、チタニア、活性炭などの多孔性触媒担体
に、周期律表第6族金属のモリブデンやタングステン、
及び、第8族金属のコバルト、ニッケルを活性金属とし
て担持した触媒が使用されている。これらの活性金属は
、触媒担体上に酸化物態で担持されており活性を示さな
い。そのために、適当な予備硫化処理を施して硫化物態
に変換して使用している。
[Prior Art] As a catalyst used in hydroprocessing for hydrogenation, desulfurization, denitrification, decomposition, etc. of hydrocarbon oil, porous catalyst supports such as alumina, silica, titania, and activated carbon are Group 6 metals molybdenum and tungsten,
Also, a catalyst is used in which Group 8 metals such as cobalt and nickel are supported as active metals. These active metals are supported in an oxide form on the catalyst carrier and do not exhibit any activity. For this purpose, it is used after being converted into a sulfurized substance by an appropriate pre-sulfurization treatment.

【0003】しかして、水素化処理触媒では、触媒の活
性サイトが活性金属硫化物の表面に形成されるものであ
る。したがって、活性金属硫化物の露出表面積が大きく
なればなるほど活性サイトの数が増加し、結果として高
活性な触媒が得られることが知られている。活性金属硫
化物の露出表面積を大きくするために、活性金属硫化物
を微細化し、高分散化することが試みられ、各種の方法
が提案されている。すなわち、たとえば、EP0181
035(A2)号公報には、ニトリロ三酢酸、エチレン
ジアミン四酢酸、ジエチレントリアミンのような含窒素
有機化合物と活性金属との混合溶液をアルミナやシリカ
のような担体に含浸させた後、最終的に、200℃以下
の温度で乾燥する方法が開示されている。この方法は、
活性金属と含窒素有機化合物との間に錯イオンを形成し
、これを担持させることにより活性金属の凝集の防止、
高分散化を目的としているものであって、この方法で製
造した触媒の活性は、従来品より高い値を示している。 しかしながら、近時、排ガス規制に伴なって軽油の低硫
黄化の要求(軽油中の硫黄分を0.05重量%以下とす
る答申)が提出されたが、この目標を達成するにはこの
方法によって製造した触媒でも十分なものではない。
[0003] In the hydrotreating catalyst, active sites of the catalyst are formed on the surface of the active metal sulfide. Therefore, it is known that as the exposed surface area of the active metal sulfide increases, the number of active sites increases, resulting in a highly active catalyst. In order to increase the exposed surface area of the active metal sulfide, attempts have been made to make the active metal sulfide fine and highly dispersed, and various methods have been proposed. That is, for example, EP0181
No. 035 (A2) discloses that after impregnating a carrier such as alumina or silica with a mixed solution of a nitrogen-containing organic compound such as nitrilotriacetic acid, ethylenediaminetetraacetic acid, or diethylenetriamine and an active metal, finally, A method of drying at a temperature of 200° C. or less is disclosed. This method is
By forming a complex ion between the active metal and the nitrogen-containing organic compound and supporting it, it is possible to prevent the aggregation of the active metal.
The purpose is to achieve high dispersion, and the activity of the catalyst produced by this method is higher than that of conventional products. However, recently, in line with exhaust gas regulations, a request for lower sulfur in diesel oil (recommendation to reduce the sulfur content in diesel oil to 0.05% by weight or less) has been submitted, but this goal can only be achieved through this method. Even the catalyst produced by

【0004】最近、本出願人は、グリコール酸、酒石酸
、クエン酸、グルコン酸などのようなヒドロキシカルボ
ン酸と活性金属との混合水溶液を触媒担体に含浸法又は
混練法によって担持させ、その後200℃以下の温度で
乾燥させる水素化処理用触媒の製造方法を提案した。 この方法は、ヒドロキシカルボン酸を錯化剤として使用
すること、さらに、最終的に触媒を焼成せず、200℃
以下の温度で乾燥処理だけを行なうためにヒドロキシカ
ルボン酸が分解されずに触媒担体上に安定に保持され、
又、活性金属イオンをヒドロキシカルボン酸によって錯
化することにより、水素化処理触媒の予備硫化処理の際
におこる熱的な凝集がいちじるしく抑制され、その結果
、活性金属硫化物が高分散担持され、含窒素化合物を添
加した水素化処理触媒よりも高い活性を有する水素化処
理触媒を製造し得る特徴を有する。
Recently, the applicant has reported that a mixed aqueous solution of a hydroxycarboxylic acid such as glycolic acid, tartaric acid, citric acid, gluconic acid, etc. and an active metal is supported on a catalyst carrier by an impregnation method or a kneading method, and then heated at 200°C. We proposed a method for producing a hydrotreating catalyst that is dried at the following temperatures. This method uses a hydroxycarboxylic acid as a complexing agent, and finally the catalyst is heated to 200°C without calcination.
Because only the drying process is performed at the following temperature, the hydroxycarboxylic acid is not decomposed and is stably retained on the catalyst carrier.
Furthermore, by complexing the active metal ion with the hydroxycarboxylic acid, the thermal aggregation that occurs during the pre-sulfurization treatment of the hydrotreating catalyst is significantly suppressed, and as a result, the active metal sulfide is supported in a highly dispersed manner. It has the characteristic of producing a hydrotreating catalyst having higher activity than a hydrotreating catalyst to which a nitrogen-containing compound is added.

【0005】[0005]

【発明が解決しようとする課題】従来の水素化処理触媒
を使用して炭化水素油の高度の脱硫いわゆる深脱硫操業
を達成しようとすれば、従来の操業条件よりもきわめて
過酷な水素化処理操業条件で操業することが要求される
。それ故、触媒は劣化し易くなり、触媒寿命は短くなる
ので当然操業コストが増加する。一方、前記ヒドロキシ
カルボン酸を用いて得た触媒の場合には、炭化水素油の
深脱硫操業を従来の水素化処理操業条件で十分に行なう
ことが可能であり、現在の操業コストレベルを維持し得
る。しかしながら、原油の価格が高騰した場合に備えて
、水素化処理操業をより低コストで行なうことが望まれ
ており、より高活性な水素化処理触媒が開発されるなら
ば、現在よりも温和な条件で炭化水素油の深脱硫操業が
可能となる。したがって、そのようなきわめて高活性な
触媒の開発が急務であるという問題がある。
[Problems to be Solved by the Invention] If a conventional hydrotreating catalyst is used to achieve a high degree of desulfurization of hydrocarbon oil, so-called deep desulfurization operation, the hydrotreating operation will require extremely harsher operating conditions than conventional operating conditions. required to operate under these conditions. Therefore, the catalyst tends to deteriorate, and the life of the catalyst is shortened, which naturally increases operating costs. On the other hand, in the case of a catalyst obtained using the above-mentioned hydroxycarboxylic acid, deep desulfurization of hydrocarbon oil can be performed satisfactorily under conventional hydrotreating operating conditions, and the current operating cost level can be maintained. obtain. However, in case the price of crude oil rises, it is desired to conduct hydroprocessing operations at lower costs, and if more highly active hydroprocessing catalysts are developed, it would be possible to conduct hydroprocessing operations at lower costs than at present. Deep desulfurization operation of hydrocarbon oil becomes possible under certain conditions. Therefore, there is an urgent need to develop such extremely highly active catalysts.

