JPH04241754A - Cylinder injection type internal combustion engine - Google Patents

Cylinder injection type internal combustion engine

Info

Publication number
JPH04241754A
JPH04241754A JP273791A JP273791A JPH04241754A JP H04241754 A JPH04241754 A JP H04241754A JP 273791 A JP273791 A JP 273791A JP 273791 A JP273791 A JP 273791A JP H04241754 A JPH04241754 A JP H04241754A
Authority
JP
Japan
Prior art keywords
combustion
fuel
uniform
stratified
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP273791A
Other languages
Japanese (ja)
Inventor
Katsuhiko Hirose
雄彦 広瀬
Kenichi Nomura
野村 憲一
Tatsuo Kobayashi
辰夫 小林
Hiroshi Nomura
啓 野村
Hiroaki Nihei
裕昭 仁平
Akihiro Yamanaka
章弘 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP273791A priority Critical patent/JPH04241754A/en
Publication of JPH04241754A publication Critical patent/JPH04241754A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To improve emission and to prevent generation of a smoke by switching combustion from stratified combustion to uniform combustion in a low load rotational region when a combustion temperature is low. CONSTITUTION:An operative condition of an internal combustion engine M1 is detected by an operative condition detecting means M2, and a fuel amount of the internal combustion engine M1 is calculated in accordance with a detection result of the operative condition detecting means M2 by an arithmetic means M3 to determine whether a combustion mode is stratified or uniform combustion. In a fuel injection means M4, fuel is injected directly into a combustion chamber. In a fuel switching correction means M5, when the combustion chamber is at a low temperature, the lower decreased is the temperature the lower in a load rotational region combustion is switched from the stratified combustion to the uniform combustion. When the combustion chamber is at a low temperature, the uniform combustion is performed in a low load rotational region as compared with at the time of high temperature, and in the uniform combustion, injection timing of fuel is advanced earlier than the stratified combustion, so that atomization of combustion is sufficiently performed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は筒内噴射式内燃機関に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct injection internal combustion engine.

【0002】0002

【従来の技術】特開昭60−30420号公報には、負
荷の増大に伴って燃料噴射時期を早めるようにした筒内
直接噴射式火花点火機関が開示されている。この機関で
は、低負荷運転時には圧縮行程後半に燃料を点火栓付近
に噴射し、点火栓付近に燃焼可能な混合気を形成して良
好な着火と燃焼とを得られるようにし、一方、高負荷運
転時には吸気行程前半に燃料を噴射し、燃料を筒内に十
分拡散させることによって空気利用率を高め、出力の向
上を図るようにしている。
2. Description of the Related Art Japanese Patent Application Laid-Open No. 60-30420 discloses an in-cylinder direct injection type spark ignition engine in which the fuel injection timing is advanced as the load increases. In this engine, during low load operation, fuel is injected near the spark plug in the latter half of the compression stroke to form a combustible air-fuel mixture near the spark plug to ensure good ignition and combustion. During operation, fuel is injected during the first half of the intake stroke, allowing the fuel to diffuse sufficiently into the cylinder to increase air utilization and improve output.

【0003】この機関では、中負荷運転時においては吸
気行程後半から圧縮行程前半付近で燃料を噴射し、この
噴射燃料は筒内全体に拡散する。しかし、中負荷運転時
における燃料噴射量は高負荷運転時における程十分に多
くないため、筒内全体に拡散した燃料によって形成され
る混合気は過薄となり、着火及び燃焼が困難になるとい
う問題がある。
[0003] In this engine, during medium load operation, fuel is injected from the latter half of the intake stroke to the vicinity of the first half of the compression stroke, and this injected fuel is diffused throughout the cylinder. However, the amount of fuel injected during medium-load operation is not as large as during high-load operation, so the mixture formed by the fuel diffused throughout the cylinder becomes too lean, making ignition and combustion difficult. There is.

