JPH04242075A - Heating and cooling device of fuel cell - Google Patents

Heating and cooling device of fuel cell

Info

Publication number
JPH04242075A
JPH04242075A JP3001767A JP176791A JPH04242075A JP H04242075 A JPH04242075 A JP H04242075A JP 3001767 A JP3001767 A JP 3001767A JP 176791 A JP176791 A JP 176791A JP H04242075 A JPH04242075 A JP H04242075A
Authority
JP
Japan
Prior art keywords
fuel cell
cooling
blower
heating
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3001767A
Other languages
Japanese (ja)
Inventor
Shunsuke Oga
俊輔 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3001767A priority Critical patent/JPH04242075A/en
Publication of JPH04242075A publication Critical patent/JPH04242075A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To drive the circulating pump of a heating and cooling device at a constant speed for reducing a loss of a drive motor which is large hitherto, and for avoiding an empty burning accident of a heat exchanger. CONSTITUTION:To a circulating pump 4 to circulate a cooling medium to a cooling plate 1A laminated to a fuel cell 1 through a heat exchanger 5, and a blower 7 to blow the air to the above heat exchanger 5 through an auxiliary burner 6, one common set of motive power device 11 such as a variable speed motor or a prime mover is provided, and the motive power device 11 is controlled in a variable speed made by a drive current generated by a controller 9 detecting the temperature of the fuel cell, and both the circulating amount of the cooling medium and the air blowing amount are increased or decreased proportionally to the heat exchange amount necessary for a heating and cooling device 20. And a motive power transmitting device 12 is provided when necessary, and the difference of revolution between the circulating pump 4 and the blower 7 is absorbed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、液冷式の燃料電池の
冷却板を循環する冷却媒体の温度を制御することにより
、起動時の燃料電池の昇温,適正運転温度の保持,およ
び停止時の降温を行う燃料電池の加熱冷却装置に関する
[Industrial Application Field] This invention controls the temperature of the cooling medium circulating through the cooling plate of a liquid-cooled fuel cell, thereby raising the temperature of the fuel cell at startup, maintaining an appropriate operating temperature, and stopping the fuel cell. The present invention relates to a fuel cell heating and cooling device that lowers the temperature over time.

【0002】0002

【従来の技術】燃料電池は、電解質例えばりん酸を含浸
したマトリックスと、これを挟持した燃料電極および酸
化剤電極とからなる単電池の積層体としてスタックを構
成し、燃料電極および酸化剤電極に水素リッチな燃料ガ
スおよび酸化剤としての空気を供給し、電気化学反応に
基づく直接発電を行うものであり、発熱反応である電極
反応によって生じた発電生成熱を排除して燃料電池を所
定の適正運転温度,例えば190°C 〜195°C 
に保つために、スタックには単電池とともに冷却板が積
層され、この冷却板に流す冷却媒体の温度を制御する加
熱冷却装置が設けられる。また、燃料電池がその負荷に
供給する電流が増加すると、燃料電池の内部抵抗,燃料
ガスおよび酸化剤ガス(併せて反応ガスと呼ぶ)の電極
への拡散抵抗,および電極反応によるエネルギー損失な
どが増加し、これに伴って電圧降下が増大するが、この
電圧降下によるエネルギー損失も発電生成熱を増大させ
る。 この他電極特性の低下に伴う電圧降下分も発熱の増加を
もたらす。したがって、燃料電池の加熱冷却装置は、燃
料電池の起動に際して燃料電池を適性運転温度に昇温す
るための加熱機能と、発電運転中に負荷の変動に対応し
て燃料電池の温度を適性運転温度に保持する制御機能と
、発電運転を停止する際燃料電池の温度をその保管温度
である100°C 以下に速やかに下げる冷却機能とが
求められる。
[Prior Art] A fuel cell is constructed as a stack of single cells consisting of a matrix impregnated with an electrolyte, such as phosphoric acid, and a fuel electrode and an oxidizer electrode sandwiching the matrix. It supplies hydrogen-rich fuel gas and air as an oxidizing agent to directly generate electricity based on an electrochemical reaction, and eliminates the heat generated by the electrode reaction, which is an exothermic reaction, to maintain the fuel cell at a specified temperature. Operating temperature, e.g. 190°C to 195°C
In order to maintain the temperature, a cooling plate is laminated together with the unit cells in the stack, and a heating/cooling device is provided to control the temperature of the cooling medium flowing through the cooling plate. Additionally, as the current supplied by a fuel cell to its load increases, the internal resistance of the fuel cell, the diffusion resistance of fuel gas and oxidant gas (together referred to as reactant gas) to the electrodes, and energy loss due to electrode reactions increase. The voltage drop increases accordingly, and the energy loss due to this voltage drop also increases the heat produced by power generation. In addition, a voltage drop due to deterioration of electrode characteristics also causes an increase in heat generation. Therefore, a fuel cell heating and cooling device has a heating function to raise the temperature of the fuel cell to the appropriate operating temperature when starting the fuel cell, and a heating function to raise the temperature of the fuel cell to the appropriate operating temperature during power generation operation in response to load fluctuations. A cooling function is required to quickly lower the temperature of the fuel cell to below its storage temperature of 100°C when power generation operation is stopped.

