JPH0424122A - Driving force distribution controlling type four-wheel drive automobile - Google Patents

Driving force distribution controlling type four-wheel drive automobile

Info

Publication number
JPH0424122A
JPH0424122A JP2127457A JP12745790A JPH0424122A JP H0424122 A JPH0424122 A JP H0424122A JP 2127457 A JP2127457 A JP 2127457A JP 12745790 A JP12745790 A JP 12745790A JP H0424122 A JPH0424122 A JP H0424122A
Authority
JP
Japan
Prior art keywords
speed difference
rotational speed
wheel side
torque
wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2127457A
Other languages
Japanese (ja)
Other versions
JP2903171B2 (en
Inventor
Kaoru Sawase
薫 澤瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2127457A priority Critical patent/JP2903171B2/en
Publication of JPH0424122A publication Critical patent/JPH0424122A/en
Application granted granted Critical
Publication of JP2903171B2 publication Critical patent/JP2903171B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

PURPOSE:To make it hard to be affected by a disturbance as well as to enable it to perform stable control by calculating an actual speed difference between both front-and rear-wheel sides, and controlling a transfer torque regulating mechanism so as to make transfer torque capacity to the wheels correspond to the calculated speed difference. CONSTITUTION:A controller 48 calculates an equation of DELTAN(=NR-NF from rotational speed NF of a front wheel side output shaft and speed NR of a center differential 12 detected by speed sensors 60, 62, and an engine speed difference calculating part 48b. In addition, at a target engine speed difference calculating part 48a, a desired value (target speed difference) DELTAN0of a speed difference between both front-wheel side and rear-wheel side output shafts of the center differential 12 should be set. In addition, a hydraulic multiple disk clutch 28 as a transfer torque regulating mechanism is controlled by a torque control part 48c so as to make an actual speed difference DELTAN converge on the target engine speed difference DELTAN0 on the basis of each information out of the target engine speed difference calculating part 48a and the engine speed difference calculating part 48b.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、4輪駆動自動車に関し、特に、駆動力配分を
安定して行えるようにした駆動力配分制御式4輪駆動自
動車に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a four-wheel drive vehicle, and more particularly to a four-wheel drive vehicle with driving force distribution control that enables stable distribution of driving force.

[従来の技術] 4軸駆動自動車において、従来より、前輪側と後輪側と
の伝達トルクの配分を運転状態に応じて制御するように
構成したものが提案されている。
[Prior Art] Conventionally, four-axle drive vehicles have been proposed in which the distribution of transmission torque between front wheels and rear wheels is controlled in accordance with driving conditions.

このような4輪駆動自動車の駆動力配分手段としては、
例えば、センターデフにVCU (ビスカス・カップリ
ング・ユニット)等の差動制限装置を付設して、センタ
ーデフの回転数差を適当に規制するようにした装置や、
油圧多板クラッチ等によって制御油圧に応じて動力伝達
状態を調整できるようにした装置などが開発されている
As a driving force distribution means for such a four-wheel drive vehicle,
For example, a device in which a differential limiting device such as a VCU (viscous coupling unit) is attached to the center differential to appropriately regulate the difference in rotation speed of the center differential;
Devices such as hydraulic multi-plate clutches have been developed that can adjust the power transmission state according to the control oil pressure.

[発明が解決しようとする課題] ところで、上述のような4輪駆動自動車において、一般
走行時に、駆動力の配分制御にあたって外乱に対して余
裕を持ち安定して行えるようにしたいという要請がある
[Problems to be Solved by the Invention] By the way, in the above-mentioned four-wheel drive vehicle, there is a need to be able to control the distribution of driving force stably with a margin against external disturbances during general driving.

本発明は、上述の課題に鑑み創案されたもので、この種
の動力伝達装置において、外乱に影響されにくく安定し
た制御を行うことができるようにした、駆動力配分制御
式4軸駆動自動車を提供することを目的とする。
The present invention was devised in view of the above-mentioned problems, and provides a four-axis drive vehicle with driving force distribution control, which is less susceptible to external disturbances and can perform stable control in this type of power transmission device. The purpose is to provide.

[課題を解決するための手段] このため1本発明の第1請求項の駆動力配分制御式4軸
駆動自動車は、エンジンの出力トルクを前輪と後輪とに
伝達して車両を駆動しうる4軸駆動自動車において、該
出力トルクを該前輪と該後輪とに配分する伝達トルク調
整機構をそなえ、該前輪側の回転部分の回転速度を検出
する前輪側回転速度検出手段と、該後輪側の回転部分の
回転速度を検出する後輪側回転速度検出手段と、これら
の各検出手段からの情報に基づいて前輪側と後輪側との
実回転速度差を算出する回転速度差算出手段と、車輪へ
の伝達トルク容量が該回転速度差算出手段で算出された
回転速度差に対応するように該伝達トルク調整機構を制
御するトルク制御手段とをそなえていることを特徴とし
ている。
[Means for Solving the Problems] Therefore, the driving force distribution control type four-axle drive vehicle according to the first aspect of the present invention can drive the vehicle by transmitting the output torque of the engine to the front wheels and the rear wheels. A four-axle drive vehicle, comprising: a transmission torque adjustment mechanism that distributes the output torque between the front wheels and the rear wheels; Rear wheel side rotational speed detection means for detecting the rotational speed of the side rotating portion, and rotational speed difference calculation means for calculating the actual rotational speed difference between the front wheel side and the rear wheel side based on information from each of these detection means. and a torque control means for controlling the transmission torque adjustment mechanism so that the transmission torque capacity to the wheels corresponds to the rotational speed difference calculated by the rotational speed difference calculation means.