【0004】これを解決するものとして特開平2−16
9834号公報には、軽負荷時にピストンの頂面に設け
たキャビティに向けて燃料を噴射し、キャビティ内の空
気の流れによって、リッチな混合気層から空気層まで変
化する燃料分布が不均一な混合気を生成して成層燃焼を
実現する内燃機関が開示されている。
[0004] To solve this problem, Japanese Patent Application Laid-Open No. 2-16
Publication No. 9834 discloses that when the load is light, fuel is injected into a cavity provided on the top surface of the piston, and the fuel distribution changes from a rich mixture layer to an air layer due to the air flow inside the cavity. An internal combustion engine that generates an air-fuel mixture to achieve stratified combustion is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかし、低温時にはピ
ストンや燃焼室壁の温度が低く、そのために混合気の生
成が遅く、成層混合気が充分に形成されないため、エミ
ッションが悪化し、スモークが発生するという問題があ
った。
[Problems to be Solved by the Invention] However, at low temperatures, the temperature of the piston and the walls of the combustion chamber is low, so the generation of air-fuel mixture is slow, and a sufficient stratified air-fuel mixture is not formed, resulting in poor emissions and the generation of smoke. There was a problem.

【0006】本発明は上記の点に鑑みなされたもので、
燃焼室温度が低いとき低い負荷回転領域で成層燃焼から
均一燃焼への切換えを行なうことにより、エミッション
の向上、及びスモークの発生を防止する筒内噴射式内燃
機関を提供することを目的とする。
[0006] The present invention has been made in view of the above points.
An object of the present invention is to provide a direct injection internal combustion engine that improves emissions and prevents the generation of smoke by switching from stratified combustion to uniform combustion in a low load rotation range when the combustion chamber temperature is low.

【0007】[0007]

【課題を解決するための手段】図1は本発明装置の原理
図を示す。
Means for Solving the Problems FIG. 1 shows a principle diagram of the apparatus of the present invention.

【0008】同図中、内燃機関M1の運転状態は運転状
態検出手段M2によって検出され、演算手段M3は運転
状態検出手段M2の検出結果に応じて内燃機関M1の燃
料量を算出し、成層燃焼か均一燃焼かの燃焼モードを決
定する。
In the figure, the operating state of the internal combustion engine M1 is detected by the operating state detecting means M2, and the calculating means M3 calculates the amount of fuel for the internal combustion engine M1 according to the detection result of the operating state detecting means M2, and performs stratified combustion. Determine the combustion mode: homogeneous combustion.

【0009】燃料噴射手段M4は、燃料を直接燃焼室に
噴射する。燃焼切換補正手段M5は、燃焼室の温度が低
いとき温度が低いほど低い負荷回転領域で成層燃焼から
均一燃焼に切換える。
The fuel injection means M4 injects fuel directly into the combustion chamber. When the temperature of the combustion chamber is low, the combustion switching correction means M5 switches from stratified combustion to uniform combustion in a lower load rotation range as the temperature decreases.

【0010】0010

【作用】本発明においては、燃焼室が低温のときは高温
時に比べて低い負荷回転領域で均一燃焼が行なわれ、均
一燃焼では成層燃焼よりも燃料の噴射タイミングが早い
ので燃焼の霧化が充分に行なわれる。
[Operation] In the present invention, when the combustion chamber is low temperature, uniform combustion is performed in a lower load rotation range than when it is high temperature, and in uniform combustion, the fuel injection timing is earlier than in stratified combustion, so that the combustion is sufficiently atomized. It will be held in

【0011】[0011]

【実施例】図2は本発明の内燃機関の一実施例の断面構
造図を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 shows a sectional view of an embodiment of an internal combustion engine according to the present invention.

【0012】同図中、1はシリンダブロック、2はピス
トン、3はシリンダブロック1上に固定されたシリンダ
ヘッド、4は燃焼室、5は給気弁、6は排気弁、7は給
気ポート、8は排気ポート、9は点火栓、10は燃料噴
射弁夫々を示す。
In the figure, 1 is a cylinder block, 2 is a piston, 3 is a cylinder head fixed on the cylinder block 1, 4 is a combustion chamber, 5 is an air intake valve, 6 is an exhaust valve, and 7 is an air intake port. , 8 is an exhaust port, 9 is a spark plug, and 10 is a fuel injection valve.

