JPH0424144Y2 - - Google Patents

Info

Publication number
JPH0424144Y2
JPH0424144Y2 JP1984118227U JP11822784U JPH0424144Y2 JP H0424144 Y2 JPH0424144 Y2 JP H0424144Y2 JP 1984118227 U JP1984118227 U JP 1984118227U JP 11822784 U JP11822784 U JP 11822784U JP H0424144 Y2 JPH0424144 Y2 JP H0424144Y2
Authority
JP
Japan
Prior art keywords
fuel
throttle valve
electromagnetic
injection port
adapter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984118227U
Other languages
Japanese (ja)
Other versions
JPS6133966U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11822784U priority Critical patent/JPS6133966U/en
Publication of JPS6133966U publication Critical patent/JPS6133966U/en
Application granted granted Critical
Publication of JPH0424144Y2 publication Critical patent/JPH0424144Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 産業上の利用分野 この考案は、自動車等の内燃機関(以下エンジ
ンともいう)の電子制御燃料噴射装置において、
スロツトル・バルブの上流で燃料の噴射を行なう
電磁燃料噴射器に関し、特に噴霧燃料流の微粒化
機構に関するものである。
[Detailed description of the invention] Industrial application field This invention is an electronically controlled fuel injection system for internal combustion engines (hereinafter also referred to as engines) of automobiles, etc.
The present invention relates to electromagnetic fuel injectors that inject fuel upstream of a throttle valve, and more particularly to an atomization mechanism for atomized fuel flow.

従来の技術 電子制御燃料噴射装置において、吸気マニホー
ルドのブランチ集合部上流で燃料を噴射する方式
は、電磁燃料噴射器の個数を減らすことができる
ので、各気筒毎に電磁燃料噴射器を備えた装置に
比べ、製作コストを低減できる利点がある。この
ような方式を採用する装置のうち、実開昭58−
66165号公報で開示されたものは、スロツトル・
バルブの上流にある電磁燃料噴射器に複数個の旋
回部を設け、複数の噴霧燃料流として燃料の微粒
化を計つている。
BACKGROUND ART In an electronically controlled fuel injection system, a system in which fuel is injected upstream of a branch gathering part of an intake manifold can reduce the number of electromagnetic fuel injectors, so it is possible to reduce the number of electromagnetic fuel injectors. It has the advantage of reducing manufacturing costs compared to . Among the devices that adopt this type of system, the
What was disclosed in Publication No. 66165 is a throttle
The electromagnetic fuel injector upstream of the valve is provided with multiple swirl sections to atomize the fuel into multiple atomized fuel streams.

考案が解決しようとする問題点 しかしながらこの電磁燃料噴射器は、燃料の開
閉部より外側(エンジン側)に旋回部(スワラ)
が複数個あり、さらにその外側に噴射口があつて
燃料を計量しているため、開閉部より下流の燃料
の流れが不規則になる。そのため燃料温度が高く
なると、開閉部下流ではベーパーが発生しやすく
なり、常温時と高温時では燃料の計量に差が出
て、同じ開弁時間でも高温時の方が燃料噴射量が
少ないという問題が出ていた。
Problems that the invention aims to solve However, this electromagnetic fuel injector has a swirling part (swherer) on the outside (engine side) of the fuel opening/closing part.
Since there are multiple injection ports and an injection port is placed on the outside to measure the fuel, the flow of fuel downstream from the opening/closing part becomes irregular. As a result, when the fuel temperature rises, vapor is more likely to be generated downstream of the opening/closing part, and there is a difference in the amount of fuel measured at room temperature and at high temperature, resulting in the problem that even with the same valve opening time, the amount of fuel injected is smaller at high temperature. was appearing.

また、スロツトル・ボデーの限られたスペース
内で複数個の旋回流の噴射を行なうと、スロツト
ル・ボデー通路内壁に少なからず燃料が付着する
ため、各気筒への分配性や過度時の応答性を著し
く損うという問題があつた。
In addition, when multiple swirling flows are injected within the limited space of the throttle body, a considerable amount of fuel adheres to the inner wall of the throttle body passage, making it difficult to distribute the fuel to each cylinder and respond to transient conditions. There was a problem with significant losses.

