JPH04240189A - Formation of diamond film on si substrate by cvd method - Google Patents
Formation of diamond film on si substrate by cvd methodInfo
- Publication number
- JPH04240189A JPH04240189A JP530491A JP530491A JPH04240189A JP H04240189 A JPH04240189 A JP H04240189A JP 530491 A JP530491 A JP 530491A JP 530491 A JP530491 A JP 530491A JP H04240189 A JPH04240189 A JP H04240189A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- diamond
- layer
- film
- diamond film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 64
- 239000010432 diamond Substances 0.000 title claims abstract description 64
- 239000000758 substrate Substances 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims description 28
- 230000015572 biosynthetic process Effects 0.000 title description 3
- 239000013078 crystal Substances 0.000 claims abstract description 22
- 238000005530 etching Methods 0.000 claims abstract description 16
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 22
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 14
- 239000007789 gas Substances 0.000 description 17
- 230000006911 nucleation Effects 0.000 description 10
- 238000010899 nucleation Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 230000003746 surface roughness Effects 0.000 description 6
- 238000005240 physical vapour deposition Methods 0.000 description 5
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004050 hot filament vapor deposition Methods 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000006748 scratching Methods 0.000 description 4
- 230000002393 scratching effect Effects 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000001182 laser chemical vapour deposition Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明はCVD法によるSi基板
へのダイヤモンド膜形成方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a diamond film on a Si substrate by CVD.
【0002】0002
【従来の技術】ダイヤモンドは知られている物質の中で
最も硬度が硬く、熱伝導度が最も良く、電気的な絶縁性
も高く、透明度が良く化学的にも安定な物質であるので
、切削工具、耐摩耗部品、太陽電池の保護膜、半導体装
置の放熱板等への応用が研究されている。[Prior Art] Diamond is the hardest known substance, has the best thermal conductivity, high electrical insulation, good transparency, and is chemically stable. Applications to tools, wear-resistant parts, protective films for solar cells, heat sinks for semiconductor devices, etc. are being studied.
【0003】従来、ダイヤモンドの低圧合成法としては
、固体または液体の原料を、蒸発、昇華等の方法で気体
にし、この気体から結晶成長させるPVD法(物理的蒸
着法)と、炭素を含む化合物気体を熱やプラズマによっ
て分解して結晶を得るCVD法(化学的蒸着法)とがあ
る。Conventional low-pressure synthesis methods for diamond include the PVD method (physical vapor deposition), in which a solid or liquid raw material is turned into a gas by evaporation, sublimation, etc., and crystals are grown from this gas, and the PVD method (physical vapor deposition), in which carbon-containing compounds are There is a CVD method (chemical vapor deposition method) in which crystals are obtained by decomposing gas using heat or plasma.
【0004】すなわち、後者のCVD法では、炭化水素
と水素との混合ガスを原料とし、大気圧あるいは1To
rr以上の減圧下で熱、マイクロ波または高周波等を用
いて原料ガスを励起し、600〜1000℃に加熱され
た基板上に導いて炭化水素の熱分解と、活性化した水素
の作用により、ダイヤモンド構造の炭素を基板上に析出
させるものである。That is, in the latter CVD method, a mixed gas of hydrocarbon and hydrogen is used as a raw material, and
The raw material gas is excited using heat, microwaves, high frequencies, etc. under a reduced pressure of rr or more, and is guided onto a substrate heated to 600 to 1000°C to thermally decompose hydrocarbons and by the action of activated hydrogen, This method involves depositing diamond-structured carbon onto a substrate.
【0005】具体的には例えば、基板をフィラメントで
加熱する熱フィラメントCVD法、原料ガスと水素の分
解をプラズマを用いて行うマイクロ波プラズマCVD法
、炭化水素と水素の混合原料ガスに紫外レーザ光を照射
する光CVD法などがある。Specifically, examples include the hot filament CVD method in which a substrate is heated with a filament, the microwave plasma CVD method in which plasma is used to decompose a raw material gas and hydrogen, and the method in which ultraviolet laser light is applied to a mixed raw material gas of hydrocarbon and hydrogen. There is a photo-CVD method that irradiates.