また、本発明の第2請求項の駆動力配分制御式4輪駆動
自動車は、エンジンの出力トルクを前輪と後輪とに伝達
して車両を駆動しうる4軸駆動自動車において、該出力
トルクを該前輪と該後輪とに配分する伝達トルク調整機
構をそなえ、前輪の終減速比ρfと前輪の動荷重半径r
fと後輪の終減速比ρ7と後輪の動荷重半径rrとトラ
ンスファー比ρrとの間に、 (ρt/rf)< (ρr・ρt/rr)の関係が成立
するように設定されて、該前輪側の回転部分の回転速度
を検出する前輪側回転速度検出手段と、該後輪側の回転
部分の回転速度を検出する後輪側回転速度検出手段と、
これらの各検出手段からの情報に基づいて前輪側と後輪
側との実回転速度差を算出する回転速度差算出手段と、
上記の終減速比、動荷重半径及びトランスファー比の設
定によってトルク伝達状態に応じて生じつる前輪側と後
輪側との回転速度差の目標値を設定する目標回転速度差
算出手段と、該実回転速度差が該目標回転速度差に収束
するように該伝達トルク調整機構を制御するトルク制御
手段とをそなえていることを特徴としている。
Further, the driving force distribution control type four-wheel drive vehicle according to the second aspect of the present invention is a four-axle drive vehicle that can drive the vehicle by transmitting the output torque of the engine to the front wheels and the rear wheels. A transmission torque adjustment mechanism is provided to distribute the transmission torque between the front wheels and the rear wheels, and the final reduction ratio ρf of the front wheels and the dynamic load radius r of the front wheels are provided.
The relationship between (ρt/rf) < (ρr・ρt/rr) is established between f, the final reduction ratio ρ7 of the rear wheels, the dynamic load radius rr of the rear wheels, and the transfer ratio ρr. Front wheel side rotational speed detection means for detecting the rotational speed of the rotating part on the front wheel side; Rear wheel side rotational speed detection means for detecting the rotational speed of the rotating part on the rear wheel side;
Rotational speed difference calculation means for calculating the actual rotational speed difference between the front wheel side and the rear wheel side based on the information from each of these detection means;
Target rotational speed difference calculation means for setting a target value of the rotational speed difference between the front wheels and the rear wheels that occurs depending on the torque transmission state by setting the final reduction ratio, the dynamic load radius, and the transfer ratio; The present invention is characterized by comprising a torque control means for controlling the transmission torque adjustment mechanism so that the rotational speed difference converges to the target rotational speed difference.

[作 用] 本発明の第1請求項の疑動力配分制御式4輪駆動自動車
では、回転速度差算出手段で、前輪側回転速度検出手段
及び後輪側回転速度検出手段からの情報に基づいて前輪
側と後輪側との実回転速度差を算出し、トルク制御手段
が、車軸への伝達トルク容量が該回転速度差算出手段で
算出された回転速度差に対応するように伝達トルク調整
機構を制御する。
[Function] In the four-wheel drive vehicle with spurious force distribution control according to the first aspect of the present invention, the rotational speed difference calculation means calculates the difference based on the information from the front wheel rotational speed detection means and the rear wheel rotational speed detection means. The torque control means calculates the actual rotation speed difference between the front wheel side and the rear wheel side, and the torque control means adjusts the transmission torque so that the transmission torque capacity to the axle corresponds to the rotation speed difference calculated by the rotation speed difference calculation means. control.

また、本発明の第2請求項の駆動力配分制御式4輪駆動
自動車では、回転速度差算出手段で、前輪側回転速度検
出手段及び後輪側回転速度検出手段からの情報に基づい
て前輪側と後輪側との実回転速度差を算出し、目標回転
速度差算出手段で、前輪側及び後輪側の終減速比と動荷
重半径及びトランスファー比の設定によってトルク伝達
状態に応じて生じうる前輪側と後輪側との回転速度差の
目標値を設定して、トルク制御手段が、実回転速度差が
目標回転速度差に収束するように伝達トルク調整機構を
制御する。
Further, in the driving force distribution control type four-wheel drive vehicle according to the second aspect of the present invention, the rotational speed difference calculation means calculates the rotational speed of the front wheel based on the information from the front wheel rotational speed detection means and the rear wheel rotational speed detection means. The actual rotational speed difference between the front wheel side and the rear wheel side is calculated, and the target rotational speed difference calculation means calculates the difference that may occur depending on the torque transmission state by setting the final reduction ratio, dynamic load radius, and transfer ratio of the front wheel side and rear wheel side. A target value for the rotational speed difference between the front wheels and the rear wheels is set, and the torque control means controls the transmission torque adjustment mechanism so that the actual rotational speed difference converges to the target rotational speed difference.

[実施例] 以下、図面により本発明の一実施例としての駆動力配分
制御式4輪駆動自動車について詳細に説明すると、第1
図はその模式的な全体構成図、第2図はその駆動力配分
制御に関するフローチャート、第3〜6図はいずれも駆
動力配分制御の特性を示すグラフ、第7,8図はそれぞ
れ駆動力配分制御の制御油圧を示す図であり、第9図は
本発明の駆動力配分制御式4輪駆動自動車の変形例を示
す模式的な全体構成図である。
[Example] Hereinafter, a driving force distribution control type four-wheel drive vehicle as an example of the present invention will be described in detail with reference to the drawings.
The figure is a schematic overall configuration diagram, Figure 2 is a flowchart regarding the driving force distribution control, Figures 3 to 6 are graphs showing the characteristics of the driving force distribution control, and Figures 7 and 8 are respectively driving force distribution. FIG. 9 is a diagram showing the control oil pressure for control, and FIG. 9 is a schematic overall configuration diagram showing a modification of the driving force distribution control type four-wheel drive vehicle of the present invention.

第1図において、符号2はエンジンであって、同エンジ
ン2の出力はトルクコンバータ4及び自動変速機6を介
して出力軸8に伝達される。出力軸8の出力は、中間ギ
ア10を介して遊星歯車式差動装置t(センターデフ)
12に伝達されるようになっている。
In FIG. 1, reference numeral 2 denotes an engine, and the output of the engine 2 is transmitted to an output shaft 8 via a torque converter 4 and an automatic transmission 6. The output of the output shaft 8 is transmitted via an intermediate gear 10 to a planetary gear type differential device t (center differential).
12.

この遊星歯車式差動装置12の出力は、一方において減
速歯車機構19.前輪用の差動歯車装置14を介して車
軸17L、17Rから左右の前輪16.18に伝達され
、他方においてベベルギヤ機構15.プロペラシャフト
20及びベベルギヤ機構21.後輪用の差動量車装W2
2を介して車軸25L、25Rから左右の後輪24.2
6に伝達される。遊星歯車式差動装置12は、従来周知
のものと同様にサンギア12a、同サンギア12aの外
方に配置されたプラネタリギア12bと、同プラネタリ
ギア12bの外方に配置されたリングギア12cとをそ
なえ、プラネタリギア12bを支持するキャリア12d
に自動変速機6の出力軸8の出力が入力され、サンギア
12aは前輪月差動歯車装N14に連動され、リングギ
ア12cはプロペラシャフト20に連動されている。
The output of this planetary gear type differential 12 is transmitted on the one hand to a reduction gear mechanism 19. The transmission is transmitted from the axles 17L, 17R to the left and right front wheels 16.18 via the front wheel differential gear mechanism 14, and the bevel gear mechanism 15. Propeller shaft 20 and bevel gear mechanism 21. Differential amount vehicle equipment for rear wheels W2
2 from the axles 25L and 25R to the left and right rear wheels 24.2
6. The planetary gear type differential device 12 includes a sun gear 12a, a planetary gear 12b disposed outside the sun gear 12a, and a ring gear 12c disposed outside the planetary gear 12b, as in the conventionally known one. In addition, a carrier 12d supports the planetary gear 12b.
The output of the output shaft 8 of the automatic transmission 6 is input to the sun gear 12a, and the ring gear 12c is linked to the front differential gear N14, and the ring gear 12c is linked to the propeller shaft 20.