【0006】本発明は、前記ヒドロキシカルボン酸添加
水素化処理触媒をいちじるしく上回る触媒活性を有し、
水素化処理操業コストの低減可能な炭化水素油の水素化
処理用触媒の製造方法を提供することを目的とするもの
である。
The present invention has a catalytic activity significantly exceeding that of the hydroxycarboxylic acid addition hydrogenation catalyst,
The object of the present invention is to provide a method for producing a catalyst for hydrotreating hydrocarbon oil, which can reduce operating costs for hydrotreating.

【0007】[0007]

【課題を解決するための手段】本発明者等は、前記問題
を解決し、前記目的を達成するために鋭意研究を重ねた
結果、周期律表第6族及び第8族の金属を活性金属とし
た触媒、さらにこれらにリンを担持した触媒に、特定の
カルボン酸と特定の硫黄化合物をそれぞれ特定量添加し
、これを200℃以下で乾燥する方法とすることによっ
て目的を達し得ることを見出して本発明を完成するに至
った。すなわち、本発明の第1の実施態様は、触媒用担
体に周期律表第6族及び第8族の金属を活性金属として
担持させた触媒に、グリコール酸、乳酸、酒石酸、リン
ゴ酸、グリセリン酸、クエン酸、グルコン酸、メトキシ
酢酸、エトキシ酢酸、マロン酸、コハク酸、グリオキシ
ル酸からなる群から選ばれた少なくとも1種類のカルボ
ン酸を周期律表第6族及び第8族の金属総モル数の0.
3〜3.5倍量を添加し、さらに、メルカプト酢酸、1
−メルカプトプロピオン酸、2−メルカプトプロピオン
酸、2,3−ジメルカプトコハク酸、メルカプトコハク
酸、チオ酢酸、チオジグリコール酸、ジチオジグリコー
ル酸、チオサリチル酸、メルカプトエタノール、β−チ
オジグリコール、チオ尿素からなる群から選ばれた少な
くとも1種類の有機硫黄化合物を周期律表第6族及び第
8族の金属を硫化物形態にするに必要な量の0.1倍以
上添加した後、200℃以下の温度で乾燥する炭化水素
油の水素化処理用触媒の製造方法であり、第2の実施態
様は、触媒用担体に周期律表第6族及び第8族の金属を
活性金属として担持し、さらにリンをP2O5に換算し
て0.1〜8重量%含有させた触媒に、グリコール酸、
乳酸、酒石酸、リンゴ酸、グリセリン酸、クエン酸、グ
ルコン酸、メトキシ酢酸、エトキシ酢酸、マロン酸、コ
ハク酸、グリオキシル酸からなる群から選ばれた少なく
とも1種類のカルボン酸を周期律表第6族及び第8族の
金属総モル数の0.3〜3.5倍量添加し、さらに、メ
ルカプト酢酸、1−メルカプトプロピオン酸、2−メル
カプトプロピオン酸、2,3−ジメルカプトコハク酸、
メルカプトコハク酸、チオ酢酸、チオジグリコール酸、
ジチオジグリコール酸、チオサリチル酸、メルカプトエ
タノール、β−チオジグリコール、チオ尿素からなる群
から選ばれた少なくとも1種類の有機硫黄化合物を周期
律表第6族及び第8族の金属を硫化物形態にするに必要
な量の0.1倍以上添加した後、200℃以下の温度で
乾燥する炭化水素油の水素化処理用触媒の製造方法であ
る。
[Means for Solving the Problems] As a result of extensive research in order to solve the above problems and achieve the above objects, the present inventors have discovered that metals in groups 6 and 8 of the periodic table can be used as active metals. It was discovered that the objective could be achieved by adding specific amounts of a specific carboxylic acid and a specific sulfur compound to a catalyst containing phosphorus, and then drying the mixture at a temperature below 200°C. As a result, the present invention was completed. That is, in the first embodiment of the present invention, glycolic acid, lactic acid, tartaric acid, malic acid, and glyceric acid are added to a catalyst in which metals from groups 6 and 8 of the periodic table are supported as active metals on a catalyst carrier. , at least one type of carboxylic acid selected from the group consisting of citric acid, gluconic acid, methoxyacetic acid, ethoxyacetic acid, malonic acid, succinic acid, and glyoxylic acid, and the total number of moles of metals from Groups 6 and 8 of the periodic table. 0.
Add 3 to 3.5 times the amount, and further add mercaptoacetic acid, 1
-Mercaptopropionic acid, 2-mercaptopropionic acid, 2,3-dimercaptosuccinic acid, mercaptosuccinic acid, thioacetic acid, thiodiglycolic acid, dithiodiglycolic acid, thiosalicylic acid, mercaptoethanol, β-thiodiglycol, thio After adding at least one organic sulfur compound selected from the group consisting of urea at least 0.1 times the amount required to convert metals from Groups 6 and 8 of the periodic table into sulfide form, the mixture is heated at 200°C. This is a method for producing a catalyst for hydrotreating hydrocarbon oil, which is dried at the following temperature, and the second embodiment is a method for producing a catalyst for hydrotreating hydrocarbon oil, in which metals from groups 6 and 8 of the periodic table are supported as active metals on a catalyst carrier. Furthermore, glycolic acid,
At least one carboxylic acid selected from the group consisting of lactic acid, tartaric acid, malic acid, glyceric acid, citric acid, gluconic acid, methoxyacetic acid, ethoxyacetic acid, malonic acid, succinic acid, and glyoxylic acid from Group 6 of the periodic table. and 0.3 to 3.5 times the total number of moles of Group 8 metals, and further mercaptoacetic acid, 1-mercaptopropionic acid, 2-mercaptopropionic acid, 2,3-dimercaptosuccinic acid,
Mercaptosuccinic acid, thioacetic acid, thiodiglycolic acid,
At least one organic sulfur compound selected from the group consisting of dithiodiglycolic acid, thiosalicylic acid, mercaptoethanol, β-thiodiglycol, and thiourea, and metals from Groups 6 and 8 of the periodic table in the form of sulfide. This is a method for producing a catalyst for hydrotreating hydrocarbon oil, in which the catalyst is added in an amount 0.1 times or more of the amount required for hydrocarbon oil, and then dried at a temperature of 200° C. or less.