【0003】図2は従来の燃料電池の加熱冷却装置を示
す構成図であり、燃料改質装置2から燃料電極に燃料ガ
スが供給され,酸化剤電極に反応空気が供給されて発電
する燃料電池(スタック)1には、単電池とともに積層
された冷却板1a を含む加熱冷却装置10が設けられ
る。すなわち、冷却板1a の冷却パイプには冷却媒体
の循環系3が連結され、循環系3は内部の冷却媒体を循
環ポンプ4により熱交換器5および8内の蛇管を通して
冷却板1a に還流するよう構成される。補助バーナ6
は燃料電池1の起動時に熱交換器5に高温の燃焼ガスを
供給して冷却媒体を加熱するものであり、ブロワ7によ
り1次燃焼空気を供給した状態で源燃料ポンプ6a に
よりバーナに供給した源燃料を燃焼させることにより、
高温の燃焼ガスを熱交換器5に向けて放射する。一方、
もう一つの熱交換器8は燃料電池1の発電生成熱を廃熱
利用するために循環系3に設けられ、例えばメタンガス
,液化天然ガス,メタノール等の源燃料の加熱器または
気化器として利用され、源燃料を水素リッチな燃料ガス
に改質して燃料電池1に供給する燃料改質装置2に、加
熱した源燃料ガスまたは気化ガスを供給する。一方、循
環ポンプ4およびブロワ7はそれぞれ動力装置としての
駆動モータ4a および7a を備え、冷却板1a の
温度検知器9a の検知信号を制御部9が受けて発する
駆動信号または駆動電流により駆動モータの回転速度を
制御することにより、冷却媒体の流量およびブロワの送
風量が制御される。
FIG. 2 is a configuration diagram showing a conventional fuel cell heating/cooling device, in which fuel gas is supplied from a fuel reformer 2 to a fuel electrode, and reaction air is supplied to an oxidizer electrode to generate electricity in a fuel cell. The (stack) 1 is provided with a heating and cooling device 10 including a cooling plate 1a stacked together with the unit cells. That is, a cooling medium circulation system 3 is connected to the cooling pipe of the cooling plate 1a, and the circulation system 3 uses a circulation pump 4 to circulate the internal cooling medium through the corrugated pipes in the heat exchangers 5 and 8 to the cooling plate 1a. configured. Auxiliary burner 6
When starting up the fuel cell 1, high-temperature combustion gas is supplied to the heat exchanger 5 to heat the cooling medium, and while the primary combustion air is supplied by the blower 7, it is supplied to the burner by the source fuel pump 6a. By burning source fuel,
The high temperature combustion gas is radiated towards the heat exchanger 5. on the other hand,
Another heat exchanger 8 is provided in the circulation system 3 to utilize the heat generated by the power generation of the fuel cell 1 as waste heat, and is used as a heater or vaporizer for a source fuel such as methane gas, liquefied natural gas, or methanol. The heated source fuel gas or vaporized gas is supplied to a fuel reformer 2 that reforms the source fuel into hydrogen-rich fuel gas and supplies it to the fuel cell 1 . On the other hand, the circulation pump 4 and the blower 7 are each equipped with drive motors 4a and 7a as power devices, and the drive motors are activated by a drive signal or drive current generated by the control unit 9 upon receiving a detection signal from the temperature sensor 9a of the cooling plate 1a. By controlling the rotational speed, the flow rate of the cooling medium and the amount of air blown by the blower are controlled.