さらに、リングギア12cとキャリア12dとの間には
自身の油圧室に作用される圧力によって摩擦力が変わる
油圧多板クラッチ28が介装されている。
Furthermore, a hydraulic multi-plate clutch 28 whose frictional force changes depending on the pressure applied to its own hydraulic chamber is interposed between the ring gear 12c and the carrier 12d.

したがって、遊星歯車式差動装置12は、油圧多板クラ
ッチ28を完全フリーの状態からロックさせた状態まで
適宜制御することにより、前輪側及び後輪側へ伝達され
るトルクを制御することができる。
Therefore, the planetary gear type differential device 12 can control the torque transmitted to the front wheels and the rear wheels by appropriately controlling the hydraulic multi-disc clutch 28 from a completely free state to a locked state. .

また、符号30はステアリングホイール32の中立位置
からの回転角度、即ち操舵角O8を検出する操舵センサ
、34は車体に作用する横方向の加速度GVを検出する
横加速度センサ、36は車体に作用する前後方向の加速
度GXを検出する前後加速度センサ、38はエンジン2
のスロットル開度θTを検出するスロットルセンサ、3
9はエンジン2のエンジンキースイッチ、40.42.
44.46はそれぞれ右前輪16、右前輪18、左後輪
26、右後輪28の回転速度を検出する車輪速センサで
あり、これらスイッチ及び各センサの出力はコントロー
ラ48に入力されている。
Further, numeral 30 is a steering sensor that detects the rotation angle of the steering wheel 32 from the neutral position, that is, the steering angle O8, 34 is a lateral acceleration sensor that detects lateral acceleration GV acting on the vehicle body, and 36 is a sensor that detects the lateral acceleration GV acting on the vehicle body. A longitudinal acceleration sensor that detects acceleration GX in the longitudinal direction; 38 is the engine 2;
a throttle sensor for detecting the throttle opening θT of 3;
9 is the engine key switch of engine 2, 40.42.
44 and 46 are wheel speed sensors that detect the rotation speeds of the right front wheel 16, the right front wheel 18, the left rear wheel 26, and the right rear wheel 28, respectively, and the outputs of these switches and each sensor are input to the controller 48.

符号50はアンチロックブレーキ装置であり、このアン
チロックブレーキ装置50がアンチロックブレーキの作
動信号を出力したときにその状態を示す信号がコントロ
ーラ48に入力されるように構成されている。52はコ
ントローラ48の制御信号に基づき点灯する警告灯であ
る。
Reference numeral 50 denotes an anti-lock brake device, and the anti-lock brake device 50 is configured such that when the anti-lock brake device 50 outputs an anti-lock brake activation signal, a signal indicating the state thereof is input to the controller 48. 52 is a warning light that lights up based on a control signal from the controller 48.

符号54は油圧源、56は同油圧源54と油圧多板クラ
ッチ28の油圧室との間に介装された圧力制御弁であり
、同圧力制御弁56はコントローラ48からの制御信号
により制御される。
Reference numeral 54 indicates a hydraulic pressure source, and 56 indicates a pressure control valve interposed between the hydraulic pressure source 54 and the hydraulic chamber of the hydraulic multi-disc clutch 28, and the pressure control valve 56 is controlled by a control signal from the controller 48. Ru.

また、符合60はセンターデフ12の前輪側出力軸の回
転数(回転速度)NFを検出する前輪側回転数センサ(
前輪側回転速度検出手段)、62はセンターデフ12の
後輪側出力軸の回転数(回転速度)NRを検出する後輪
側回転数センサ(後軸側回転速度検出手段)である。
Further, reference numeral 60 is a front wheel rotation speed sensor (rotation speed) that detects the rotation speed (rotation speed) NF of the front wheel output shaft of the center differential 12.
62 is a rear wheel rotation speed sensor (rear shaft rotation speed detection means) that detects the rotation speed (rotation speed) NR of the rear wheel output shaft of the center differential 12.

ところで、前輪の終減速比ρ8.前輪の動荷重半径rf
+後輪の終減速比ρr.後輪の動荷重半径rr及びトラ
ンスファー比ρ、の間には、一般には、Cpt/rf)
=(ρr・ρt/rr)の関係が成立するように設定さ
れているが、この自動車の駆動系では、すべての走行状
態で、(ρi/rf)< (ρr・ρ、/rr)・・・
 (1)の関係が成立するように設定されている。
By the way, the final reduction ratio of the front wheels is ρ8. Front wheel dynamic load radius rf
+Rear wheel final reduction ratio ρr. The dynamic load radius rr of the rear wheels and the transfer ratio ρ are generally Cpt/rf)
= (ρr・ρt/rr), but in the drive system of this car, under all driving conditions, (ρi/rf)< (ρr・ρ,/rr)...・
The settings are made so that the relationship (1) holds true.

なお、前輪の終減速比ρfは例えば減速歯車機構19に
関し、後輪の終減速比ρrは例えばベベルギヤ機構21
に関し、トランスファー比ρrは例えばベベルギヤ機構
15に関する値である。
Note that the final reduction ratio ρf of the front wheels relates to, for example, the reduction gear mechanism 19, and the final reduction ratio ρr of the rear wheels relates to, for example, the bevel gear mechanism 21.
Regarding this, the transfer ratio ρr is a value related to the bevel gear mechanism 15, for example.

また、一般には、前輪の動荷重半径rfと後輪の動荷重
半径rrとが等しいため1式(1)は、ρfくρr゛ρ
t      −−−−−−(1)となる。
In general, since the dynamic load radius rf of the front wheels is equal to the dynamic load radius rr of the rear wheels, Equation 1 (1) is expressed as ρf×ρr゛ρ
t --------(1).