【0008】[0008]

【作用】本発明における触媒担体物質は、アルミナ、シ
リカ、チタニア、ジルコニア、活性炭などの多孔質物質
から選ばれた少なくとも1種類を使用する。
[Operation] The catalyst carrier material used in the present invention is at least one selected from porous materials such as alumina, silica, titania, zirconia, and activated carbon.

【0009】周期律表第6族金属としては、モリブデン
、タングステンのうちの少なくとも1種類、第8族金属
としては、コバルト、ニッケルのうちの少なくとも1種
類を使用する。しかして、これら活性金属の担持量は、
水素化処理用触媒として一般的に採用されている量でよ
く、第6族金属は、MoO3及びWO3としてそれぞれ
5〜30重量%、第8族金属は、CoO及びNiOとし
てそれぞれ1〜8重量%であることが好ましい。これら
の活性金属の担持量が前記範囲より少ないと高活性が得
られず、担持量を前記範囲より多くしてもさらなる活性
度の上昇が得られず経済性を失することになるからであ
る。
At least one of molybdenum and tungsten is used as the Group 6 metal of the periodic table, and at least one of cobalt and nickel is used as the Group 8 metal. However, the amount of these active metals supported is
The amount generally employed as a catalyst for hydrotreating may be used, and the amount of Group 6 metal is 5 to 30% by weight as MoO3 and WO3, respectively, and the amount of Group 8 metal is 1 to 8% by weight as CoO and NiO, respectively. It is preferable that This is because if the supported amount of these active metals is less than the above range, high activity cannot be obtained, and even if the supported amount is greater than the above range, no further increase in activity can be obtained and economic efficiency will be lost. .

【0010】リンは、メタリン酸、ピロリン酸、オルト
リン酸などのいずれを用いてもよく、リン酸ニッケルな
ど可溶性塩を用いてもよく、P2O5として0.1〜8
重量%含有させる。リンを前記範囲内に含有させること
によって、活性金属を含浸させる際に、安定化剤として
作用し、より一層活性が向上する。
[0010] For phosphorus, any of metaphosphoric acid, pyrophosphoric acid, orthophosphoric acid, etc. may be used, and soluble salts such as nickel phosphate may be used.
% by weight. By containing phosphorus within the above range, it acts as a stabilizer when impregnating active metals, and the activity is further improved.

【0011】カルボン酸としては、グリコール酸、乳酸
、酒石酸、リンゴ酸、クエン酸、グリセリン酸、グルコ
ン酸、メトキシ酢酸、エトキシ酢酸、マロン酸、コハク
酸、グリオキシル酸の中から少なくとも1種類の化合物
を選定して、周期律表第6族及び第8族の金属を担持し
た触媒、あるいは、この触媒にさらにリンを含有させた
触媒に添加するものであって、その添加量は、周期律表
第6族及び第8族金属の金属総モル数の0.3〜3.5
倍量の範囲で添加する。これは、添加量が0.3倍量未
満では、充分な活性が得られず、又、添加量が3.5倍
量を超えて添加すると予備硫化時に触媒中に炭素質が残
存、析出したり、活性金属類の硫化が阻害されるために
、いずれも触媒活性を低下させるからである。
As the carboxylic acid, at least one compound selected from glycolic acid, lactic acid, tartaric acid, malic acid, citric acid, glyceric acid, gluconic acid, methoxyacetic acid, ethoxyacetic acid, malonic acid, succinic acid, and glyoxylic acid is used. It is added to catalysts that support metals from groups 6 and 8 of the periodic table, or to catalysts that further contain phosphorus, and the amount of addition is determined according to the periodic table. 0.3 to 3.5 of the total number of moles of Group 6 and Group 8 metals
Add in twice the amount. This is because if the amount added is less than 0.3 times the amount, sufficient activity cannot be obtained, and if the amount added exceeds 3.5 times the amount, carbonaceous matter will remain in the catalyst and precipitate during pre-sulfurization. This is because the sulfidation of active metals is inhibited, and the catalytic activity is reduced.

【0012】又、有機硫黄化合物としては、メルカプト
酢酸、1−メルカプトプロピオン酸、2−メルカプトプ
ロピオン酸、2,3−ジメルカプトコハク酸、メルカプ
トコハク酸、チオ酢酸、チオジグリコール酸、ジチオジ
グリコール酸、チオサリチル酸、メルカプトエタノール
、β−チオジグリコール、チオ尿素の中から少なくとも
1種類の化合物を選定して、カルボン酸とともに周期律
表第6族及び第8族の金属を担持した触媒、あるいは、
この触媒にさらにリンを含有させた触媒に添加するもの
であって、その添加量は、周期律表第6族及び第8族の
金属を硫化物形態にするために必要な量の0.1倍以上
であり、0.1〜0.5倍で十分である。これ以上添加
してもさらに触媒活性が向上することがなく、製造コス
トを考慮すると有機硫黄化合物の添加量は少ない方がよ
い。
[0012] Examples of organic sulfur compounds include mercaptoacetic acid, 1-mercaptopropionic acid, 2-mercaptopropionic acid, 2,3-dimercaptosuccinic acid, mercaptosuccinic acid, thioacetic acid, thiodiglycolic acid, and dithiodiglycolic acid. A catalyst in which at least one compound selected from acid, thiosalicylic acid, mercaptoethanol, β-thiodiglycol, and thiourea is supported together with a carboxylic acid and a metal of Groups 6 and 8 of the periodic table, or ,
Phosphorus is added to this catalyst, and the amount added is 0.1 of the amount necessary to convert the metals of Groups 6 and 8 of the periodic table into sulfides. 0.1 to 0.5 times is sufficient. Adding more than this will not further improve the catalytic activity, and in view of production costs, it is better to add a smaller amount of the organic sulfur compound.

【0013】乾燥温度は、200℃以下とするものであ
って、これは、200℃以上にすると、添加したカルボ
ン酸、及び、有機硫黄化合物が分解する恐れがあるから
である。
[0013] The drying temperature is set at 200°C or lower, because if the temperature is 200°C or higher, the added carboxylic acid and organic sulfur compound may decompose.