また、一般に球形弁子を有する電磁燃料噴射器
の場合は、弁開閉部から燃料噴射口先端までの体
積(デツド・スペース)が大きいため、開弁時間
が短くなると燃料流速が遅くなり、噴霧角は全開
時よりかなり狭くなる。また燃料噴射口先端の燃
料切れが悪くなり、燃料出口部に燃料が付着し、
大きな液滴となつてエンジン内へ落下し、第8図
に示すように、空燃比やCOのスパイクが発生す
るという問題があつた。
In addition, in the case of electromagnetic fuel injectors that generally have a spherical valve, the volume (dead space) from the valve opening/closing part to the tip of the fuel injection port is large, so when the valve opening time becomes shorter, the fuel flow rate slows down and the spray angle decreases. is considerably narrower than when fully open. In addition, the fuel at the tip of the fuel injection port becomes difficult to run out, and fuel adheres to the fuel outlet.
The problem was that large droplets fell into the engine, causing spikes in the air-fuel ratio and CO, as shown in Figure 8.

加えて燃料出口部にばり、かえり等があると、
噴射燃料流の外周に燃料の飛沫が飛び、また燃料
出口部に燃料が付着しやすくなり、大きな液滴と
なつてエンジン内へ落下し、運転性能(エミツシ
ヨンを含む)を損うという問題があつた。このた
め燃料出口部のばり、かえり等を機械加工で除去
しようとすると、段差が付いたり、テーパー状に
加工される恐れがある。燃料出口部の加工形状に
よつては噴霧燃料流が偏向したり、燃料流量が変
化する現象が起こり、分配性や過渡反応性を損
ね、電磁燃料噴射器としての高精度の計量ができ
なくなる。
In addition, if there are burrs or burrs on the fuel outlet,
There is a problem in that fuel droplets fly around the outer periphery of the injected fuel flow, and fuel tends to adhere to the fuel outlet, forming large droplets that fall into the engine, impairing operating performance (including emissions). Ta. For this reason, if an attempt is made to remove burrs, burrs, etc. from the fuel outlet portion by machining, there is a risk that a step will be formed or the fuel outlet portion will be machined into a tapered shape. Depending on the shape of the fuel outlet, the sprayed fuel flow may be deflected or the fuel flow rate may change, impairing distribution properties and transient reactivity, and making it impossible to measure with high precision as an electromagnetic fuel injector.

この考案は、弁開閉部、計量部、微粒化機構の
順に燃料が流れる構造によつて、ベーパーの発生
を防止して燃料噴射量の精度を向上し、また噴霧
燃料流が通路内壁に付着しないように、かつスロ
ツトル・バルブ・シヤフトに当らないように制御
するアダプタを有する微粒化機構を備え、このア
ダプタはその燃料出口部における燃料だれを生じ
ないような型成形によつて形成して霧化特性、分
配性、過渡応答性を良好にし、安定した空燃比を
有する電磁燃料噴射器の提供を目的とする。
This design uses a structure in which fuel flows in the order of the valve opening/closing section, metering section, and atomization mechanism, which prevents the generation of vapor and improves the accuracy of the fuel injection amount, and also prevents the sprayed fuel flow from adhering to the inner wall of the passage. The atomization mechanism is equipped with an adapter that controls the atomization so as to prevent the fuel from hitting the throttle valve shaft. The purpose of the present invention is to provide an electromagnetic fuel injector that has good characteristics, distribution performance, and transient response, and has a stable air-fuel ratio.

問題点を解決するための手段と作用 この考案は、電磁燃料噴射器の燃料噴射口位置
に取り付けた円筒状保護台先端の吸気筒の中心位
置に、スロツトル・バルブ・シヤフトと平行に、
三角断面部を有する多角形の棒状燃料案内部材の
燃料案内面を上流から下流に向けて末広状に位置
させたアダプタを取りつけて、電磁燃料噴射器の
燃料噴射口から噴射された燃料が強い方向性と速
度を保持した状態で燃料案内部材に当たつて霧化
が一層促進された状態でスロツトル・バルブの所
定の隙間に有効かつ速やかに供給されるように
し、かつ、前記保護台を型成形にした状態で保護
台内周面に形成される型のパーテイングラインを
保護台下端面及び燃料案内面の燃料出口を避けて
形成して、保護台内周面に付着した燃料が保護台
内周面の下端周縁に溜まつてボタ落ちし難くくし
たものである。
Means and Effects for Solving Problems In this invention, a cylindrical protective stand attached to the fuel injection port of an electromagnetic fuel injector is installed at the center of the intake cylinder at the tip of the cylindrical protector, parallel to the throttle valve shaft.
Attach an adapter in which the fuel guide surface of a polygonal rod-shaped fuel guide member with a triangular cross section is positioned in a diverging shape from upstream to downstream, so that the direction in which the fuel injected from the fuel injection port of the electromagnetic fuel injector is strong is attached. The fuel is effectively and quickly supplied to a predetermined gap of the throttle valve by contacting the fuel guide member while maintaining its properties and speed, and atomization is further promoted, and the protective base is molded. A parting line of the type formed on the inner peripheral surface of the protective stand is formed to avoid the fuel outlet of the lower end surface of the protective stand and the fuel guide surface, so that the fuel adhering to the inner peripheral surface of the protective stand is prevented from entering the protective stand. This prevents the particles from accumulating on the lower edge of the circumferential surface and falling off.