このような設定により、前輪及び後輪がともにスリップ
していなければ、油圧多板クラッチ28のクラッチディ
スクについては、後輪側の回転速度の方が前輪側の回転
速度よりも速くなる。このため、油圧多板クラッチ28
の油圧室内の圧力を上げてクラッチを接続状態にすると
、通常は、前輪側のクラッチディスクと後輪側のクラッ
チディスクとの間で、この回転差に基づいて、後輪側か
ら前輪側へとトルク伝達が行なわれる。この場合の伝達
トルク容量は、両クラッチディスク間の回転差の減少分
に応じた大きさ、つまり、本来化じる回転差の大きさと
両クラッチディスクの接触圧とに応じた大きさとなる。
With this setting, if both the front wheels and the rear wheels are not slipping, the rotational speed of the rear wheels of the clutch disk of the hydraulic multi-disc clutch 28 will be faster than the rotational speed of the front wheels. For this reason, the hydraulic multi-plate clutch 28
When the pressure in the hydraulic chamber is increased to connect the clutch, the rotation will normally shift from the rear wheel to the front wheel based on this difference in rotation between the front wheel side clutch disk and the rear wheel side clutch disk. Torque transmission takes place. In this case, the transmitted torque capacity has a size corresponding to the decrease in the rotational difference between both clutch disks, that is, a size corresponding to the size of the actual rotational difference and the contact pressure between both clutch disks.

なお、第3図はクラッチ28が後輪から前輪へとトルク
伝達する場合の前後駆動力配分比と制御油圧との関係を
示す特性図であり、第4図は同じくクラッチ28が後輪
から前輪へとトルク伝達する場合のエンジントルクとク
ラッチ伝達トルクとの関係を示す特性図である。また、
第5図はクラッチ28が前輪から後輪へとトルク伝達す
る場合の前後駆動力配分比と制御油圧との関係を第3図
と同様に示す特性図であり、第6図は同じくクラッチ2
8が前輪から後輪へとトルク伝達する場合のエンジント
ルクとクラッチ伝達トルクとの関係を第4図と同様に示
す特性図である。
In addition, FIG. 3 is a characteristic diagram showing the relationship between the front-rear driving force distribution ratio and the control oil pressure when the clutch 28 transmits torque from the rear wheels to the front wheels, and FIG. FIG. 2 is a characteristic diagram showing the relationship between engine torque and clutch transmission torque when torque is transmitted to the clutch. Also,
FIG. 5 is a characteristic diagram showing the relationship between the front-rear driving force distribution ratio and the control oil pressure when the clutch 28 transmits torque from the front wheels to the rear wheels, similar to FIG. 3, and FIG.
8 is a characteristic diagram similar to FIG. 4 showing the relationship between engine torque and clutch transmission torque when torque is transmitted from the front wheels to the rear wheels.

後輪から前輪へとトルク伝達する場合には、第3図に示
すように、前後駆動力配分比は、油圧多板クラッチ28
の制御油圧がゼロで完全フリーの状態のときは、32 
: 68程度であり(前輪系と後輪系との負荷バランス
等によって異なるが一般的にはこの程度の値となる)、
制御油圧が上昇するにしたがって前輪側への駆動力配分
の割合が大きくなることがわかる。特に、エンジントル
クTEが小さい場合には、制御油圧を僅かに上昇させる
だけで前輪側への駆動力配分の割合が大幅に増加し、エ
ンジントルクTEが大きくなるに従って、前輪側への駆
動力配分を増加させるのに大きな制御油圧が必要となり
、また、前輪側への駆動力配分の割合の大幅な増加も難
しいが、制御油圧の変更に対して駆動力配分が僅かづつ
調整されるので。
When transmitting torque from the rear wheels to the front wheels, as shown in FIG.
When the control oil pressure is zero and it is completely free, 32
: Approximately 68 (this value varies depending on the load balance between the front and rear wheels, etc., but is generally around this value)
It can be seen that as the control oil pressure increases, the proportion of driving force distributed to the front wheels increases. In particular, when the engine torque TE is small, a slight increase in the control oil pressure will significantly increase the proportion of driving force distributed to the front wheels.As the engine torque TE increases, the proportion of driving force distributed to the front wheels increases. A large amount of control oil pressure is required to increase this, and it is also difficult to significantly increase the proportion of drive force distributed to the front wheels, but the drive force distribution is adjusted little by little in response to changes in control oil pressure.

目標とする駆動力配分に確実に調整しやすい。It is easy to reliably adjust to the target driving force distribution.

また、第4,6図に示すように、一定の駆動力配分を得
るたためにはエンジントルクに比例したクラッチ伝達ト
ルクが必要となることがわかる。
Furthermore, as shown in FIGS. 4 and 6, it can be seen that in order to obtain a constant driving force distribution, a clutch transmission torque proportional to the engine torque is required.

これに対して、前輪から後輪へとトルク伝達する場合に
は、第5図に示すように、駆動力配分の可変範囲が狭く
、しかもフロント寄りの配分が不可能となるので好まし
くない。
On the other hand, when torque is transmitted from the front wheels to the rear wheels, as shown in FIG. 5, the variable range of driving force distribution is narrow, and moreover, it is not possible to distribute the torque closer to the front, which is not preferable.

そこで、後輪から前輪へとトルク伝達できるように、不
等式(1)が成り立つよう設定されているのである。
Therefore, the setting is made so that inequality (1) holds true so that torque can be transmitted from the rear wheels to the front wheels.

このような設定により、前輪側への配分トルクを後輪側
よりも格段に大きくすることができて、前輪側へのトル
クが最大となるトルク配分比は、上述の(ρf/rf)
の値及び(ρr”ρt/rr)の値の設定等により、前
輪へのトルク配分を大幅に増大することができ、例えば
、前後輪へのトルク配分比、つまり、前輪:後軸を10
0:Oにすることやこれ以上(例えば120ニー20)
に設定することもできる。したがって、例えば、トルク
配分比(前輪:後軸)を、33:67から100:0ま
での極めて広い範囲に調整できる。
With this setting, the torque distribution to the front wheels can be made much larger than that to the rear wheels, and the torque distribution ratio at which the torque to the front wheels is maximized is the above-mentioned (ρf/rf).
By setting the value of and the value of (ρr"ρt/rr), the torque distribution to the front wheels can be significantly increased.
0:O or more (e.g. 120 knees 20)
It can also be set to . Therefore, for example, the torque distribution ratio (front wheels:rear axle) can be adjusted over a very wide range from 33:67 to 100:0.