【0014】前記のような諸条件を満足するようにして
製造した本発明の触媒は、モリブデン、タングステン、
コバルト、ニッケルなどの活性金属イオンが、カルボン
酸と配位化合物を形成して触媒担体に安定化されて担持
され、少量の有機硫黄化合物の添加によって触媒活性の
一層大きな向上が認められる。この理由は明確ではない
が、カルボン酸だけを添加した触媒では触媒担体の細孔
内にカルボン酸が貯蔵され、細孔を閉塞すると推測され
予備硫化処理の際に細孔内部の活性金属が硫化されにく
くなり、このことが触媒の水素化処理活性に影響を及ぼ
しているものと推定されるが、有機硫黄化合物を少量添
加することによって、活性金属の硫化が促進され、高活
性が発現されたものと考えられる。
[0014] The catalyst of the present invention produced in a manner that satisfies the conditions as described above contains molybdenum, tungsten,
Active metal ions such as cobalt and nickel form coordination compounds with carboxylic acids and are stabilized and supported on the catalyst carrier, and the addition of a small amount of organic sulfur compound significantly improves the catalytic activity. The reason for this is not clear, but in the case of a catalyst with only carboxylic acid added, it is assumed that the carboxylic acid is stored in the pores of the catalyst carrier and blocks the pores, and the active metal inside the pores becomes sulfurized during the pre-sulfidation treatment. This is thought to have an effect on the hydrotreating activity of the catalyst, but adding a small amount of an organic sulfur compound promoted the sulfidation of the active metal, resulting in high activity. considered to be a thing.

【0015】[0015]

【実施例】次に、本発明の実施例を述べる。 実施例  1 比表面積280m2/g、細孔容積0.75ml/gの
γ−アルミナ担体500gに、三酸化モリブデン96.
2g、炭酸コバルト41g、及び、水から調製した活性
金属水溶液600mlを含浸し、110℃で5時間乾燥
した。次に、グリコール酸198g、メルカプトエタノ
ール20gを含有する水溶液540mlを該乾燥物に含
浸し、110℃で10時間乾燥して触媒Aを得た。
[Example] Next, an example of the present invention will be described. Example 1 500 g of a γ-alumina carrier with a specific surface area of 280 m2/g and a pore volume of 0.75 ml/g was coated with 96.0 g of molybdenum trioxide.
2 g of cobalt carbonate, 41 g of cobalt carbonate, and 600 ml of an active metal aqueous solution prepared from water, and dried at 110° C. for 5 hours. Next, the dried product was impregnated with 540 ml of an aqueous solution containing 198 g of glycolic acid and 20 g of mercaptoethanol, and dried at 110° C. for 10 hours to obtain catalyst A.

【0016】触媒Aの金属含有量は、モリブデンがMo
O3として15重量%、コバルトがCoOとして4重量
%であり、グリコール酸の添加量は、周期律表第6族及
び第8族の金属総モル数の2.5倍量であり、又、メル
カプトエタノールの添加量は、モリブデンとコバルトが
それぞれMoO2、CoSを形成するに必要な量の0.
15倍量であった。さらに、得られた触媒Aについて活
性試験として、次のような性状のクエート常圧軽油の水
素化脱硫反応を行なった。
The metal content of catalyst A is such that molybdenum is Mo
15% by weight as O3, 4% by weight as cobalt as CoO, the amount of glycolic acid added is 2.5 times the total number of moles of metals in Groups 6 and 8 of the periodic table, and mercapto The amount of ethanol added is 0.00000, which is the amount necessary for molybdenum and cobalt to form MoO2 and CoS, respectively.
It was 15 times the amount. Furthermore, as an activity test for the obtained catalyst A, a hydrodesulfurization reaction of Kuwait atmospheric gas oil having the following properties was carried out.

【0017】     比    重(15/4℃)        
            0.844    硫   
 黄(重量%)                  
      1.55    蒸留性状(初留点  ℃
)                231     
       (50vol%℃)         
   313            (終  点  
℃)                390なお、反
応は、流通式反応装置を用いて次の反応条件で行なった
Specific gravity (15/4°C)
0.844 Sulfur
Yellow (wt%)
1.55 Distillation properties (initial boiling point ℃
) 231
(50vol%℃)
313 (end point
℃) 390 The reaction was carried out using a flow reactor under the following reaction conditions.