【0013】ピストン2の頂面上には点火栓9の下方か
ら燃料噴射弁10の先端部の下方まで延在するキャビテ
ィ15が形成されている。
A cavity 15 is formed on the top surface of the piston 2 and extends from below the spark plug 9 to below the tip of the fuel injection valve 10.

【0014】上記の内燃機関は図3に示す電子制御ユニ
ット20によって燃料噴射制御を行なわれる。
Fuel injection control of the above-mentioned internal combustion engine is performed by an electronic control unit 20 shown in FIG.

【0015】電子制御ユニット20は、双方向性バス2
1によって相互に接続されたROM(リードオンリメモ
リ)22,RAM(ランダムアクセスメモリ)23,C
PU(マイクロプロセッサ)24,バックアップRAM
25,入力ポート26及び出力ポート27を具備する。 スロットル弁に設けられたスロットルセンサ30はスロ
ットル弁開度に比例した出力電圧を発生し、水温センサ
31は冷却水の水温に比例した出力電圧を発生し、吸気
温センサ32は吸入空気の温度に比例した出力電圧を発
生する。上記スロットルセンサ30,水温センサ31,
吸気温センサ32夫々の出力電圧はA/D変換器34,
35,36夫々を介して入力ポート26に供給される。
The electronic control unit 20 has a bidirectional bus 2
ROM (read only memory) 22, RAM (random access memory) 23, C interconnected by 1
PU (microprocessor) 24, backup RAM
25, an input port 26, and an output port 27. A throttle sensor 30 installed in the throttle valve generates an output voltage proportional to the throttle valve opening, a water temperature sensor 31 generates an output voltage proportional to the cooling water temperature, and an intake air temperature sensor 32 generates an output voltage proportional to the temperature of the intake air. Generates a proportional output voltage. The throttle sensor 30, water temperature sensor 31,
The output voltage of each of the intake temperature sensors 32 is determined by the A/D converter 34,
It is supplied to the input port 26 via 35 and 36, respectively.

【0016】更に入力ポート26は機関回転数NEを表
わす出力信号を発生する回転数センサ40と、クランク
シャフト(図示しない)が一定角度だけ回転する毎に出
力パルスを発生するクランク角センサ41とが接続され
る。一方出力ポート27は駆動回路45を介し燃料噴射
弁10に接続される。
Furthermore, the input port 26 includes a rotation speed sensor 40 that generates an output signal representing the engine rotation speed NE, and a crank angle sensor 41 that generates an output pulse every time the crankshaft (not shown) rotates by a certain angle. Connected. On the other hand, the output port 27 is connected to the fuel injection valve 10 via a drive circuit 45.

【0017】図4,図5は燃料噴射タイミング制御処理
の一実施例のフローチャートを示す。この処理はメイン
ルーチンの一部であり、数msec毎に実行される。
FIGS. 4 and 5 show flowcharts of one embodiment of fuel injection timing control processing. This process is part of the main routine and is executed every few milliseconds.

【0018】同図中、ステップ50では回転数NE及び
スロットル開度TAを読込み、ステップ51でこの回転
数NEとスロットル開度TAを用いて図5に示す噴射タ
イミングマップを参照し、ステップ52で噴射タイミン
グマップから均一燃焼、成層燃焼夫々の噴射タイミング
IFTHOTH,IFTHOTSを求める。図5のマッ
プにおいて、回転数NEが高いほど噴射タイミングIF
THOTH,IFTHOTS(単位は上死点前角度BT
DC)が大きい。
In the figure, in step 50, the rotational speed NE and throttle opening TA are read, in step 51, the injection timing map shown in FIG. 5 is referred to using the rotational speed NE and throttle opening TA, and in step 52, Injection timings IFTHOTH and IFTHOTS for uniform combustion and stratified combustion are determined from the injection timing map. In the map of FIG. 5, the injection timing IF increases as the rotational speed NE increases.
THOTH, IFTHOTS (unit: angle BT before top dead center)
DC) is large.