【0004】このように構成された加熱冷却装置におい
て、循環ポンプ4は燃料電池の運転中一定流量を保持し
て連続運転される。そして、燃料電池の起動時には補助
バーナ6により熱交換器5を加熱し、燃料電池1を適性
運転温度に近づける操作を行う。燃料電池1および熱交
換器8の温度が稼働温度に到達し、改質器バーナにより
燃料改質器2も稼働温度に到達し、燃料電池が発電運転
を開始すると、補助バーナ6の運転を停止し、その後は
燃料電池の自己発熱で燃料電池および熱交換器8の運転
温度が保持されるが、適正運転温度を越える過熱を防ぐ
必要がある。そこで、発電運転中冷却板温度を監視して
制御部9が発する駆動電流により、駆動モータ7a を
可変速運転してブロワ7の送風量を調整し、熱交換器5
を介して冷却媒体を冷却する温度制御を行う。また、燃
料電池の運転を停止する際には、ブロワ7の送風量を最
大にして熱交換器5の冷却媒体の冷却効率を最大にする
冷却操作が行われる。
[0004] In the heating/cooling device constructed as described above, the circulation pump 4 is continuously operated while maintaining a constant flow rate during operation of the fuel cell. When starting up the fuel cell, the heat exchanger 5 is heated by the auxiliary burner 6 to bring the fuel cell 1 close to the appropriate operating temperature. When the temperature of the fuel cell 1 and the heat exchanger 8 reaches the operating temperature, the fuel reformer 2 also reaches the operating temperature by the reformer burner, and the fuel cell starts power generation operation, the operation of the auxiliary burner 6 is stopped. After that, the operating temperature of the fuel cell and heat exchanger 8 is maintained by the self-heating of the fuel cell, but it is necessary to prevent overheating beyond the proper operating temperature. Therefore, during power generation operation, the cooling plate temperature is monitored and the drive current generated by the control unit 9 operates the drive motor 7a at variable speed to adjust the air flow rate of the blower 7, and the heat exchanger 5
Temperature control is performed to cool the cooling medium through. Furthermore, when stopping the operation of the fuel cell, a cooling operation is performed to maximize the amount of air blown by the blower 7 to maximize the cooling efficiency of the cooling medium of the heat exchanger 5.

【0005】[0005]

【発明が解決しようとする課題】従来の加熱冷却装置で
は、循環ポンプ4を常に一定流量で運転し、ブロワ7の
送風量を可変にして温度制御を行っているので、循環ポ
ンプの駆動モータが消費する電力(補機損失)が燃料電
池の定挌出力電力の2%にも達し、燃料電池発電装置の
発電効率が低下するという問題があり、ことに燃料電池
がその定挌出力より低い出力で運転されている場合には
、発電効率が著しく低下する。また、循環ポンプとブロ
ワの駆動モータが別々であるため、バーナ6が燃焼中に
循環ポンプの駆動系が故障すると、熱交換器5が空だき
状態となり、熱交換器5が過熱損傷する事態が発生する
[Problems to be Solved by the Invention] In conventional heating and cooling systems, the circulation pump 4 is always operated at a constant flow rate, and the air flow rate of the blower 7 is varied to control the temperature. There is a problem in that the power consumption (auxiliary equipment loss) reaches 2% of the constant output power of the fuel cell, and the power generation efficiency of the fuel cell power generation device decreases, especially when the fuel cell has an output lower than its constant output. If the system is operated at Furthermore, since the drive motors for the circulation pump and blower are separate, if the drive system of the circulation pump breaks down while the burner 6 is burning, the heat exchanger 5 will be in an empty state and the heat exchanger 5 will be damaged by overheating. Occur.