【0018】 触    媒    量(ml)          
        15原料油液空間速度(hr−1) 
             2反応水素圧力(Kg/c
m2G)          30反  応  温  
度(℃)                  330
水素/油流量比(Nl/l)            
300通  油  時  間(hr)        
          88結果を、速度定数は脱硫反応
速度が原料常圧軽油の硫黄濃度の1.75乗に比例する
として算出し、後述する比較例1の触媒Kの速度定数を
100として求めた相対速度定数で水素化脱硫活性を求
め結果を表1に示す。 実施例  2 前記γ−アルミナ500gに、三酸化モリブデン96.
2g、炭酸コバルト41g、85%リン酸30.8g、
及び、水から調製した活性金属水溶液600mlを含浸
し、110℃で乾燥した。次に、酒石酸190g、メル
カプト酢酸55gを含有する水溶液540mlを該乾燥
物に含浸し、110℃で10時間乾燥して触媒Bを得た
。触媒Bの金属含有量は、モリブデンがMoO3として
15重量%、コバルトがCoOとして4重量%、リンが
P2O5として3重量%であった。酒石酸の添加量は、
周期律表第6族及び第8族の金属総モル数の1.25倍
量であり、又、メルカプト酢酸の添加量は、モリブデン
とコバルトがそれぞれMoS2、CoSを形成するに必
要な量の0.3倍量であった。さらに、実施例1と同様
にして行なった活性試験結果を表1に示す。 実施例  3 カルボン酸としてクエン酸70g、有機硫黄化合物とし
てβ−チオジグリコール65gを使用した以外は、実施
例2と同様にして触媒Cを得た。触媒Cの金属含有量は
、モリブデンがMoO3として15重量%、コバルトが
CoOとして4重量%、リンがP2O5として3重量%
であった。又、クエン酸の添加量は、周期律表第6族及
び第8族の金属総モル数の0.33倍量であり、β−チ
オジグリコールの添加量は、モリブデンとコバルトがそ
れぞれMoS2、CoSを形成するに必要な量の0.3
倍量であった。さらに、実施例1と同様にして行なった
活性試験結果を表1に示す。 実施例  4 カルボン酸としてクエン酸142.2g、有機硫黄化合
物としてβ−チオジグリコール65gを使用した以外は
、実施例2と同様にして触媒Dを得た。触媒Dの金属含
有量は、モリブデンがMoO3として15重量%、コバ
ルトがCoOとして4重量%、リンがP2O5として3
重量%であった。又、クエン酸の添加量は、周期律表第
6族及び第8族の金属総モル数の0.67倍量であり、
β−チオジグリコールの添加量は、モリブデンとコバル
トがそれぞれMoS2、CoSを形成するに必要な量の
0.3倍量であった。さらに、実施例1と同様にして行
なった活性試験結果を表1に示す。 実施例  5 シリカ−アルミナ担体(SiO2として10重量%含有
、比表面積325m2/g、細孔容積0.75ml/g
)500gに、三酸化モリブデン96.2g、炭酸ニッ
ケル41g、85%リン酸30.8g、及び、水から調
製した活性金属水溶液600mlを含浸し、110℃で
10時間乾燥した。次に、メトキシ酢酸227g、β−
チオジグリコール108gを含有する水溶液540ml
を該乾燥物に含浸し、110℃で10時間乾燥して触媒
Eを得た。触媒Eの金属含有量は、モリブデンがMoO
3として15重量%、ニッケルがNiOとして4重量%
、リンがP2O5として3重量%であった。又、メトキ
シ酢酸の添加量は、周期律表第6族及び第8族の金属総
モル数の2.5倍量であり、β−チオジグリコールの添
加量は、モリブデンとニッケルがそれぞれMoS2、N
iSを形成するに必要な量の0.5倍量であった。さら
に、実施例1と同様にして行なった活性試験結果を表1
に示す。 実施例  6 カルボン酸としてリンゴ酸171g、有機硫黄化合物と
して1−メルカプトプロピオン酸55gを使用した以外
は、実施例2と同様にして触媒Fを得た。触媒Fの金属
含有量は、モリブデンがMoO3として15重量%、コ
バルトがCoOとして、4重量%、リンがP2O5とし
て3重量%であった。又、リンゴ酸の添加量は、周期律
表第6族及び第8族の金属総モル数の1.25倍量であ
り、1−メルカプトプロピオン酸の添加量は、モリブデ
ンとコバルトがそれぞれMoS2、CoSを形成するに
必要な量の0.3倍量であった。さらに、実施例1と同
様にして行なった活性試験結果を表1に示す。 実施例  7 カルボン酸としてマロン酸136g、有機硫黄化合物と
してチオジグリコール酸78gを使用した以外は、実施
例2と同様にして触媒Gを得た。触媒Gの金属含有量は
、モリブデンがMoO3として15重量%、コバルトが
CoOとして4重量%、リンがP2O5として3重量%
であった。又、マロン酸の添加量は、周期律表第6族及
び第8族の金属総モル数の12.5倍量であり、チオジ
グリコール酸の添加量は、モリブデンとコバルトがそれ
ぞれMoS2、CoSを形成するに必要な量の0.3倍
量であった。さらに、実施例1と同様にして行なった活
性試験結果を表1に示す。 実施例  8 チタニア担体(比表面積186m2/g、細孔容積0.
52ml/g)500gを使用し、カルボン酸としてグ
リオキシル酸(50重量%水溶液)375g、有機硫黄
化合物として2,3−ジメルカプトコハク酸94gを使
用した以外は、実施例2と同様にして触媒Hを得た。触
媒Hの金属含有量は、モリブデンがMoO3として15
重量%、コバルトがCoOとして4重量%、リンがP2
O5として3重量%であった。又、グリオキシル酸の添
加量は、周期律表第6族及び第8族の金属総モル数の2
.5倍量であり、2,3−ジメルカプトコハク酸の添加
量は、モリブデンとコバルトがそれぞれMoS2、Co
Sを形成するに必要な量の0.3倍量であった。さらに
、実施例1と同様にして行なった活性試験結果を表1に
示す。 実施例  9 シリカ−アルミナ担体(SiO2として10重量%含有
、比表面積325m2/g、細孔容積0.75ml/g
)500gを使用し、カルボン酸としてグルコン酸(5
0重量%水溶液)277g、有機硫黄化合物としてチオ
酢酸38.3gを使用した以外は、実施例2と同様にし
て触媒Iを得た。触媒Iの金属含有量は、モリブデンが
MoO3として15重量%、コバルトがCoOとして4
重量%、リンがP2O5として3重量%であった。 又、グルコン酸の添加量は、周期律表第6族及び第8族
の金属総モル数の0.7倍量であり、チオ酢酸の添加量
は、モリブデンとコバルトがそれぞれMoS2、CoS
を形成するに必要な量の0.3倍量であった。さらに、
実施例1と同様にして行なった活性試験結果を表1に示
す。 実施例  10 カルボン酸としてグリセリン酸(65重量%水溶液)2
06g、有機硫黄化合物としてメルカプトコハク酸78
gを使用した以外は、実施例9と同様にして触媒Jを得
た。触媒Jの金属含有量は、モリブデンがMoO3とし
て15重量%、コバルトがCoOとして4重量%、リン
がP2O5として3重量%であった。又、グリセリン酸
の添加量は、周期律表第6族及び第8族の金属総モル数
の1.25倍量であり、メルカプトコハク酸の添加量は
、モリブデンとコバルトがそれぞれMoS2、CoSを
形成するに必要な量の0.3倍量であった。さらに、実
施例1と同様にして行なった活性試験結果を表1に示す
。 比較例  1 クエン酸149gだけを添加し、有機硫黄化合物を添加
しなかった以外は、実施例2と同様にして触媒Kを得た
。触媒Kの金属含有量は、モリブデンがMoO3として
15重量%、コバルトがCoOとして4重量%、リンが
P2O5として3重量%であった。又、クエン酸の添加
量は、周期律表第6族及び第8族の金属総モル数の0.
7倍量であった。実施例1と同様にして行なった活性試
験結果を表1に示す。 比較例  2 クエン酸の代りに酒石酸190gを使用した以外は、比
較例1と同様にして触媒Lを得た。触媒Lの金属含有量
は、モリブデンがMoO3として15重量%、コバルト
がCoOとして4重量%、リンがP2O5として3重量
%であった。又、酒石酸の添加量は、周期律表第6族及
び第8族の金属総モル数の1.25倍量であった。さら
に、実施例1と同様にして行なった活性試験結果を表1
に示す。
[0018] Catalyst amount (ml)
15 Raw material oil liquid space velocity (hr-1)
2 reaction hydrogen pressure (Kg/c
m2G) 30 reaction temperature
Degree (℃) 330
Hydrogen/oil flow ratio (Nl/l)
300 letters Oil time (hr)
88 results, the rate constant is calculated assuming that the desulfurization reaction rate is proportional to the 1.75th power of the sulfur concentration of the feedstock atmospheric gas oil, and the relative rate constant is determined by setting the rate constant of catalyst K of Comparative Example 1 to 100, which will be described later. The hydrodesulfurization activity was determined and the results are shown in Table 1. Example 2 96% of molybdenum trioxide was added to 500g of the above γ-alumina.
2g, cobalt carbonate 41g, 85% phosphoric acid 30.8g,
Then, it was impregnated with 600 ml of an active metal aqueous solution prepared from water and dried at 110°C. Next, the dried product was impregnated with 540 ml of an aqueous solution containing 190 g of tartaric acid and 55 g of mercaptoacetic acid, and dried at 110° C. for 10 hours to obtain catalyst B. The metal content of catalyst B was 15% by weight of molybdenum as MoO3, 4% by weight of cobalt as CoO, and 3% by weight of phosphorus as P2O5. The amount of tartaric acid added is
The amount is 1.25 times the total number of moles of metals in Groups 6 and 8 of the periodic table, and the amount of mercaptoacetic acid added is 0 times the amount required for molybdenum and cobalt to form MoS2 and CoS, respectively. .3 times the amount. Furthermore, the results of the activity test conducted in the same manner as in Example 1 are shown in Table 1. Example 3 Catalyst C was obtained in the same manner as in Example 2, except that 70 g of citric acid was used as the carboxylic acid and 65 g of β-thiodiglycol was used as the organic sulfur compound. The metal content of catalyst C is 15% by weight of molybdenum as MoO3, 4% by weight of cobalt as CoO, and 3% by weight of phosphorus as P2O5.
Met. The amount of citric acid added is 0.33 times the total number of moles of metals in Groups 6 and 8 of the periodic table, and the amount of β-thiodiglycol added is 0.33 times the total number of moles of metals in Groups 6 and 8 of the periodic table. 0.3 of the amount required to form CoS
It was double the amount. Furthermore, the results of the activity test conducted in the same manner as in Example 1 are shown in Table 1. Example 4 Catalyst D was obtained in the same manner as in Example 2, except that 142.2 g of citric acid was used as the carboxylic acid and 65 g of β-thiodiglycol was used as the organic sulfur compound. The metal content of catalyst D is as follows: molybdenum is 15% by weight as MoO3, cobalt is 4% by weight as CoO, and phosphorus is 3% by weight as P2O5.
% by weight. Further, the amount of citric acid added is 0.67 times the total number of moles of metals in Groups 6 and 8 of the periodic table,