なお、コントローラ48は、図示しないが後述する制御
に必要なCPU、ROM、RAM、インタフェイス等を
そなえており、目標回転速度差算出部(目標回転速度差
算出手段)48aと、回転速度差算出部(回転速度差算
出手段)48bと、伝達トルク調整機構としての油圧多
板クラッチ28を制御するトルク制御部(トルク制御手
段)48cとをそなえている。
Although not shown, the controller 48 includes a CPU, ROM, RAM, interface, etc. necessary for control described later, and includes a target rotational speed difference calculation section (target rotational speed difference calculation means) 48a, and a rotational speed difference calculation section (target rotational speed difference calculation means) 48a. 48b (rotational speed difference calculation means), and a torque control section (torque control means) 48c that controls the hydraulic multi-disc clutch 28 as a transmission torque adjustment mechanism.

回転速度差算出部48bでは、回転数センサ60.62
で検出されたセンターデフ12の前輪側出力軸の回転数
N、と後輪側出力軸の回転数NRとからΔN (=NR
NF)を算出する。
In the rotational speed difference calculation unit 48b, the rotational speed sensor 60.62
ΔN (=NR
NF) is calculated.

また、目標回転速度差算出部48aでは、センターデフ
12の前輪側出力軸と後輪側出力軸との回転数差(回転
速度差)の目標値(目標回転速度差)ΔN0を設定する
が、この目標回転速度差ΔN、は、ハンドル角(操舵角
)θH2車体速度V。
Further, the target rotational speed difference calculation unit 48a sets a target value (target rotational speed difference) ΔN0 of the rotational speed difference (rotational speed difference) between the front wheel side output shaft and the rear wheel side output shaft of the center differential 12. This target rotation speed difference ΔN is the steering wheel angle (steering angle) θH2 and the vehicle body speed V.

車体加速度V′といった車両の走行状態によって決定す
ることができる。
It can be determined based on the running condition of the vehicle, such as the vehicle body acceleration V'.

つまり、目標回転速度差ΔN、は、これらの各値θ、、
V、V’の関数 ΔNo=f(θH2v、v′)    ・・・ (2)
として示すことができる。
In other words, the target rotational speed difference ΔN, is determined by each of these values θ, .
Function ΔNo=f(θH2v, v') of V and V'... (2)
It can be shown as

このように、目標回転速度差ΔN0を設定する設定する
のは以下の理由による。
The reason for setting the target rotational speed difference ΔN0 in this way is as follows.

この自動車の駆動系は、前述のように、車輪にスリップ
が生じない場合には、センターデフ12の前輪側出力軸
と後輪側出力軸との間に回転速度差が生じるようになっ
ており、クラッチ28が接続すると、このクラッチ28
を通じて後輪側から前輪側へとトルクが伝達され、前後
輪へのトルク配分が調整されるが、このときのクラッチ
28を通じた伝達トルクの容量に応じて上述の回転速度
差も変化する。したがって、前輪と後輪とへのトルク配
分を走行状態に最適のものに設定するには、センターデ
フ12の前輪側出力軸と後輪側出力軸との間の回転速度
差に着目して、この回転速度差が、最適の睨動力配分状
態に対応した値をとるように制御することが考えられる
As mentioned above, in the drive system of this automobile, when no slip occurs in the wheels, a rotational speed difference occurs between the front wheel output shaft and the rear wheel output shaft of the center differential 12. , when the clutch 28 is connected, this clutch 28
Torque is transmitted from the rear wheel side to the front wheel side through the clutch 28, and the torque distribution between the front and rear wheels is adjusted, but the above-mentioned rotational speed difference also changes depending on the capacity of the torque transmitted through the clutch 28 at this time. Therefore, in order to set the torque distribution between the front wheels and the rear wheels to be optimal for the driving conditions, focus on the rotational speed difference between the front wheel side output shaft and the rear wheel side output shaft of the center differential 12. It is conceivable to control this rotational speed difference so that it takes a value corresponding to the optimal glare force distribution state.

そして、駆動力の配分状態は、ハンドル角θH2車体速
度V、車体加速度V′といった車両の走行状態によって
決定できるので、上述のように、回転速度差ΔN、を、
これらの各値θH+V+V′の関数[式(2)参照コと
して示すことができる。
The distribution state of the driving force can be determined by the running state of the vehicle such as the steering wheel angle θH2, the vehicle body speed V, and the vehicle body acceleration V', so as mentioned above, the rotational speed difference ΔN,
Each of these values θH+V+V' can be expressed as a function [see equation (2)].

また、別の観点からいうと、クラッチ28を通じてトル
クが伝達されるときには、前輪や後輪にスリップが生じ
るようになるが、この車輪のスリップが最適の状態の時
、つまり、各車輪が最適スリップ率の時に発生するセン
ターデフ上の理論ΔNが車両の走行状態によって決まる
。このような理論ΔNを回転速度差ΔNoとして設定し
ているということもできる。
Also, from another point of view, when torque is transmitted through the clutch 28, slip occurs in the front wheels and rear wheels, but when the slip of these wheels is in an optimal state, that is, each wheel has an optimal slip. The theoretical ΔN on the center differential that occurs when the engine speed is at a certain speed is determined by the vehicle's driving condition. It can also be said that such a theoretical ΔN is set as the rotational speed difference ΔNo.

トルク制御部48cは、目標回転速度差算出部48a及
び回転速度差算出部48bからの上方に基づいて、実回
転速度差ΔNが目標回転速度差ΔN0に収束するように
伝達トルク調整機構としての油圧多板クラッチ28を制
御する。
The torque control unit 48c controls the hydraulic pressure as a transmission torque adjustment mechanism so that the actual rotational speed difference ΔN converges to the target rotational speed difference ΔN0 based on the upward information from the target rotational speed difference calculation unit 48a and the rotational speed difference calculation unit 48b. Controls the multi-disc clutch 28.

具体的には、第7図に示すように、油圧多板クラッチ2
8の制御油圧Pを実回転速度差ΔNに応じて設定する。
Specifically, as shown in FIG.
The control oil pressure P of No. 8 is set according to the actual rotational speed difference ΔN.