【0006】この発明の目的は、補機損失を低減でき、
かつ熱交換器の空だき事故を回避できる加熱冷却装置を
得ることにある。
[0006] An object of the present invention is to reduce auxiliary equipment loss;
The object of the present invention is to provide a heating and cooling device that can avoid an accident of dry heating of a heat exchanger.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、単電池の積層体からなる燃料電
池に前記単電池とともに積層された冷却板と、この冷却
板に冷却媒体を還流する循環系に配された循環ポンプお
よび補助バーナを有する熱交換器と、この熱交換器に前
記補助バーナを介して高温の燃焼ガスまたは冷却空気を
送風するブロワとを含み、制御部が前記冷却板温度を検
知して発する駆動電流に基づき前記循環ポンプおよびブ
ロワの動力装置を制御して前記燃料電池を加熱または冷
却するものにおいて、前記循環ポンプおよびブロワを駆
動する共通の動力装置を備えてなるものとする。
[Means for Solving the Problems] In order to solve the above problems, according to the present invention, a fuel cell consisting of a stack of unit cells includes a cooling plate laminated together with the unit cells, and a cooling medium is applied to the cooling plate. a heat exchanger having a circulation pump and an auxiliary burner disposed in a circulation system that recirculates the gas; a blower that blows hot combustion gas or cooling air to the heat exchanger via the auxiliary burner; The fuel cell is heated or cooled by controlling the power unit of the circulation pump and the blower based on the drive current generated by detecting the temperature of the cooling plate, wherein the power unit includes a common power unit that drives the circulation pump and the blower. shall be.

【0008】また、必要に応じて循環ポンプとブロワと
の回転数比を規制する動力伝達装置を、動力装置と前記
循環ポンプおよびブロワの少なくともいずれか一方との
間に備えてなるものとする。
[0008] Furthermore, a power transmission device is provided between the power unit and at least one of the circulation pump and the blower to regulate the rotational speed ratio of the circulation pump and the blower as necessary.

【0009】さらに、循環ポンプおよびブロワを駆動す
る共通の動力装置が可変速モータであるものとする。
It is further assumed that the common power device driving the circulation pump and blower is a variable speed motor.

【0010】0010

【作用】加熱冷却装置の循環ポンプおよびブロワを一つ
の動力装置,例えば可変速モータで駆動するよう構成し
たことにより、燃料電池の起動時や高出力運転時のよう
に多量の熱交換が必要な時には、駆動モータを高速回転
して冷却板および熱交換器の熱交換効率を高めて冷却媒
体の加熱,冷却速度を上げ、燃料電池の低出力運転時や
適正運転温度と検出温度との差が小さいときには、駆動
モータの回転数を下げ、循環ポンプおよびブロワを低出
力で運転することにより、駆動モータが消費する電力を
必要な熱交換量に対応して制御し、補機損失を低減する
機能が得られる。また、バーナが燃焼中に駆動系が故障
して冷却媒体の循環および送風が停止すると、バーナが
酸欠状態となって燃焼を維持できなくなるので、熱交換
器の過熱による損傷事故を自動的に回避できる機能が得
られる。
[Operation] By configuring the circulation pump and blower of the heating and cooling system to be driven by a single power unit, such as a variable speed motor, a large amount of heat exchange is required, such as when starting up a fuel cell or during high output operation. Sometimes, the drive motor is rotated at high speed to increase the heat exchange efficiency of the cooling plate and heat exchanger to increase the heating and cooling rate of the cooling medium, and to prevent the fuel cell from operating at low output or when there is a difference between the proper operating temperature and the detected temperature. When the drive motor is small, the rotation speed of the drive motor is lowered and the circulation pump and blower are operated at low output to control the power consumed by the drive motor in accordance with the required amount of heat exchange, reducing auxiliary equipment loss. is obtained. In addition, if the drive system breaks down while the burner is burning and the circulation of the cooling medium and air flow stop, the burner will become deficient in oxygen and will not be able to maintain combustion.This will automatically prevent damage caused by overheating of the heat exchanger. You can get the ability to avoid it.

【0011】また、循環ポンプとブロワとの回転数比を
規制する動力伝達装置を設けることにより、循環ポンプ
とブロワとの回転数比を保持し、かつ熱交換量に比例し
て変化する速度制御を1台の動力装置で、円滑に行うこ
とができる。
Furthermore, by providing a power transmission device that regulates the rotational speed ratio between the circulation pump and the blower, the rotational speed ratio between the circulation pump and the blower can be maintained, and the speed can be controlled to change in proportion to the amount of heat exchange. can be performed smoothly with one power unit.