The amount of β-thiodiglycol added was 0.3 times the amount of molybdenum and cobalt required to form MoS2 and CoS, respectively. Furthermore, the results of the activity test conducted in the same manner as in Example 1 are shown in Table 1. Example 5 Silica-alumina carrier (contains 10% by weight as SiO2, specific surface area 325 m2/g, pore volume 0.75 ml/g
) was impregnated with 600 ml of an active metal aqueous solution prepared from 96.2 g of molybdenum trioxide, 41 g of nickel carbonate, 30.8 g of 85% phosphoric acid, and water, and dried at 110° C. for 10 hours. Next, 227 g of methoxyacetic acid, β-
540 ml of an aqueous solution containing 108 g of thiodiglycol
was impregnated into the dried product and dried at 110° C. for 10 hours to obtain catalyst E. The metal content of catalyst E is as follows: molybdenum is MoO
15% by weight as 3, 4% by weight of nickel as NiO
, phosphorus was 3% by weight as P2O5. In addition, the amount of methoxyacetic acid added is 2.5 times the total number of moles of metals in Groups 6 and 8 of the periodic table, and the amount of β-thiodiglycol added is as follows: molybdenum and nickel are MoS2, MoS2 and nickel, respectively. N
The amount was 0.5 times the amount required to form iS. Furthermore, Table 1 shows the results of the activity test conducted in the same manner as in Example 1.
Shown below. Example 6 Catalyst F was obtained in the same manner as in Example 2, except that 171 g of malic acid was used as the carboxylic acid and 55 g of 1-mercaptopropionic acid was used as the organic sulfur compound. The metal content of catalyst F was 15% by weight of molybdenum as MoO3, 4% by weight of cobalt as CoO, and 3% by weight of phosphorus as P2O5. Further, the amount of malic acid added is 1.25 times the total number of moles of metals in Groups 6 and 8 of the periodic table, and the amount of 1-mercaptopropionic acid added is 1.25 times the total number of moles of metals in Groups 6 and 8 of the periodic table. The amount was 0.3 times the amount required to form CoS. Furthermore, the results of the activity test conducted in the same manner as in Example 1 are shown in Table 1. Example 7 Catalyst G was obtained in the same manner as in Example 2, except that 136 g of malonic acid was used as the carboxylic acid and 78 g of thiodiglycolic acid was used as the organic sulfur compound. The metal content of catalyst G is 15% by weight of molybdenum as MoO3, 4% by weight of cobalt as CoO, and 3% by weight of phosphorus as P2O5.
Met. In addition, the amount of malonic acid added is 12.5 times the total number of moles of metals in Groups 6 and 8 of the periodic table, and the amount of thiodiglycolic acid added is 12.5 times the total number of moles of metals in Groups 6 and 8 of the periodic table. The amount was 0.3 times the amount required to form . Furthermore, the results of the activity test conducted in the same manner as in Example 1 are shown in Table 1. Example 8 Titania support (specific surface area 186 m2/g, pore volume 0.
Catalyst H I got it. The metal content of catalyst H is molybdenum as MoO3.
wt%, cobalt is 4 wt% as CoO, phosphorus is P2
It was 3% by weight as O5. In addition, the amount of glyoxylic acid added is 2 of the total number of moles of metals in Groups 6 and 8 of the periodic table.
.. The amount of 2,3-dimercaptosuccinic acid added is 5 times that of molybdenum and cobalt, respectively.
The amount was 0.3 times the amount required to form S. Furthermore, the results of the activity test conducted in the same manner as in Example 1 are shown in Table 1. Example 9 Silica-alumina carrier (contains 10% by weight as SiO2, specific surface area 325 m2/g, pore volume 0.75 ml/g
), and gluconic acid (500 g) was used as the carboxylic acid.
Catalyst I was obtained in the same manner as in Example 2, except that 277 g of 0% by weight aqueous solution) and 38.3 g of thioacetic acid were used as the organic sulfur compound. The metal content of catalyst I is 15% by weight of molybdenum as MoO3 and 4% of cobalt as CoO.
% by weight, phosphorus was 3% by weight as P2O5. In addition, the amount of gluconic acid added is 0.7 times the total number of moles of metals in Groups 6 and 8 of the periodic table, and the amount of thioacetic acid added is 0.7 times the total number of moles of metals in Groups 6 and 8 of the periodic table.
The amount was 0.3 times the amount required to form . moreover,
Table 1 shows the results of the activity test conducted in the same manner as in Example 1. Example 10 Glyceric acid (65% by weight aqueous solution) 2 as carboxylic acid
06g, mercaptosuccinic acid 78 as an organic sulfur compound
Catalyst J was obtained in the same manner as in Example 9 except that g was used. The metal content of Catalyst J was 15% by weight of molybdenum as MoO3, 4% by weight of cobalt as CoO, and 3% by weight of phosphorus as P2O5. The amount of glyceric acid added is 1.25 times the total number of moles of metals in Groups 6 and 8 of the periodic table, and the amount of mercaptosuccinic acid added is 1.25 times the total number of moles of metals in Groups 6 and 8 of the periodic table. The amount was 0.3 times the amount required for formation. Furthermore, the results of the activity test conducted in the same manner as in Example 1 are shown in Table 1. Comparative Example 1 Catalyst K was obtained in the same manner as in Example 2, except that only 149 g of citric acid was added and no organic sulfur compound was added. The metal content of catalyst K was 15% by weight of molybdenum as MoO3, 4% by weight of cobalt as CoO, and 3% by weight of phosphorus as P2O5. In addition, the amount of citric acid added is 0.000000000000000000000000 of the total number of moles of metals in Groups 6 and 8 of the periodic table.
It was 7 times the amount. Table 1 shows the results of the activity test conducted in the same manner as in Example 1. Comparative Example 2 Catalyst L was obtained in the same manner as Comparative Example 1, except that 190 g of tartaric acid was used instead of citric acid. The metal content of catalyst L was 15% by weight of molybdenum as MoO3, 4% by weight of cobalt as CoO, and 3% by weight of phosphorus as P2O5. The amount of tartaric acid added was 1.25 times the total number of moles of metals in Groups 6 and 8 of the periodic table. Furthermore, Table 1 shows the results of the activity test conducted in the same manner as in Example 1.
Shown below.