【0019】また、成層燃焼を行なうスロットル開度の
最大値ta2は均一燃焼を行なうスロットル開度の最小
値ta1よりも大きく、上記スロットル開度の値ta1
からta2の範囲では成層燃焼、均一燃焼夫々に対して
噴射タイミングを求めることができる。また、噴射タイ
ミングIFTHOTH,IFTHOTS夫々は全て暖気
が済んだ状態での値を用いている。ステップ53ではエ
ンジン冷却水の水温THWを読込み、ステップ54で図
7に示す噴射タイミング水温補正マップを参照し、ステ
ップ55でこのマップから噴射タイミング水温補正値C
IFTTHW(単位は上死点前角度)を求める。噴射タ
イミング水温補正値CIFTTHWは冷却水温が低くピ
ストン2や燃焼室4の温度が低いとき値が大きくなる。
Further, the maximum throttle opening value ta2 for performing stratified combustion is larger than the minimum throttle opening value ta1 for uniform combustion, and the throttle opening value ta1 is larger than the minimum value ta1 for performing uniform combustion.
In the range from ta2 to ta2, the injection timing can be determined for both stratified combustion and uniform combustion. In addition, the injection timings IFTHOTH and IFTHOTS are all values in a state where the engine has been warmed up. In step 53, the engine coolant temperature THW is read, in step 54, the injection timing water temperature correction map shown in FIG. 7 is referred to, and in step 55, the injection timing water temperature correction value C
Find IFTTHW (unit: angle before top dead center). The injection timing water temperature correction value CIFTTHW increases in value when the cooling water temperature is low and the temperatures of the piston 2 and the combustion chamber 4 are low.

【0020】この後、ステップ56で噴射実行タイミン
グIFTEXECH,IFTEXECS夫々を次式にて
求める。
Thereafter, in step 56, the injection execution timings IFTEXECH and IFTEXECS are determined using the following equations.

【0021】IFTEXECH=IFTHOTHIFT
EXECS=IFTHOTS+CIFTTHW図8に2
サイクルエンジンにおける噴射実行タイミングIFTE
XECSを示す。
[0021]IFTEXECH=IFTHOTHIFT
EXECS=IFTHOTS+CIFTTHW2 in Figure 8
Injection execution timing IFTE in cycle engine
Indicates XECS.

【0022】次に、図5のステップ57で回転数NE及
びスロットル開度TAを用いて図9に示す燃焼切換マッ
プを読込み、ステップ58で成層燃焼から均一燃焼に切
換える閾値曲線HSHHOTと、均一燃焼から成層燃焼
に切換える閾値曲線LSHHOTを求める。閾値曲線H
SHHOTとLSHHOTと2種類設定することにより
ヒステリシス特性を与えている。
Next, in step 57 of FIG. 5, the combustion switching map shown in FIG. A threshold curve LSHHOT for switching to stratified combustion is determined from . threshold curve H
Hysteresis characteristics are provided by setting two types, SHHOT and LSHHOT.

【0023】ステップ59では水温THWを用いて図1
0に示す閾値水温補正マップを読込み、ステップ60で
成層燃焼時、均一燃焼時夫々の閾値水温補正係数CSH
THWH,CSHTHWL夫々を求める。ステップ61
では次式により成層燃焼/均一燃焼補正閾値曲線HSH
,LSH夫々を求める。
In step 59, using the water temperature THW,
0 is read, and in step 60, the threshold water temperature correction coefficient CSH for stratified combustion and uniform combustion is read.
Find THWH and CSHTHWL. Step 61
Then, by the following formula, the stratified combustion/uniform combustion correction threshold curve HSH
, LSH, respectively.

【0024】HSH=HSHHOT×CSHTHWHL
SH=LSHHOT×CSHTHWL閾値水温補正係数
CSHTHWLは補正係数CSHTHWHに対し低温及
び高温時に値が小さいので上記の補正で外乱が多い低温
となるほど、成層燃焼から均一燃焼への切換えと、均一
燃焼から成層燃焼への切換えとのヒステリシスの差が拡
がり、切換えが規制される。
[0024]HSH=HSHHOT×CSHTHWHL
SH = LSHHOT x CSHTHWL The threshold water temperature correction coefficient CSHTHWL has a smaller value than the correction coefficient CSHTHWH at low and high temperatures, so the above correction will change the switching from stratified combustion to uniform combustion and change from uniform combustion to stratified combustion as the temperature becomes lower and there are more disturbances. The difference in hysteresis between the switching and the switching becomes wider, and the switching is restricted.