【0012】0012

【実施例】以下、この発明を実施例に基づいて説明する
。図1はこの発明の実施例になる燃料電池の加熱冷却装
置を示す構成図であり、従来の装置と同じ部分には同一
参照符号を用い、重複した説明は省略する。図において
、加熱冷却装置20は循環ポンプ4とブロワ7とを駆動
する共用の動力装置11を備える。動力装置11として
は回転速度の制御ができる可変速モータがよいが、燃料
電池1が移動用の電源装置である場合、ガソリンエンジ
ンやディーゼルエンジン等の原動機であってよい。また
、循環ポンプおよびブロワの定挌回転数が同じである場
合は、動力装置11の回転軸を循環ポンプおよびブロワ
の軸に直結してよいが、双方の定挌回転数が異なる場合
には、いずれか一方,例えば循環ポンプ4と動力装置と
の間に動力伝達装置としての変速機12を設ける。なお
、動力伝達装置12としては、ベルト駆動を採用する場
合にはプーリー径の大きさにより,また直結式の場合に
は変速ギヤボックスを用いることにより、簡単な動力伝
達装置で両者の回転数比の違いを補正することができる
EXAMPLES The present invention will be explained below based on examples. FIG. 1 is a block diagram showing a heating and cooling device for a fuel cell according to an embodiment of the present invention, and the same reference numerals are used for the same parts as in the conventional device, and redundant explanation will be omitted. In the figure, the heating and cooling device 20 includes a common power unit 11 that drives the circulation pump 4 and the blower 7. The power device 11 is preferably a variable speed motor whose rotational speed can be controlled, but if the fuel cell 1 is a mobile power supply device, it may be a prime mover such as a gasoline engine or a diesel engine. Further, if the constant rotation speeds of the circulation pump and the blower are the same, the rotating shaft of the power unit 11 may be directly connected to the shafts of the circulation pump and the blower, but if the constant rotation speeds of both are different, A transmission 12 as a power transmission device is provided between one of the two, for example, the circulation pump 4 and the power device. The power transmission device 12 can easily adjust the rotational speed ratio between the two by changing the diameter of the pulley if a belt drive is used, or by using a variable speed gearbox if a direct connection type is used. The difference can be corrected.

【0013】このように構成された加熱冷却装置20に
よる燃料電池1の温度制御は、制御部9が冷却板1a 
の検出温度とその適正運転温度との温度差に比例して、
動力装置としての可変速モータ11に供給する駆動電流
Iの大きさを制御することにより行われる。すなわち、
燃料電池の起動時には、温度差が大きいので可変速モー
タ11が高速回転し、同時に源燃料ポンプ6a も高速
回転して補助バーナ6が高温の燃焼ガスを熱交換器5に
向けて多量に発生するので、冷却媒体の温度が急速に昇
温し、冷却板1a に多量の冷却媒体が流れることによ
り、燃料電池をその適正運転温度に向けて加熱できると
ともに、熱交換器8で加熱または気化した源燃料ガスを
燃料改質装置2に供給し、燃料電池の起動を促進するこ
とができる。なお、熱交換器5の最大熱交換量は上記加
熱操作により決まるので、循環ポンプ4の冷却媒体の最
大循環量およびバーナ6の源燃料の最大燃焼量は、加熱
操作時に冷却媒体が沸騰しない範囲で決められる。
The temperature control of the fuel cell 1 by the heating/cooling device 20 configured as described above is carried out by the control section 9 controlling the cooling plate 1a.
In proportion to the temperature difference between the detected temperature and its proper operating temperature,
This is done by controlling the magnitude of the drive current I supplied to the variable speed motor 11 as a power device. That is,
When starting up the fuel cell, the variable speed motor 11 rotates at high speed due to the large temperature difference, and at the same time, the source fuel pump 6a also rotates at high speed, causing the auxiliary burner 6 to generate a large amount of high-temperature combustion gas toward the heat exchanger 5. As a result, the temperature of the cooling medium increases rapidly, and a large amount of cooling medium flows through the cooling plate 1a, allowing the fuel cell to be heated to its proper operating temperature, and the source heated or vaporized by the heat exchanger 8 to be heated. Fuel gas can be supplied to the fuel reformer 2 to facilitate startup of the fuel cell. Note that the maximum heat exchange amount of the heat exchanger 5 is determined by the heating operation described above, so the maximum circulation amount of the cooling medium of the circulation pump 4 and the maximum combustion amount of the source fuel of the burner 6 are within the range in which the cooling medium does not boil during the heating operation. It can be determined by