これによつて本考案は、アイドル運転などの軽
負荷状態から急加速したときにおいても、十分に
霧化した燃料を素早くスロツトル・バルブの隙間
から内燃機関に供給することができ、燃料供給の
気筒分配とレスポンス特性を向上させ、かつ、ス
ロツトル・バルブが半開きで定常運転されている
ときに、何らかの原因により吸気に乱れが生じた
場合でも、燃料の供給を安定させ、各気筒への分
配を均一にし、しかも、供給燃料の少ない軽負荷
運転時に影響の出やすい燃料のボタ落ちにより発
生するエンジン特性の変化を防止して、燃焼とと
もにエンジン運転特性を安定させることができる
効果を得ることができる。
As a result, the present invention can quickly supply sufficiently atomized fuel to the internal combustion engine through the gap between the throttle valve and the fuel supply cylinder even when the engine is suddenly accelerated from a light load state such as idling. Improves distribution and response characteristics, and stabilizes fuel supply and evenly distributes fuel to each cylinder even if intake air is disturbed for some reason during steady operation with the throttle valve half open. In addition, it is possible to prevent changes in engine characteristics caused by dripping of fuel, which is likely to be affected during light load operation with less supplied fuel, and to stabilize engine operating characteristics along with combustion.

実施例 以下実施例を示す図面に基づいて、この考案を
説明する。第2図はエンジン(図示しない)の吸
気筒1の部分断面図で、2はブランチ集合部上流
に設置したスロツトル・バルブ、3はスロツト
ル・バルブ・シヤフト、11はスロツトル・バル
ブ2の上流に設けた電磁燃料噴射器である。第1
図は電磁燃料噴射器11の一部破断詳細図であ
る。12はバルブシートで、先端部に噴射口13
を有し、噴射口13後方の弁開閉部14は、進退
動する開閉弁15の弁子16によつて開閉され
る。図は弁子16が弁開閉部14に当接した閉状
態を示す。バルブ・シート12の後部は噴射器ケ
ース17に固定され、噴射器ケース17には電磁
コイル18が装着されている。バルブ・シート1
2および噴射器ケース17は、Oリング19,2
0を介して結合部材21に固定されている。22
は燃料パイプ結合部、23は燃料室、24はフイ
ルタである。噴射口13の外方にはバルブ・シー
ト12の延長部によつて凹部25が形成され、凹
部25にアダプタ26が嵌合されている。アダプ
タ26は樹脂成形、冷間鍛造等の型成形によつて
製作され、第3図に示すように、円筒状の保護台
27と、ほぼ一様な三角形断面を有する棒状の燃
料案内部材28とからなる。燃料案内部材28
は、保護台27の出口側開口を横切つて、三角形
の一つの頂点を噴射口13の方に向けて配置され
ている。そしてアダプタ26は、燃料案内部材2
8の各稜線が下流側のスロツトル・バルブ・シヤ
フト3の軸線と平行になるように、凹部25に嵌
合されている。燃料案内部材28の斜面は、燃料
案内面28aとその下方にあつて傾斜の異なる燃
料逃し面28bとから構成されている。両案内面
28aの頂角θ1と両逃し面28bの頂角θ2と
の関係は、θ1>θ2≧0のようになつている。保護
台27の型成形のパーテイング27aは、燃料出
口部27bより上方に位置させて、ばり、かえり
等の影響を受けないようにしてある。燃料案内部
材28に対しては、上記のような燃料逃し面28
bを設けて、その下縁にパーテイング28cを位
置させ、実質的な燃料出口部28dにばり、かえ
り等が生じないようにしてある。
Embodiments This invention will be described below based on drawings showing embodiments. Fig. 2 is a partial cross-sectional view of the intake cylinder 1 of an engine (not shown), in which 2 is the throttle valve installed upstream of the branch assembly, 3 is the throttle valve shaft, and 11 is the throttle valve installed upstream of the throttle valve 2. It is an electromagnetic fuel injector. 1st
The figure is a partially cutaway detailed view of the electromagnetic fuel injector 11. 12 is a valve seat, and there is an injection port 13 at the tip.
The valve opening/closing part 14 behind the injection port 13 is opened and closed by a valve element 16 of an opening/closing valve 15 that moves forward and backward. The figure shows a closed state in which the valve element 16 is in contact with the valve opening/closing part 14. The rear part of the valve seat 12 is fixed to an injector case 17, and an electromagnetic coil 18 is attached to the injector case 17. Valve seat 1
2 and the injector case 17 are O-rings 19, 2
It is fixed to the coupling member 21 via 0. 22