【0025】次にステップ62で現在成層燃焼中である
かどうかを判別し、成層燃焼中であれば、ステップ63
でスロットル開度TA,回転数NE夫々を補正閾値曲線
HSH上のスロットル開度TAHSH,回転数NEHS
Hと比較し、スロットル開度TA,回転数NEが共に大
きく、図9上における補正閾値曲線HSHよりも上側に
位置していればステップ65で均一燃焼モードを設定し
、スロットル開度TA,回転数NEが共に小さく即ち負
荷回転領域が補正閾値曲線HSHよりも下側に位置して
いればステップ66で成層燃焼モードを設定する。次に
ステップ62で成層燃焼中はない、つまり均一燃焼中と
判別されれば、ステップ64でスロットル開度TA,回
転数NE夫々を補正閾値曲線LSH上のスロットル開度
TALSH,回転数NELSHと比較し、スロットル開
度TA,回転数NEが共に小さく、図9上における補正
閾値曲線LSHよりも下側に位置していればステップ6
6で成層燃焼モードを設定し、スロットル開度TA,回
転数NEが共に大きく補正閾値曲線LSHよりも上側に
位置していればステップ65で均一燃焼モードを設定す
る。ステップ67ではステップ65又は66で設定され
たモードの噴射実行タイミングIFTEXECH又はI
FTEXECSを用いて実際の噴射を開始させ、処理を
終了する。
Next, in step 62, it is determined whether or not stratified combustion is currently being performed. If stratified combustion is being performed, step 63 is performed.
Correct the throttle opening TA and rotational speed NE, respectively, by adjusting the throttle opening TAHSH and rotational speed NEHS on the threshold curve HSH.
If the throttle opening TA and rotation speed NE are both large compared to H and are located above the correction threshold curve HSH in FIG. If both numbers NE are small, that is, if the load rotation range is located below the correction threshold curve HSH, the stratified combustion mode is set in step 66. Next, if it is determined in step 62 that stratified combustion is not occurring, that is, uniform combustion is occurring, then in step 64 the throttle opening TA and rotational speed NE are compared with the throttle opening TALSH and rotational speed NELSH on the correction threshold curve LSH. However, if both the throttle opening TA and the rotation speed NE are small and are located below the correction threshold curve LSH in FIG.
In Step 6, the stratified combustion mode is set, and if both the throttle opening degree TA and the rotational speed NE are large and located above the correction threshold curve LSH, the uniform combustion mode is set in Step 65. In step 67, the injection execution timing IFTEXECH or I of the mode set in step 65 or 66 is determined.
Actual injection is started using FTEXECS and the process ends.

【0026】このように、燃焼室が低温のときは高温時
に比べて低い負荷回転領域で均一燃焼が行なわれ、均一
燃焼では成層燃焼よりも燃料の噴射タイミングが早いの
で燃焼の霧化が充分に行なわれる。従ってエミッション
が向上し、スモークの発生を防止できる。
[0026] In this way, when the combustion chamber is low temperature, uniform combustion occurs in a low load rotation range compared to when it is high temperature, and in uniform combustion, the fuel injection timing is earlier than in stratified combustion, so that the combustion is sufficiently atomized. It is done. Therefore, emissions are improved and smoke generation can be prevented.

【0027】なお、上記実施例では燃焼室4の温度を知
るものとして冷却水温THWを用いて閾値水温補正係数
CSHTHWH,CSHTHWLを求めているが、この
代りに吸気温THAを用いて上記補正係数CSHTHW
H,CSHTHWLと同様の閾値吸気温補正係数を求め
ても良く、上記実施例に限定されない。
In the above embodiment, the cooling water temperature THW is used to determine the temperature of the combustion chamber 4 to determine the threshold water temperature correction coefficients CSHTHWH, CSHTHWL, but instead of this, the intake air temperature THA is used to determine the correction coefficient CSHTHW.
A threshold intake temperature correction coefficient similar to H, CSHTHWL may be obtained, and the present invention is not limited to the above embodiment.