【0014】一方、燃料電池の発電運転時には、燃料電
池1の発電生成熱を冷却板1a を介して冷却媒体に吸
収させ、吸収した熱エネルギーを熱交換器8で源燃料の
加熱または気化に廃熱利用するとともに、余った熱エネ
ルギーを熱交換器5から外部に排熱させて燃料電池をそ
の適正運転温度190ないし195°C に冷却して保
持する必要があるので、バーナ6は消火状態とし、循環
ポンプ4およびブロワ7を駆動して熱交換器5を強制送
風冷却する。このとき、燃料電池の発電生成熱は負荷に
供給する電力に比例して増大するが、これに比例して熱
交換器8が廃熱利用する熱エネルギーも増加するので、
制御部9が燃料電池の適正運転温度に対する検出温度の
変化量を感知して可変速モータ11に変化に対応した駆
動電流を供給するすることにより、冷却媒体の循環量お
よび送風量は燃料電池の発電生成熱に対応して変化し、
これに伴って熱交換器5が外部に排出する熱交換量も増
加するので、燃料電池をその適正運転温度に保持するこ
とができる。なお、燃料電池の軽負荷時にも可変速モー
タ11は低速で連続運転し、熱交換器8における源燃料
の加熱または気化が支障なく行われるよう構成される。 さらに、燃料電池の運転停止時には、制御部9の設定温
度を燃料電池の保管温度に切り換えて検出温度との差を
拡大すれば、可変速モータの回転速度が高まり、燃料電
池を急速に冷却することができる。
On the other hand, during power generation operation of the fuel cell, the generated heat of the fuel cell 1 is absorbed into the cooling medium via the cooling plate 1a, and the absorbed thermal energy is disposed of in the heat exchanger 8 to heat or vaporize the source fuel. In addition to utilizing the heat, it is necessary to dissipate surplus thermal energy from the heat exchanger 5 to the outside to cool and maintain the fuel cell at its proper operating temperature of 190 to 195°C, so the burner 6 is kept in the extinguished state. , the circulation pump 4 and the blower 7 are driven to cool the heat exchanger 5 by forced air. At this time, the heat generated by the fuel cell increases in proportion to the electric power supplied to the load, but the thermal energy used by the heat exchanger 8 as waste heat also increases in proportion to this.
The control unit 9 senses the amount of change in the detected temperature with respect to the appropriate operating temperature of the fuel cell, and supplies the variable speed motor 11 with a drive current corresponding to the change, so that the amount of circulating coolant and the amount of air blown are adjusted to the amount of the fuel cell. Changes in response to the heat generated by power generation,
Correspondingly, the amount of heat exchanged externally by the heat exchanger 5 also increases, so that the fuel cell can be maintained at its proper operating temperature. The variable speed motor 11 is configured to operate continuously at a low speed even when the fuel cell is under a light load, so that the source fuel can be heated or vaporized in the heat exchanger 8 without any trouble. Furthermore, when the fuel cell stops operating, if the set temperature of the control unit 9 is switched to the storage temperature of the fuel cell and the difference between the detected temperature and the detected temperature is increased, the rotational speed of the variable speed motor increases and the fuel cell is rapidly cooled. be able to.