23 is a fuel chamber, and 24 is a filter. A recess 25 is formed outside the injection port 13 by an extension of the valve seat 12, and an adapter 26 is fitted into the recess 25. The adapter 26 is manufactured by molding such as resin molding or cold forging, and as shown in FIG. Consisting of Fuel guide member 28
is arranged across the outlet side opening of the protection stand 27, with one vertex of the triangle facing toward the injection port 13. The adapter 26 is connected to the fuel guide member 2
8 is fitted into the recess 25 so that each ridgeline is parallel to the axis of the throttle valve shaft 3 on the downstream side. The slope of the fuel guide member 28 is composed of a fuel guide surface 28a and a fuel relief surface 28b located below the fuel guide surface 28a and having a different slope. The relationship between the apex angle θ1 of both guide surfaces 28a and the apex angle θ2 of both relief surfaces 28b is such that θ 12 ≧0. The molded parting 27a of the protection stand 27 is located above the fuel outlet portion 27b so as not to be affected by burrs, burrs, etc. For the fuel guiding member 28, a fuel relief surface 28 as described above is provided.
b, and a parting 28c is positioned at the lower edge of the parting 28c to prevent burrs, burrs, etc. from occurring in the substantial fuel outlet portion 28d.

上記のように構成された電磁燃料噴射器11
は、結合部材21を介して吸気マニホールド1に
取り付けられている。電磁コイル18に開弁信号
が入力されると、開閉弁15が引き上げられ弁子
16が弁開閉部14を開く。燃料は燃料室23か
ら弁開閉部14、噴射口13を通つて精密に計量
され、噴霧燃料流となつてアダプタ26に当り、
さらに微粒化され、燃料案内面28aによつて分
流され、ある角度をもつた噴霧燃料流F(第2図)
となつて噴出される。第2図において、電磁燃料
噴射器11から噴出された噴霧燃料流Fは、スロ
ツトル・バルブ2に対して上面と下面に分れて噴
出され、スロツトル・バルブ・シヤフト3には当
らない。またエンジン運転時は吸気通路内壁1a
とスロツトル・バルブ2との間には高速の空気流
があり、噴霧燃料流Fの拡がり角と吸気通路内壁
1aとの交線が、全閉時のスロツトル・バルブ2
の周縁部の上方一定高さ(この実施例では約1
cm)以下となるようにしておけば、噴霧燃料流F
は空気流と合流され、吸気通路内壁1aには付着
しない。第6図は、アダプタ26によつて分流さ
れた噴霧燃料流Fのスロツトル・バルブ2の面に
対する投影図である。
Electromagnetic fuel injector 11 configured as described above
is attached to the intake manifold 1 via a coupling member 21. When a valve opening signal is input to the electromagnetic coil 18, the opening/closing valve 15 is pulled up and the valve element 16 opens the valve opening/closing portion 14. The fuel is precisely measured from the fuel chamber 23 through the valve opening/closing part 14 and the injection port 13, becomes a sprayed fuel flow, and hits the adapter 26.
The sprayed fuel flow F is further atomized, separated by the fuel guide surface 28a, and has a certain angle (Fig. 2).
It gushed out. In FIG. 2, the atomized fuel flow F ejected from the electromagnetic fuel injector 11 is injected into the upper and lower surfaces of the throttle valve 2 and does not hit the throttle valve shaft 3. Also, when the engine is running, the intake passage inner wall 1a
There is a high-speed air flow between the throttle valve 2 and the throttle valve 2, and the line of intersection between the spread angle of the sprayed fuel flow F and the intake passage inner wall 1a is the throttle valve 2 when fully closed.
(approximately 1 in this example)
cm) or less, the atomized fuel flow F
is merged with the air flow and does not adhere to the inner wall 1a of the intake passage. FIG. 6 is a projection of the atomized fuel stream F diverted by the adapter 26 onto the plane of the throttle valve 2.