【0028】[0028]

【発明の効果】上述の如く、本発明の筒内噴射式内燃機
関によれば、混合気の形成を向上させ、エミッションの
向上、及びスモークの発生を防止することができ、実用
上きわめて有用である。
Effects of the Invention As described above, the direct injection internal combustion engine of the present invention can improve the formation of air-fuel mixture, improve emissions, and prevent the generation of smoke, and is extremely useful in practice. be.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の原理図である。FIG. 1 is a diagram showing the principle of the present invention.

【図2】本発明の内燃機関の断面構造図である。FIG. 2 is a cross-sectional structural diagram of the internal combustion engine of the present invention.

【図3】電子制御ユニットのブロック図である。FIG. 3 is a block diagram of an electronic control unit.

【図4】燃料噴射タイミング制御処理のフローチャート
である。
FIG. 4 is a flowchart of fuel injection timing control processing.

【図5】燃料噴射タイミング制御処理のフローチャート
である。
FIG. 5 is a flowchart of fuel injection timing control processing.

【図6】噴射タイミングマップを示す図である。FIG. 6 is a diagram showing an injection timing map.

【図7】噴射タイミング水温補正マップを示す図である
FIG. 7 is a diagram showing an injection timing water temperature correction map.

【図8】IFTEXECSを示す図である。FIG. 8 is a diagram showing IFTEXECS.

【図9】燃焼切換マップを示す図である。FIG. 9 is a diagram showing a combustion switching map.

【図10】閾値水温補正マップを示す図である。FIG. 10 is a diagram showing a threshold water temperature correction map.

【符号の説明】[Explanation of symbols]

2  ピストン 4  燃焼室 10  燃料噴射弁 15  キャビティ 30  スロットルセンサ 31  水温センサ 32  吸気温センサ M1  内燃機関 M2  運転状態検出手段 M3  演算手段 M4  燃料噴射手段 M5  燃焼切換補正手段 2 Piston 4 Combustion chamber 10 Fuel injection valve 15 Cavity 30 Throttle sensor 31 Water temperature sensor 32 Intake temperature sensor M1 Internal combustion engine M2 Operating state detection means M3 calculation means M4 Fuel injection means M5 Combustion switching correction means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  燃焼室内に直接燃料噴射を行ない、小
燃料噴射時にピストンに設けられたキャビティ内で空燃
比がリッチな混合気層から空気層まで変化する燃料分布
が不均一な混合気を生成して成層燃焼を行ない、大燃料
噴射時に該ピストンキャビティ及び燃焼室内で燃料分布
が均一な混合気を生成して均一燃焼を行なう筒内噴射式
内燃機関において、該燃焼室の温度が低いとき該温度が
低いほど低い負荷回転領域で成層燃焼から均一燃焼に切
換える燃焼切換補正手段を有することを特徴とする筒内
噴射式内燃機関。
Claim 1: Fuel is directly injected into the combustion chamber, and during small fuel injection, a mixture with uneven fuel distribution is generated in which the air-fuel ratio changes from a rich mixture layer to an air layer in a cavity provided in a piston. In a direct-injection internal combustion engine that performs stratified combustion and produces a mixture with uniform fuel distribution in the piston cavity and combustion chamber during large fuel injection to perform uniform combustion, when the temperature of the combustion chamber is low, A direct injection internal combustion engine characterized by having a combustion switching correction means for switching from stratified combustion to uniform combustion in a load rotation range where the temperature is lower.
JP273791A 1991-01-14 1991-01-14 Cylinder injection type internal combustion engine Pending JPH04241754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP273791A JPH04241754A (en) 1991-01-14 1991-01-14 Cylinder injection type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP273791A JPH04241754A (en) 1991-01-14 1991-01-14 Cylinder injection type internal combustion engine

Publications (1)

Publication Number Publication Date
JPH04241754A true JPH04241754A (en) 1992-08-28

Family

ID=11537653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP273791A Pending JPH04241754A (en) 1991-01-14 1991-01-14 Cylinder injection type internal combustion engine