【0019】[0019]

【表1】                 触  媒     
           相対反応速度定数      
            A            
            130          
        B                
        157              
    C                    
    145                  
D                        
138                  E   
                     143 
                 F       
                 152     
             G           
             143         
         H               
         135             
     I                   
     138                 
 J                       
 155                  K  
                      100
                  L      
                  108
[Table 1] Catalyst
relative reaction rate constant
A
130
B
157
C
145
D
138E
143
F
152
G
143
H
135
I
138
J
155K
100
L
108

【002
0】
002
0]

【発明の効果】本発明は、周期律表第6族及び第8族金
属を活性金属として担持した触媒、あるいは、さらにリ
ンを担持させた触媒に、特定のカルボン酸と特定の有機
硫黄化合物とを、それぞれ特定量添加して、200℃以
下で乾燥させるものであるから、炭化水素油のきわめて
高い脱硫、脱窒素などを行ない得る高度な水素化処理を
、従来よりも温和な操業条件で行ない得る触媒をきわめ
て容易に得ることができるものであって顕著な効果が認
められる。
Effects of the Invention The present invention provides a catalyst in which a metal of group 6 or group 8 of the periodic table is supported as an active metal, or a catalyst in which phosphorus is further supported, with a specific carboxylic acid and a specific organic sulfur compound. are added in specific amounts and dried at 200°C or below, making it possible to carry out advanced hydrotreating that can achieve extremely high levels of desulfurization and denitrification of hydrocarbon oils under milder operating conditions than before. The resulting catalyst can be obtained very easily and has a remarkable effect.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  触媒用担体に周期律表第6族及び第8
族の金属を活性金属として担持させた触媒に、グリコー
ル酸、乳酸、酒石酸、リンゴ酸、グリセリン酸、クエン
酸、グルコン酸、メトキシ酢酸、エトキシ酢酸、マロン
酸、コハク酸、グリオキシル酸からなる群から選ばれた
少なくとも1種類のカルボン酸を周期律表第6族及び第
8族の金属総モル数の0.3〜3.5倍量を添加し、さ
らに、メルカプト酢酸、1−メルカプトプロピオン酸、
2−メルカプトプロピオン酸、2,3−ジメルカプトコ
ハク酸、メルカプトコハク酸、チオ酢酸、チオジグリコ
ール酸、ジチオジグリコール酸、チオサリチル酸、メル
カプトエタノール、β−チオジグリコール、チオ尿素か
らなる群から選ばれた少なくとも1種類の有機硫黄化合
物を周期律表第6族及び第8族の金属を硫化物形態にす
るに必要な量の0.1倍以上添加した後、200℃以下
の温度で乾燥することを特徴とする炭化水素油の水素化
処理用触媒の製造方法。
Claim 1: Catalyst carrier containing materials from groups 6 and 8 of the periodic table.
From the group consisting of glycolic acid, lactic acid, tartaric acid, malic acid, glyceric acid, citric acid, gluconic acid, methoxyacetic acid, ethoxyacetic acid, malonic acid, succinic acid, glyoxylic acid, on a catalyst supporting a metal of the group as an active metal. At least one selected carboxylic acid is added in an amount of 0.3 to 3.5 times the total number of moles of metals of Groups 6 and 8 of the periodic table, and further mercaptoacetic acid, 1-mercaptopropionic acid,
From the group consisting of 2-mercaptopropionic acid, 2,3-dimercaptosuccinic acid, mercaptosuccinic acid, thioacetic acid, thiodiglycolic acid, dithiodiglycolic acid, thiosalicylic acid, mercaptoethanol, β-thiodiglycol, thiourea At least one selected organic sulfur compound is added at least 0.1 times the amount required to convert metals from Groups 6 and 8 of the periodic table into sulfide form, and then dried at a temperature of 200°C or less. A method for producing a catalyst for hydrotreating hydrocarbon oil, characterized by:
【請求項2】  触媒用担体に周期律表第6族及び第8
族の金属を活性金属として担持しさらにリンをP2O5
に換算して0.1〜8重量%含有させた触媒に、グリコ
ール酸、乳酸、酒石酸、リンゴ酸、グリセリン酸、クエ
ン酸、グルコン酸、メトキシ酢酸、エトキシ酢酸、マロ
ン酸、コハク酸、グリオキシル酸からなる群から選ばれ
た少なくとも1種類のカルボン酸を周期律表第6族及び
第8族の金属総モル数の0.3〜3.5倍量添加し、さ
らに、メルカプト酢酸、1−メルカプトプロピオン酸、
2−メルカプトプロピオン酸、2,3−ジメルカプトコ
ハク酸、メルカプトコハク酸、チオ酢酸、チオジグリコ
ール酸、ジチオジグリコール酸、チオサリチル酸、メル
カプトエタノール、β−チオジグリコール、チオ尿素か
らなる群から選ばれた少なくとも1種類の有機硫黄化合
物を周期律表第6族及び第8族の金属を硫化物形態にす
るに必要な量の0.1倍以上添加した後、200℃以下
の温度で乾燥することを特徴とする炭化水素油の水素化
処理用触媒の製造方法。
[Claim 2] The catalyst carrier contains groups 6 and 8 of the periodic table.
Group metals are supported as active metals, and phosphorus is further supported as P2O5.
The catalyst contains glycolic acid, lactic acid, tartaric acid, malic acid, glyceric acid, citric acid, gluconic acid, methoxyacetic acid, ethoxyacetic acid, malonic acid, succinic acid, glyoxylic acid. At least one type of carboxylic acid selected from the group consisting of 0.3 to 3.5 times the total number of moles of metals of Groups 6 and 8 of the periodic table is added, and mercaptoacetic acid, 1-mercaptoacetic acid, propionic acid,
From the group consisting of 2-mercaptopropionic acid, 2,3-dimercaptosuccinic acid, mercaptosuccinic acid, thioacetic acid, thiodiglycolic acid, dithiodiglycolic acid, thiosalicylic acid, mercaptoethanol, β-thiodiglycol, thiourea At least one selected organic sulfur compound is added at least 0.1 times the amount required to convert metals from Groups 6 and 8 of the periodic table into sulfide form, and then dried at a temperature of 200°C or less. A method for producing a catalyst for hydrotreating hydrocarbon oil, characterized by:
【請求項3】  周期律表第6族の金属がモリブデン、
タングステンのうちの少なくとも1つであり、かつ、そ
の含有量がそれぞれMoO3、WO3に換算して5〜3
0重量%であり、第8族の金属がコバルト、ニッケルの
うちの少なくとも1つであり、かつ、その含有量がそれ
ぞれCoO、NiOに換算して1〜8重量%であること
を特徴する請求項1及び2の炭化水素油の水素化処理用
触媒の製造方法。
[Claim 3] The metal of Group 6 of the periodic table is molybdenum,
At least one of tungsten, and its content is 5 to 3 in terms of MoO3 and WO3, respectively.
0% by weight, and the Group 8 metal is at least one of cobalt and nickel, and the content thereof is 1 to 8% by weight in terms of CoO and NiO, respectively. A method for producing a catalyst for hydrotreating hydrocarbon oil according to Items 1 and 2.
JP3021517A 1991-01-22 1991-01-22 Manufacture of hydrogenation catalyst for hydrocarbon oil Pending JPH04243546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3021517A JPH04243546A (en) 1991-01-22 1991-01-22 Manufacture of hydrogenation catalyst for hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3021517A JPH04243546A (en) 1991-01-22 1991-01-22 Manufacture of hydrogenation catalyst for hydrocarbon oil