つまり、実回転速度差ΔNが目標回転速度差ΔN、 (
>O)よりも大きくなると、制御油圧Pを実回転速度差
ΔNと目標回転速度差ΔN0との差D (=ΔN−ΔN
。)に比例するように、(p=αD)と設定し、実回転
速度差ΔNが目標回転速度差ΔN0よりも小さく且つ0
以上であれば(K1で示す範囲)、制御油圧PはOに設
定し、実回転速度差ΔNがO以下であれば、制御油圧P
をΔNの大きさに応じて(p=−βΔN)と設定する。
In other words, the actual rotational speed difference ΔN becomes the target rotational speed difference ΔN, (
>O), the control oil pressure P is changed to the difference D between the actual rotational speed difference ΔN and the target rotational speed difference ΔN0 (=ΔN−ΔN
. ), set (p=αD) so that the actual rotational speed difference ΔN is smaller than the target rotational speed difference ΔN0 and 0.
If it is above (range indicated by K1), the control oil pressure P is set to O, and if the actual rotational speed difference ΔN is less than or equal to O, the control oil pressure P
is set as (p=-βΔN) according to the magnitude of ΔN.

また、目標回転速度差ΔNoが負(ΔN0<O)の場合
には、第8図に示すような制御油圧Pの設定が考えられ
るが、この場合には、後輪スリップに対する反応が悪化
し、操縦安定上好ましくない。
Furthermore, when the target rotational speed difference ΔNo is negative (ΔN0<O), it is possible to set the control oil pressure P as shown in FIG. 8, but in this case, the reaction to rear wheel slip will deteriorate, Unfavorable in terms of steering stability.

なお、K−xtKzで示す範囲で油圧を0として差動制
限を行わないのは、この場合差動制限を行うと、スリッ
プ輪へさらにトルク配分されるようになって好ましくな
いためである。
Note that the reason why the oil pressure is set to 0 and differential restriction is not performed in the range shown by K-xtKz is that if differential restriction is performed in this case, torque will be further distributed to the slipping wheels, which is undesirable.

したがって、一般に、目標回転速度差ΔNoを正に、つ
まり、センターデフ12の前輪側出力軸の回転数NFよ
りも後輪側出力軸の回転数NRの方が大きい状態に設定
し、第7図に示すように、油圧Pを制御する。
Therefore, in general, the target rotational speed difference ΔNo is set to be positive, that is, the rotational speed NR of the rear wheel output shaft of the center differential 12 is set larger than the rotational speed NF of the front wheel output shaft, as shown in FIG. The oil pressure P is controlled as shown in FIG.

トルク制御部48cでは、このように油圧Pを調整しな
がら、実回転速度差ΔNが目標回転速度差ΔN、に収束
するように油圧多板クラッチ28の接続状態を制御する
While adjusting the oil pressure P in this manner, the torque control unit 48c controls the connection state of the hydraulic multi-disc clutch 28 so that the actual rotational speed difference ΔN converges to the target rotational speed difference ΔN.

次に、このような制御内容を第2図に示すフローチャー
トに従って説明する。
Next, the content of such control will be explained according to the flowchart shown in FIG.

各制御要素等が初期設定され(ステップSl)、エンジ
ンがオフにされていなければ、ステップS2からステッ
プS3へ進んで、ハンドル角θH2車体速度V、車体加
速度v′、軸回転数NFe NR等の信号(検出データ
)を読み取る。
Each control element, etc. is initialized (step Sl), and if the engine is not turned off, the process proceeds from step S2 to step S3, where the steering wheel angle θH2, vehicle speed V, vehicle acceleration v', shaft rotation speed NFe, NR, etc. Read the signal (detected data).

そして、回転速度差算出部48bで、軸回転数NFy 
NRから実差動回転数(実回転速度差)ΔNを算出しく
ステップS4)、目標回転速度差算出部48aで、ハン
ドル角θH9車体速度V、車体加速度V′から目標差動
回転数(目標回転速度差)ΔN、を計算する(ステップ
S5)。
Then, the rotational speed difference calculation unit 48b calculates the shaft rotational speed NFy.
The actual differential rotation speed (actual rotation speed difference) ΔN is calculated from NR (step S4), and the target rotation speed difference calculation unit 48a calculates the target differential rotation speed (target rotation (speed difference) ΔN is calculated (step S5).

さらに、ステップS6で、実回転速度差ΔNが0以下か
どうかが判断されて、ΔNが0以下でなければ、ステッ
プS7で、実回転速度差ΔNが目標回転速度差ΔN0以
上であるかどうか(つまり、ΔN−ΔN、>Oかどうか
)が判断され、これらのステップS6.S7の判断で、
ΔN<OならばステップS9に進み、油圧多板クラッチ
28の制御油圧PをP=−βΔNと設定し、0くΔNく
ΔN、ならばステップS8に進み、油圧多板クラッチ2
8の制御油圧PをP=0と設定し、ΔN、<ΔNならば
ステップS10に進み、油圧多板クラッチ28の制御油
圧PをP=α(ΔN−ΔN、)と設定する。
Further, in step S6, it is determined whether the actual rotational speed difference ΔN is 0 or less, and if ΔN is not 0 or less, in step S7, it is determined whether the actual rotational speed difference ΔN is greater than or equal to the target rotational speed difference ΔN0 ( In other words, whether ΔN−ΔN,>O or not) is determined, and these steps S6. At S7's discretion,
If ΔN<O, the process advances to step S9, and the control oil pressure P of the hydraulic multi-disc clutch 28 is set to P=-βΔN.
The control oil pressure P of the hydraulic multi-disc clutch 28 is set to P=0, and if ΔN<ΔN, the process proceeds to step S10, and the control oil pressure P of the hydraulic multi-disc clutch 28 is set to P=α(ΔN−ΔN,).

そして、これらの設定油圧になるように、圧力制御弁5
6等を通じて、油圧を制御する。
Then, the pressure control valve 5 is adjusted so that these set oil pressures are achieved.
Hydraulic pressure is controlled through 6 etc.

この結果、実回転速度差ΔNが目標回転速度差ΔN、に
収束するようにフィードバック制御されて、前後軸への
トルク配分が常に適切に調整されて各車輪が常に最適ス
リップ率の状態を保持しながら走行するようになる。こ
れにより、駆動力配分制御が不安定方向に行われること
がなくなって、駆動力配分制御が安定して行えるように
なる。
As a result, feedback control is performed so that the actual rotational speed difference ΔN converges to the target rotational speed difference ΔN, and the torque distribution between the front and rear axles is always appropriately adjusted so that each wheel always maintains the optimal slip ratio state. I started running while doing so. As a result, the driving force distribution control is not performed in an unstable direction, and the driving force distribution control can be performed stably.

なお、上述の実施例では、センターデフ12に差動制限
用の油圧多板クラッチ28を組み合わせた場合を説明し
たが、本発明の構成は、第9図に示すようなトランスフ
ァークラッチについても適用できる。
In addition, in the above-mentioned embodiment, the case where the hydraulic multi-disc clutch 28 for differential limiting was combined with the center differential 12 was explained, but the structure of the present invention can also be applied to a transfer clutch as shown in FIG. .