【0015】[0015]

【発明の効果】この発明は前述のように、冷却媒体の循
環ポンプと、補助バーナを介して熱交換器に送風するブ
ロワを可変速モータなどの1台の動力装置で同軸駆動す
るよう構成した。その結果、従来常時一定速度で駆動し
ていた循環ポンプを、燃料電池の加熱または冷却に必要
な熱交換量に対応して可変速駆動することが可能になり
、従来循環ポンプを一定速度で駆動するために燃料電池
の定挌出力の2%も消費していた駆動モータの補機損失
を大幅に低減して、燃料電池の発電効率を向上できる燃
料電池の加熱冷却装置を提供することができる。また、
燃料電池の起動時に動力装置が停止した場合、冷却媒体
の循環および送風が同時に停止してバーナが酸欠状態と
なり、燃焼が停止するので、従来装置で問題となった熱
交換器が空だきにより損傷する事態を回避できる。
[Effects of the Invention] As described above, the present invention is configured such that the cooling medium circulation pump and the blower that blows air to the heat exchanger via the auxiliary burner are coaxially driven by one power device such as a variable speed motor. . As a result, it is now possible to drive the circulation pump, which conventionally was always driven at a constant speed, at a variable speed in response to the amount of heat exchange required for heating or cooling the fuel cell. It is possible to provide a fuel cell heating and cooling device that can significantly reduce the auxiliary equipment loss of the drive motor, which consumes as much as 2% of the constant output of the fuel cell, and improve the power generation efficiency of the fuel cell. . Also,
If the power unit stops when the fuel cell is started, the circulation of the cooling medium and the air blowing will stop at the same time, causing the burner to become deficient in oxygen and stop combustion. Damage situations can be avoided.

【0016】さらに、動力装置が可変速モータ1台で済
み、かつプーリーやギヤボックスなどの簡単かつ安価な
動力伝達装置で循環ポンプとブロワの回転数比を調整で
きるので、加熱冷却装置の構成の複雑化や大型化を伴う
ことなく補機損失を低減し,燃料電池の発電効率を改善
できる燃料電池の加熱冷却装置を提供することができる
Furthermore, the power device requires only one variable speed motor, and the rotation speed ratio of the circulation pump and blower can be adjusted using a simple and inexpensive power transmission device such as a pulley or gear box, so the configuration of the heating and cooling device can be adjusted. It is possible to provide a heating and cooling device for a fuel cell that can reduce auxiliary equipment loss and improve the power generation efficiency of a fuel cell without becoming complicated or bulky.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の実施例になる燃料電池の加熱冷却装
置を示す構成図
FIG. 1 is a configuration diagram showing a fuel cell heating and cooling device according to an embodiment of the present invention.

【図2】従来の燃料電池の加熱冷却装置を示す構成図[Figure 2] Configuration diagram showing a conventional fuel cell heating and cooling device

【符号の説明】[Explanation of symbols]

1    燃料電池 1a   冷却板 2    燃料改質装置 3    冷却媒体の循環系 4    循環ポンプ 4a   駆動モータ 5    熱交換器(冷却用) 6    補助バーナ 6a   源燃料ポンプ 7    ブロワ 7a   駆動モータ 8    熱交換器(気化器) 9    制御部 10    加熱冷却装置 11    共通の動力装置(可変速モータ)12  
  動力伝達装置(変速機) 20    加熱冷却装置
1 Fuel cell 1a Cooling plate 2 Fuel reformer 3 Coolant circulation system 4 Circulation pump 4a Drive motor 5 Heat exchanger (for cooling) 6 Auxiliary burner 6a Source fuel pump 7 Blower 7a Drive motor 8 Heat exchanger (vaporizer) ) 9 Control unit 10 Heating/cooling device 11 Common power unit (variable speed motor) 12
Power transmission device (transmission) 20 Heating and cooling device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】単電池の積層体からなる燃料電池に前記単
電池とともに積層された冷却板と、この冷却板に冷却媒
体を還流する循環系に配された循環ポンプおよび補助バ
ーナを有する熱交換器と、この熱交換器に前記補助バー
ナを介して高温の燃焼ガスまたは冷却空気を送風するブ
ロワとを含み、制御部が前記冷却板温度を検知して発す
る駆動電流に基づき前記循環ポンプおよびブロワの動力
装置を制御して前記燃料電池を加熱または冷却するもの
において、前記循環ポンプおよびブロワを駆動する共通
の動力装置を備えてなることを特徴とする燃料電池の加
熱冷却装置。
1. A heat exchanger comprising a fuel cell consisting of a stack of unit cells, a cooling plate stacked together with the unit cells, and a circulation pump and an auxiliary burner disposed in a circulation system that circulates a cooling medium to the cooling plate. a blower for blowing high-temperature combustion gas or cooling air to the heat exchanger via the auxiliary burner; What is claimed is: 1. A heating and cooling device for a fuel cell, which controls a power device to heat or cool the fuel cell, comprising a common power device that drives the circulation pump and the blower.
【請求項2】循環ポンプとブロワとの回転数比を規制す
る動力伝達装置を、動力装置と前記循環ポンプおよびブ
ロワの少なくともいずれか一方との間に備えてなること
を特徴とする請求項1記載の燃料電池の加熱冷却装置。
2. Claim 1, further comprising a power transmission device that regulates a rotational speed ratio between the circulation pump and the blower, between the power device and at least one of the circulation pump and the blower. The heating and cooling device for the fuel cell described above.
【請求項3】循環ポンプおよびブロワを駆動する共通の
動力装置が可変速モータであることを特徴とする請求項
1記載の燃料電池の加熱冷却装置。
3. The heating and cooling device for a fuel cell according to claim 1, wherein the common power device for driving the circulation pump and the blower is a variable speed motor.
JP3001767A 1991-01-11 1991-01-11 Heating and cooling device of fuel cell Pending JPH04242075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3001767A JPH04242075A (en) 1991-01-11 1991-01-11 Heating and cooling device of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3001767A JPH04242075A (en) 1991-01-11 1991-01-11 Heating and cooling device of fuel cell