Publications (1)

Publication Number Publication Date
JPH04243546A true JPH04243546A (en) 1992-08-31

Family

ID=12057162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3021517A Pending JPH04243546A (en) 1991-01-22 1991-01-22 Manufacture of hydrogenation catalyst for hydrocarbon oil

Country Status (1)

Country Link
JP (1) JPH04243546A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020527103A (en) * 2017-07-21 2020-09-03 アルベマール ヨーロッパ エスアールエル Hydrogenation catalyst containing titanium-containing carrier and sulfur-containing organic additive
JP2020527104A (en) * 2017-07-21 2020-09-03 アルベマール ヨーロッパ エスアールエル Hydrogenation catalyst containing titanium-containing carriers and organic additives

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020527103A (en) * 2017-07-21 2020-09-03 アルベマール ヨーロッパ エスアールエル Hydrogenation catalyst containing titanium-containing carrier and sulfur-containing organic additive
JP2020527104A (en) * 2017-07-21 2020-09-03 アルベマール ヨーロッパ エスアールエル Hydrogenation catalyst containing titanium-containing carriers and organic additives

Similar Documents

Publication Publication Date Title
US5162281A (en) Method of preparing hydrotreating catalyst for hydrocarbon oil
CA2053370C (en) Method of preparing catalyst for hydrogenation of hydrocarbon oil
US7935244B2 (en) Process for hydroconversion of heavy hydrocarbon feeds in a slurry reactor in the presence of a heteropolyanion-based catalyst
KR100209814B1 (en) Hydrotreating catalyst composition, its preparation and use
US5200381A (en) Method of preparing catalyst for hydrogenation of hydrocarbon oil
EP2218502A2 (en) Transition metal phosphide catalysts
US4455390A (en) Catalyst and method for impregnating at a pH less than one
KR102277831B1 (en) Process for preparing a hydrotreating catalyst
JP2007533834A (en) Method for producing low sulfur distillate
US4444905A (en) Hydrotreating catalyst preparation and process
US5336394A (en) Process for hydrodesulfurizing a sulfur-containing hydrocarbon
US20050236304A1 (en) Process to manufacture lube oil products
US20140166540A1 (en) Residue hydrotreatment catalyst comprising vanadium, and its use in a residue hydroconversion process
JPH0533098B2 (en)
JPS6197036A (en) Production of hydrotreating catalyst supported by silica andthus obtained catalyst
JPH0639296A (en) New aqueous solution for impregnation of catalyst carrier, catalyst produced from said aqueous solution and its use
JPH04243546A (en) Manufacture of hydrogenation catalyst for hydrocarbon oil
CA1139293A (en) Hydrotreating catalyst preparation and process
US4489048A (en) Process for producing hydrogen and carbonyl sulfide from hydrogen sulfide and carbon monoxide using a heteropolyanionic metal complex catalyst
JPH11319567A (en) Hydrodesulfurization catalyst
JPH04166232A (en) Production of catalyst for hydrogenation treatment
JPH04244238A (en) Preparation of catalyst for hydrogen treatment
JPH04166233A (en) Production of catalyst for hydrogenation treatment
US4816434A (en) Catalytic materials of controlled geometric mean electronegativity
JPH07256110A (en) Production of catalyst for hydrogenation treatment