この考案による電磁燃料噴射器11から噴射さ
れる燃料は、弁開閉部14、噴射口13で計量さ
れた後、アダプタ26に当るため、計量が終了す
るまでの間、燃料は規則的に流れる。従つて燃料
温度が上昇しても異常ベーパーは発生せず、高温
時でも安定した計量が可能となる。アダプタ26
に当つた燃料は、燃料案内面28aの角度によつ
てほぼ一定した噴霧角が決まり、噴霧燃料流は分
流され微粒化されて噴出される。このとき燃料出
口27b,28dは型成形のパーテイング27
a,28cの影響を受けない位置にあるため、ば
り、かえり等によて噴霧燃料流が妨げられること
はない。従つて第8図に示すような燃料だれによ
る空燃比やCOのスパイク発生はなくなり、アイ
ドル回転数およびエミツシヨンが非常に安定し良
好になる。
The fuel injected from the electromagnetic fuel injector 11 according to this invention is metered by the valve opening/closing part 14 and the injection port 13 and then hits the adapter 26, so that the fuel flows regularly until the metering is completed. Therefore, even if the fuel temperature rises, abnormal vapor does not occur, and stable metering is possible even at high temperatures. adapter 26
The spray angle of the fuel that hits the fuel guide surface 28a is determined to be approximately constant depending on the angle of the fuel guide surface 28a, and the sprayed fuel flow is divided into atomized particles and then ejected. At this time, the fuel outlets 27b and 28d are formed by the molded parting 27.
Since it is located at a position that is not affected by the elements a and 28c, the flow of the sprayed fuel is not obstructed by burrs, burrs, or the like. Therefore, the air-fuel ratio and CO spikes caused by fuel dripping as shown in FIG. 8 are eliminated, and the idle speed and emission become very stable and good.

第4図および第5図は、アダプタの別の実施例
29,32を示す。それぞれ保護台30,33、
燃料案内部材31,34,燃料案内面31a,3
4a、燃料逃し面31b,34b、保護台のパー
テイング30a,33a、同じく燃料出口部30
b,33b、燃料案内部材のパーテイング31
c,34c、同じく燃料出口部31d,34dを
有する。
Figures 4 and 5 show alternative embodiments 29, 32 of the adapter. protection stands 30, 33, respectively;
Fuel guide members 31, 34, fuel guide surfaces 31a, 3
4a, fuel relief surfaces 31b, 34b, protection stand partings 30a, 33a, fuel outlet section 30
b, 33b, fuel guide member parting 31
c, 34c, and similarly have fuel outlet portions 31d, 34d.

第7図は、従来の開閉弁先端にピントルを取り
付けた微粒化機構A、この考案のアダプタからな
る微粒化機構B、特別な微粒化機構なしCの3ケ
ースについて、スロツトル開度と空燃比の変動の
関係を示したものである。グラフから微粒化機構
A,Bの効果は明らかであり、しかもこの考案に
よるアダプタは簡単な構成で、従来の複雑な構造
を有するピントルと同等の効果を発揮しているこ
とがわかる。
Figure 7 shows the throttle opening and air-fuel ratio for three cases: a conventional atomization mechanism A with a pintle attached to the tip of the on-off valve, an atomization mechanism B with an adapter of this invention, and a case C without a special atomization mechanism. This shows the relationship between fluctuations. The effects of the atomization mechanisms A and B are clear from the graph, and it can be seen that the adapter according to this invention has a simple structure and exhibits the same effect as the conventional pintle, which has a complicated structure.

この考案による電磁燃料噴射器は、単点式燃料
噴射のための微粒化機構の改良を目的としている
が、多点式に適用しても同様な効果が得られる。
Although the electromagnetic fuel injector according to this invention is intended to improve the atomization mechanism for single-point fuel injection, similar effects can be obtained when applied to multi-point fuel injection.