なお、第9図において、符合11は前輪を駆動するため
の前輪用クラッチ、13は後輪を駆動するための後輪用
クラッチであって、これらのクラッチを上述の差動制限
用油圧多板クラッチ28とほぼ同様に制御するのである
。なお、他の部分は実施例(第1図参照)とほぼ同様に
構成されるので説明を省略する。
In FIG. 9, reference numeral 11 is a front wheel clutch for driving the front wheels, and 13 is a rear wheel clutch for driving the rear wheels. It is controlled in substantially the same way as the clutch 28. Note that the other parts are configured almost the same as in the embodiment (see FIG. 1), so explanations will be omitted.

つまり、この場合には、トランスファ一部分における前
輪側出力軸の回転速度と後輪側出力軸の回転速度との差
の目標値を設定し、実回転速度差が目標回転速度差に収
束するように、両クラッチ11.13の制御油圧を設定
して、両クラッチ11.13の結合状態を制御するので
ある。
In other words, in this case, a target value for the difference between the rotational speed of the front wheel output shaft and the rotational speed of the rear wheel output shaft in one part of the transfer is set so that the actual rotational speed difference converges to the target rotational speed difference. , the control oil pressure of both clutches 11.13 is set to control the engagement state of both clutches 11.13.

また、上述の各側では、センターデフ又はトランスファ
一部における回転差に基づいて制御しているが、これら
の部分の回転に対応して、車軸も回転するので、車輪の
回転速度に基づいて油圧を制御してもよい。つまり、車
輪速センサ40〜46の検出値から前後輪の実回転速度
差を算出し、一方、前後輪間の回転速度差の目標値を設
定して、実回転速度差がこの目標回転速度差に収束する
ように、制御油圧を設定するのである。
In addition, on each side mentioned above, control is based on the rotation difference in the center differential or transfer part, but since the axle also rotates in response to the rotation of these parts, the hydraulic pressure is controlled based on the rotation speed of the wheels. may be controlled. That is, the actual rotational speed difference between the front and rear wheels is calculated from the detected values of the wheel speed sensors 40 to 46, and a target value for the rotational speed difference between the front and rear wheels is set, and the actual rotational speed difference is calculated from the target rotational speed difference. The control oil pressure is set so that it converges to .

これによっても、上述と同様の作用及び効果が得られる
This also provides the same effects and effects as described above.

[発明の効果] 本発明の第1請求項及び第211求項の駆動力配分制御
式4輪駆動自動車によれば、駆動力配分制御が不安定方
向に行われることがなくなって、駆動力配分制御が安定
して行えるようになり、4輪駆動自動車としての性能を
大幅に向上させることができるようになる利点がある。
[Effects of the Invention] According to the four-wheel drive vehicle with driving force distribution control according to the first and second claims of the present invention, the driving force distribution control is not performed in an unstable direction, and the driving force distribution is improved. This has the advantage that control can be performed stably and the performance of a four-wheel drive vehicle can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜9図は本発明の一実施例としての駆動力配分制御
式4輪駆動自動車について示すもので、第1図はその模
式的な全体構成図、第2図はその駆動力配分制御に関す
るフローチャート、第3〜6図はいずれも駆動力配分制
御の特性を示すグラフ、第7,8図はそれぞれ駆動力配
分制御の制御油圧を示す図であり、第9図は本発明の駆
動力配分制御式4輪駆動自動車の変形例を示す模式的な
全体構成図である。 2−エンジン、4−トルクコンバータ、6−自動変速機
、8−出力軸、10− 中間ギア、12−・−遊星歯車
式差動装W(センターデフ)、14−前軸用の差動歯車
装置、15−ベベルギヤ機構、16.18−前輪、17
L、17R−車軸、19−減速歯車機構、20−プロペ
ラシャフト、21−ベベルギヤ機構、22−後輪用の差
動歯車装置。 24.26−後輪、25L、25R−車軸、28−差動
制限機構としての油圧多板クラッチ、3〇−操舵センサ
、34−横加速度センサ、36−前後加速度センサ、3
8−スロットルセンサ、39−エンジンキースイッチ、
4o、42.44.46−車輪速センサ、48−コント
ローラ、5〇−アンチロックブレーキ装置、52−警告
灯、54・−油圧源、56−圧力制御弁、6〇−前輪側
回転数センサ(前輪側回転速度検出手段)、62−後軸
側回転数センサ(後輪側回転速度検出手段)。
Figures 1 to 9 show a four-wheel drive vehicle with driving force distribution control as an embodiment of the present invention. Figure 1 is a schematic overall configuration diagram thereof, and Figure 2 is related to its driving force distribution control. The flowchart, Figures 3 to 6 are graphs showing the characteristics of the driving force distribution control, Figures 7 and 8 are diagrams showing the control oil pressure of the driving force distribution control, respectively, and Figure 9 is a graph showing the driving force distribution of the present invention. FIG. 3 is a schematic overall configuration diagram showing a modified example of a controlled four-wheel drive vehicle. 2-engine, 4-torque converter, 6-automatic transmission, 8-output shaft, 10-intermediate gear, 12--planetary gear differential W (center differential), 14-differential gear for front shaft Device, 15-Bevel gear mechanism, 16.18-Front wheel, 17
L, 17R - axle, 19 - reduction gear mechanism, 20 - propeller shaft, 21 - bevel gear mechanism, 22 - differential gear mechanism for rear wheels. 24.26-Rear wheel, 25L, 25R-Axle, 28-Hydraulic multi-plate clutch as differential limiting mechanism, 30-Steering sensor, 34-Lateral acceleration sensor, 36-Longitudinal acceleration sensor, 3
8-throttle sensor, 39-engine key switch,
4o, 42.44.46-Wheel speed sensor, 48-Controller, 50-Anti-lock brake device, 52-Warning light, 54--Hydraulic pressure source, 56-Pressure control valve, 60-Front wheel rotation speed sensor ( front wheel side rotation speed detection means), 62-rear shaft side rotation speed sensor (rear wheel side rotation speed detection means).