Publications (1)

Publication Number Publication Date
JPH04242075A true JPH04242075A (en) 1992-08-28

Family

ID=11510733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3001767A Pending JPH04242075A (en) 1991-01-11 1991-01-11 Heating and cooling device of fuel cell

Country Status (1)

Country Link
JP (1) JPH04242075A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07170613A (en) * 1993-07-08 1995-07-04 Daimler Benz Ag Fuel cell vehicle and starting method therefor
JP2007035480A (en) * 2005-07-28 2007-02-08 Honda Motor Co Ltd On-vehicle fuel cell system and control method for the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07170613A (en) * 1993-07-08 1995-07-04 Daimler Benz Ag Fuel cell vehicle and starting method therefor
US5794732A (en) * 1993-07-08 1998-08-18 Daimler-Benz Aktiengesellschaft Apparatus and method for starting a fuel cell vehicle
JP2007035480A (en) * 2005-07-28 2007-02-08 Honda Motor Co Ltd On-vehicle fuel cell system and control method for the same
JP4686290B2 (en) * 2005-07-28 2011-05-25 本田技研工業株式会社 In-vehicle fuel cell system and control method thereof

Similar Documents

Publication Publication Date Title
CN110957503B (en) Air heating reflux system for low-temperature starting of fuel cell and control method
US7179556B2 (en) Fuel cell system
CN102610838A (en) Thermal management system of fuel cell, fuel cell system, and vehicle with the fuel cell system
EP1006601A2 (en) Fuel cell system with improved startability
KR20080104188A (en) Temperature control system for fuel cell
KR20160045110A (en) Cooling and heating device
KR20040044396A (en) Fuel cell system and method
JP2005100752A (en) Fuel cell system
JP2004522635A (en) Vehicle equipped with an internal combustion engine and a vehicle-mounted power supply device
CN202474108U (en) Fuel cell heat managing system, fuel cell system and vehicle using the same
US7179555B2 (en) Fuel cell system
JP2006024418A (en) Fuel cell system
JP2001143736A (en) Power supply system
JPS62198058A (en) Electric heat supply system of liquid cooling type fuel cell
JP3966839B2 (en) Waste heat utilization heat source device
JPH04242075A (en) Heating and cooling device of fuel cell
JP2002203584A (en) Fuel cell system
JP3470909B2 (en) Hybrid fuel cell
US20060134483A1 (en) Passive microcoolant loop for an electrochemical fuel cell
JP2004095360A (en) Fuel cell system and operating method therefor
JP4670316B2 (en) Fuel cell system
JP2004319363A (en) Fuel cell system and its operation method
JP2002042846A (en) Cooling/warming installation for fuel cell
JP2004039524A (en) Fuel cell generator
JP2001351641A (en) Combined generating element