考案の効果 この考案は以上説明したように、スロツトル・
バルブ上流に設けられた電磁燃料噴射器におい
て、噴霧燃料流を分流させるほぼ一様な断面を有
するアダプタを、燃料噴射口先端のスロツトル・
バルブ・シヤフトとほぼ平行な位置に設け、かつ
アダプタはその燃料出口部を避けてパーテイング
を位置させた型成形によつて形成したことによつ
て、燃料は精密に計量された後にアフダプタに当
るため、燃料噴射量は常に安定しており、高い精
度の流量が保たれる効果がある。
Effects of the invention As explained above, this invention
In an electromagnetic fuel injector installed upstream of the valve, an adapter with a substantially uniform cross section that divides the atomized fuel flow is connected to the throttle valve at the tip of the fuel injection port.
The parting is placed almost parallel to the valve shaft, and the adapter is molded with a parting that avoids the fuel outlet, so that the fuel hits the after-adapter after being precisely metered. , the fuel injection amount is always stable and has the effect of maintaining a highly accurate flow rate.

また噴霧燃料流が吸気通路内壁およびスロツト
ル・バルブ・シヤフトに当らず、かつアダプタの
燃料出口部で燃料だれが生じないため、常に良好
な霧化特性、分配性、応答性が得られ、この結果
運転性能や燃費性能が全運転域にわたり著しく向
上する効果がある。
In addition, since the atomized fuel flow does not hit the inner wall of the intake passage or the throttle valve shaft, and no fuel drips at the fuel outlet of the adapter, good atomization characteristics, distribution performance, and response are always achieved. This has the effect of significantly improving driving performance and fuel efficiency over the entire driving range.

従来、電磁燃料噴射器の微粒化機構は複雑で、
しかも高い加工精度を要していたが、この考案に
よるアダプタは、構造が簡単であるため、型成形
加工(樹脂成形、冷鍛加工、ダイカスト等)が可
能となり、バラツキも少なく、製作コストも低減
する効果がある。
Conventionally, the atomization mechanism of electromagnetic fuel injectors is complicated.
In addition, high processing accuracy was required, but the adapter invented by this invention has a simple structure, so molding processing (resin molding, cold forging, die casting, etc.) is possible, there is little variation, and manufacturing costs are reduced. It has the effect of

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの考案の実施例を示し、第1図は実施
例の一部破断詳細図、第2図はこの考案による電
磁燃料噴射器を取り付けた吸気筒1の部分縦断面
図、第3図a,bないし第5図a,bは、それぞ
れいろいろな実施例の要部の平面図、縦断面図、
第6図は第3図の実施例による噴霧燃料流のスロ
ツトル・バルブに対する投影図、第7図は従来お
よびこの考案の微粒化機構ならびに微粒化機構な
しの場合の空燃比特性図、第8図は燃料だれによ
る空燃比およびCOのスパイク発生の説明図であ
る。 1……吸気筒、3……スロツトル・バルブ・シ
ヤフト、11……電磁燃料噴射器、13……燃料
噴射口、15……開閉弁、26,29,32……
アダプタ、27a,28c,30a,31c,3
3a,34c……パーテイング。
The drawings show an embodiment of this invention; Fig. 1 is a partially cutaway detailed view of the embodiment, Fig. 2 is a partial vertical sectional view of an intake cylinder 1 equipped with an electromagnetic fuel injector according to this invention, and Fig. 3a. , b to 5 a and b are plan views and longitudinal cross-sectional views of essential parts of various embodiments, respectively.
FIG. 6 is a projection of the atomized fuel flow onto the throttle valve according to the embodiment shown in FIG. 3, FIG. 7 is an air-fuel ratio characteristic diagram for the conventional atomization mechanism and the atomization mechanism of this invention, and the case without the atomization mechanism. is an explanatory diagram of the air-fuel ratio and the occurrence of CO spikes due to fuel dripping. 1...Intake cylinder, 3...Throttle valve shaft, 11...Electromagnetic fuel injector, 13...Fuel injection port, 15...Opening/closing valve, 26, 29, 32...
Adapter, 27a, 28c, 30a, 31c, 3
3a, 34c...Parting.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電磁燃料噴射器の燃料噴射口位置に取り付けた
円筒状保護台先端の吸気筒の中心位置に、スロツ
トル・バルブ・シヤフトと平行に、三角断面部を
有する多角形の棒状燃料案内部材の燃料案内面を
上流から下流に向けて末広状に位置させたアダプ
タを取りつけて、電磁燃料噴射器の燃料噴射口か
ら噴射された燃料が強い方向性と速度を保持した
状態で燃料案内部材に当たつて霧化が一層促進さ
れた状態でスロツトル・バルブの所定の隙間に有
効かつ速やかに供給されるようにし、かつ、前記
保護台を型成形にした状態で保護台内周面に形成
される型のパーテイングラインを保護台下端面及
び燃料案内面の燃料出口を避けて形成して、保護
台内周面に付着した燃料が保護台内周面の下端周
縁に溜まつてボタ落ちし難くくしたことを特徴と
する電磁燃料噴射器。
A fuel guide surface of a polygonal rod-shaped fuel guide member having a triangular cross section is placed parallel to the throttle valve shaft at the center of the intake cylinder at the tip of the cylindrical protection stand attached to the fuel injection port of the electromagnetic fuel injector. Attach an adapter that widens from upstream to downstream so that the fuel injected from the fuel injection port of the electromagnetic fuel injector hits the fuel guide member while maintaining strong directionality and velocity, creating a mist. In order to effectively and promptly supply the throttle valve to a predetermined gap in the throttle valve in a state in which the oxidation is further promoted, and to form a mold part on the inner circumferential surface of the protector when the protector is molded, A running line is formed to avoid the fuel outlet of the lower end surface of the protection stand and the fuel guide surface to prevent fuel adhering to the inner circumference of the protection stand from accumulating on the lower edge of the inner circumference of the protection stand and falling off. An electromagnetic fuel injector featuring
JP11822784U 1984-07-31 1984-07-31 electromagnetic fuel injector Granted JPS6133966U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11822784U JPS6133966U (en) 1984-07-31 1984-07-31 electromagnetic fuel injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11822784U JPS6133966U (en) 1984-07-31 1984-07-31 electromagnetic fuel injector