Claims (2)

【特許請求の範囲】[Claims] (1)エンジンの出力トルクを前輪と後輪とに伝達して
車両を駆動しうる4輪駆動自動車において、該出力トル
クを該前輪と該後輪とに配分する伝達トルク調整機構を
そなえ、該前輪側の回転部分の回転速度を検出する前輪
側回転速度検出手段と、該後輪側の回転部分の回転速度
を検出する後輪側回転速度検出手段と、これらの各検出
手段からの情報に基づいて前輪側と後輪側との実回転速
度差を算出する回転速度差算出手段と、車輪への伝達ト
ルク容量が該回転速度差算出手段で算出された回転速度
差に対応するように該伝達トルク調整機構を制御するト
ルク制御手段とをそなえていることを特徴とする、駆動
力配分制御式4輪駆動自動車。
(1) A four-wheel drive vehicle that can drive the vehicle by transmitting the output torque of the engine to the front wheels and the rear wheels, which is equipped with a transmission torque adjustment mechanism that distributes the output torque between the front wheels and the rear wheels; Front wheel side rotational speed detection means for detecting the rotational speed of the rotating part on the front wheel side, rear wheel side rotational speed detection means for detecting the rotational speed of the rotating part on the rear wheel side, and information from each of these detection means. a rotational speed difference calculation means for calculating an actual rotational speed difference between the front wheel side and the rear wheel side based on the rotational speed difference calculation means; A four-wheel drive vehicle with driving force distribution control, characterized by comprising a torque control means for controlling a transmission torque adjustment mechanism.
(2)エンジンの出力トルクを前輪と後輪とに伝達して
車両を駆動しうる4軸駆動自動車において、該出力トル
クを該前輪と該後輪とに配分する伝達トルク調整機構を
そなえ、前輪の終減速比ρ_fと前輪の動荷重半径r_
fと後輪の終減速比ρ_rと後輪の動荷重半径r_rと
トランスファー比ρ_tとの間に、(ρ_f/r_f)
<(ρ_r・ρ_t/r_r)の関係が成立するように
設定されて、該前輪側の回転部分の回転速度を検出する
前輪側回転速度検出手段と、該後輪側の回転部分の回転
速度を検出する後輪側回転速度検出手段と、これらの各
検出手段からの情報に基づいて前輪側と後輪側との実回
転速度差を算出する回転速度差算出手段と、上記の終減
速比、動荷重半径及びトランスファー比の設定によって
トルク伝達状態に応じて生じうる前輪側と後輪側との回
転速度差の目標値を設定する目標回転速度差算出手段と
、該実回転速度差が該目標回転速度差に収束するように
該伝達トルク調整機構を制御するトルク制御手段とをそ
なえていることを特徴とする、駆動力配分制御式4輪駆
動自動車。
(2) In a four-axle drive vehicle that can drive the vehicle by transmitting the output torque of the engine to the front wheels and the rear wheels, the front wheels are equipped with a transmission torque adjustment mechanism that distributes the output torque between the front wheels and the rear wheels. final reduction ratio ρ_f and front wheel dynamic load radius r_
Between f, the final reduction ratio ρ_r of the rear wheels, the dynamic load radius r_r of the rear wheels, and the transfer ratio ρ_t, (ρ_f/r_f)
<(ρ_r・ρ_t/r_r), and a front wheel side rotation speed detecting means for detecting the rotation speed of the rotating portion on the front wheel side, and a rotation speed detecting means for detecting the rotation speed of the rotating portion on the rear wheel side. a rear wheel side rotational speed detection means for detecting, a rotational speed difference calculation means for calculating an actual rotational speed difference between the front wheel side and the rear wheel side based on information from each of these detection means, the final reduction ratio, A target rotation speed difference calculating means for setting a target value of a rotation speed difference between a front wheel side and a rear wheel side that may occur depending on a torque transmission state by setting a dynamic load radius and a transfer ratio; A four-wheel drive vehicle with driving force distribution control, comprising: torque control means for controlling the transmission torque adjustment mechanism so as to converge to a rotational speed difference.
JP2127457A 1990-05-17 1990-05-17 4-wheel drive vehicle with driving force distribution control Expired - Lifetime JP2903171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2127457A JP2903171B2 (en) 1990-05-17 1990-05-17 4-wheel drive vehicle with driving force distribution control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2127457A JP2903171B2 (en) 1990-05-17 1990-05-17 4-wheel drive vehicle with driving force distribution control

Publications (2)

Publication Number Publication Date
JPH0424122A true JPH0424122A (en) 1992-01-28
JP2903171B2 JP2903171B2 (en) 1999-06-07

Family

ID=14960404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2127457A Expired - Lifetime JP2903171B2 (en) 1990-05-17 1990-05-17 4-wheel drive vehicle with driving force distribution control

Country Status (1)

Country Link
JP (1) JP2903171B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638026A (en) * 1986-06-30 1988-01-13 Toyota Motor Corp Controlling method for four-wheel drive device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638026A (en) * 1986-06-30 1988-01-13 Toyota Motor Corp Controlling method for four-wheel drive device

Also Published As

Publication number Publication date
JP2903171B2 (en) 1999-06-07

Similar Documents

Publication Publication Date Title
US5301769A (en) Vehicle power distribution and control system
US8019518B2 (en) Vehicle behavior control device
US5004064A (en) Traction control system for a four-wheel drive motor vehicle
JP2860339B2 (en) Left and right wheel torque distribution control device
JPH01114523A (en) Drive power controller for four-wheel-drive vehicle
US4936406A (en) Power transmitting system for a four-wheel drive vehicle
JP2528484B2 (en) Drive force distribution controller for four-wheel drive vehicle
JP2934457B2 (en) Unequal torque distribution control device for four-wheel drive vehicle
JPH02290737A (en) Driving power distribution control device of four-wheel drive vehicle
JPH0616061A (en) Four wheel drive control device
US5097921A (en) Torque distribution control system for a four-wheel drive motor vehicle
JPH03189241A (en) Four-wheel drive device
JP2612718B2 (en) Torque split control device for four-wheel drive vehicle
JPH0626938B2 (en) Vehicle drive force distribution control device
JPH0424122A (en) Driving force distribution controlling type four-wheel drive automobile
JP2615084B2 (en) Torque split control device for four-wheel drive vehicle
JPS6259125A (en) Transmission torque controller for four-wheel drive car
JPH0419231A (en) Driving force distribution switching type four-wheel drive automobile
JP2615083B2 (en) Torque split control device for four-wheel drive vehicle
JP3472988B2 (en) Vehicle differential limiter
JP2549875B2 (en) Torque split controller for four-wheel drive vehicle
JPH0735130B2 (en) Four-wheel drive vehicle
JPH01114525A (en) Torque split controller for four-wheel-drive vehicle
JPH0419230A (en) Driving force distribution switching type four-wheel drive automobile
JP3004285B2 (en) Torque distribution control device for four-wheel drive vehicle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 12