Country Status (1)

Country Link
JP (1) JPH04241754A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996036802A1 (en) * 1995-05-16 1996-11-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control device for cylinder injection and spark ignition type internal combustsion engines
WO1996036801A1 (en) * 1995-05-15 1996-11-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Cylinder injection type internal combustion engine and fuel injection control device therefor
US5722362A (en) * 1995-09-29 1998-03-03 Hitachi, Ltd. Direct injection system engine controlling apparatus
US6012435A (en) * 1996-07-31 2000-01-11 Nissan Motor Co., Ltd. Engine combustion controller
US6026779A (en) * 1997-12-09 2000-02-22 Nissan Motor Co., Ltd. Apparatus for controlling internal combustion engine
FR2801074A1 (en) * 1999-11-12 2001-05-18 Bosch Gmbh Robert METHOD FOR IMPLEMENTING AN INTERNAL COMBUSTION ENGINE

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996036801A1 (en) * 1995-05-15 1996-11-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Cylinder injection type internal combustion engine and fuel injection control device therefor
WO1996036802A1 (en) * 1995-05-16 1996-11-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control device for cylinder injection and spark ignition type internal combustsion engines
US5960765A (en) * 1995-05-16 1999-10-05 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control device for cylinder-injection and spark-ignition type internal combustion engines
US5722362A (en) * 1995-09-29 1998-03-03 Hitachi, Ltd. Direct injection system engine controlling apparatus
DE19640403B4 (en) * 1995-09-29 2008-03-27 Hitachi, Ltd. Apparatus and method for controlling a direct injection internal combustion engine
US6012435A (en) * 1996-07-31 2000-01-11 Nissan Motor Co., Ltd. Engine combustion controller
US6026779A (en) * 1997-12-09 2000-02-22 Nissan Motor Co., Ltd. Apparatus for controlling internal combustion engine
EP0922847A3 (en) * 1997-12-09 2000-09-20 Nissan Motor Co., Ltd. Apparatus for controlling internal combustion engine
FR2801074A1 (en) * 1999-11-12 2001-05-18 Bosch Gmbh Robert METHOD FOR IMPLEMENTING AN INTERNAL COMBUSTION ENGINE

Similar Documents

Publication Publication Date Title
KR100314515B1 (en) Controller for an internal combustion engine
US6237562B1 (en) Method of controlling compression ignition internal combustion engine
US7134420B2 (en) Ignition timing control apparatus for internal combustion engine
JP3768296B2 (en) In-cylinder injection type spark ignition internal combustion engine control device
JP4122630B2 (en) Compression self-ignition gasoline engine
JP3198957B2 (en) Output fluctuation suppression control device for lean burn internal combustion engine
US7159565B2 (en) Method of controlling ignition timing in internal combustion engine
CA2354749C (en) Control system and method and engine control unit for internal combustion engine
JP3893909B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP2002122038A (en) Fuel injection control device for internal combustion engine
JP3090072B2 (en) Fuel injection control device for in-cylinder injection internal combustion engine
JPH04241754A (en) Cylinder injection type internal combustion engine
JP2002256924A (en) Combustion control device of compression ignition engine
JP3959784B2 (en) Combustion stabilization system for direct injection spark ignition engine
JPH10159642A (en) Knocking judging device for internal combustion engine
KR100383533B1 (en) Control apparatus for direct injection type internal combustion engine
JP2929781B2 (en) Fuel injection timing control stratified combustion internal combustion engine
JP2004092488A (en) Fuel injection control device of internal combustion engine
JPH04241753A (en) Cylinder injection type internal combustion engine
JP3265999B2 (en) Knock control device for in-cylinder injection internal combustion engine
JP4583626B2 (en) Engine combustion control device
JPH11303721A (en) Ignition device for internal combustion engine
JPH09151771A (en) Fuel injection control device for direct injection gasoline engine
JP3661769B2 (en) In-cylinder injection spark ignition type internal combustion engine control device
JP4147715B2 (en) Intake valve operating state control device for in-cylinder injection type spark ignition internal combustion engine