Publications (2)

Publication Number Publication Date
JPS6133966U JPS6133966U (en) 1986-03-01
JPH0424144Y2 true JPH0424144Y2 (en) 1992-06-05

Family

ID=30677115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11822784U Granted JPS6133966U (en) 1984-07-31 1984-07-31 electromagnetic fuel injector

Country Status (1)

Country Link
JP (1) JPS6133966U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545782B2 (en) * 1985-12-11 1996-10-23 日本電装株式会社 Fuel injection valve
JP2528399Y2 (en) * 1990-07-16 1997-03-12 愛三工業株式会社 Electromagnetic fuel injection valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541551B2 (en) * 1976-10-05 1980-10-24

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611661Y2 (en) * 1978-09-11 1981-03-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541551B2 (en) * 1976-10-05 1980-10-24

Also Published As

Publication number Publication date
JPS6133966U (en) 1986-03-01

Similar Documents

Publication Publication Date Title
US4771948A (en) Combination of a fuel injection valve and a nozzle
US4773374A (en) Fuel injection system for internal combustion engine
US4629127A (en) Intermittent swirl type injection valve
US4685432A (en) Method and device for forming mixture gas in direct injection type internal combustion engine
US5241938A (en) Injector with assist air passage for atomizing fuel
JPH05157029A (en) Air intake device for fuel injection type internal combustion engine
US4378000A (en) Fuel supply device for internal combustion engine
JPH0424144Y2 (en)
US5694898A (en) Injector with fuel-dispersing skirt
JPS6215490Y2 (en)
JP3572591B2 (en) Fluid injection nozzle and electromagnetic fuel injection valve using the same
JP2811228B2 (en) Fuel injection nozzle for internal combustion engine
JPS60182356A (en) Solenoid-operated fuel injector
JP2771254B2 (en) Electromagnetic fuel injection valve
JPH057503Y2 (en)
JPS6341580Y2 (en)
JPH0210293Y2 (en)
JPH0514560U (en) Fuel injection valve
JP3112038B2 (en) Engine fuel injection valve
JPH029092Y2 (en)
JP2576765Y2 (en) Fuel injection valve
JPH0231785B2 (en) DENJISHIKINENRYOFUNSHABEN
JPS603341Y2 (en) Internal combustion engine mixture supply system
JPS5918114Y2 (en) Air-fuel ratio control device for internal combustion engines
JP2656667B2 (en) Fuel injection device