【0006】一方、PVD法では、炭化水素ガス中での
グロー放電、イオンビームを用いたものが代表的なもの
であって、例えば電子ビーム等で炭素を蒸発させ基板に
イオンビームを照射するイオンビームスパッタ法、原料
ガスや原料の原子をイオン化し、電界により引き出して
基板上に膜を形成するイオンビーム蒸着法等がある。On the other hand, typical PVD methods use glow discharge in hydrocarbon gas and ion beams. For example, carbon is evaporated with an electron beam and the substrate is irradiated with an ion beam. There are beam sputtering methods, and ion beam evaporation methods in which atoms of a source gas or source material are ionized and extracted by an electric field to form a film on a substrate.
【0007】[0007]
【発明が解決しようとする課題】前記低圧気相合成法に
よるダイヤモンド膜は、ダイヤモンド基板上には、エピ
タキシャル成長可能であるほか、ダイヤモンドの生成が
確認されている基板は、モリブデン、タングステン、金
、銅、ジルコニウム、シリコンなどの単体、超硬合金、
シリカガラス、サファイヤなどの化合物のほか、炭化珪
素、炭化チタン、窒化ホウ素、窒化珪素などのセラミッ
クスがある。[Problems to be Solved by the Invention] Diamond films produced by the low-pressure vapor phase synthesis method can be epitaxially grown on diamond substrates, and the substrates on which diamond has been confirmed to form include molybdenum, tungsten, gold, and copper. , simple substances such as zirconium and silicon, cemented carbide,
In addition to compounds such as silica glass and sapphire, there are ceramics such as silicon carbide, titanium carbide, boron nitride, and silicon nitride.
【0008】しかしながら、ダイヤモンド構造の結晶構
造を持つシリコン基板の上でも、現在のところエピタキ
シャル成長を起こす技術は確立されていない。その上、
前記の熱フィラメントCVD法、マイクロ波プラズマC
VD法または光CVD法等のCVD法で得られるダイヤ
モンド膜中には、粒径が約1〜10μm前後のダイヤモ
ンド結晶の集合体が形成されるので、表面の凹凸の激し
い膜しか得られない。However, at present, no technology has been established for epitaxial growth even on a silicon substrate having a diamond crystal structure. On top of that,
The above-mentioned hot filament CVD method, microwave plasma C
In a diamond film obtained by a CVD method such as a VD method or a photo-CVD method, aggregates of diamond crystals having a grain size of about 1 to 10 μm are formed, so that only a film with a severely uneven surface can be obtained.
【0009】すなわち、ダイヤモンド膜は、その形成過
程において、先ず第1段階でSi基板上に多数のダイヤ
モンド核が発生し、その後その核が粒成長して大きな結
晶粒となり、やがて結晶粒と結晶粒とがくっつき、膜を
形成しはじめる。その後はSi基板に対して垂直方向に
成長し、膜は次第に厚くなる。このような成長過程を経
ているために、ダイヤモンド膜は多結晶の集まった、表
面凹凸の激しい膜となるのである。That is, in the formation process of a diamond film, a large number of diamond nuclei are first generated on the Si substrate in the first step, and then the nuclei grow into large crystal grains, and then crystal grains and crystal grains are formed. The two begin to stick together and form a film. Thereafter, the film grows in a direction perpendicular to the Si substrate, and the film gradually becomes thicker. Because of this growth process, the diamond film becomes a film with a highly uneven surface, consisting of a collection of polycrystals.
【0010】ところで、ダイヤモンドの核生成は基板の
表面の影響を受け、基板表面をダイヤモンドの粉末剤で
傷つけ処理を行うことによって、Si基板では104個
/cm2から108〜109個/cm2程度まで核発生
数が増加することが知られている。By the way, diamond nucleation is affected by the surface of the substrate, and by scratching the surface of the substrate with a diamond powder, the number of nuclei can be reduced from 104/cm2 to about 108-109/cm2 on a Si substrate. It is known that the number of cases is increasing.
【0011】すなわち、2〜10μmのダイヤモンド粉
末で摩擦することによって、核発生密度は最大109個
/cm2程度に高まり、粒子の成長が進行すると互いに
接触、凝集して膜状のダイヤモンドが形成されることが
報告されている(エレクトロニクス、昭和62年11月
号、68頁)。[0011] That is, by rubbing with a diamond powder of 2 to 10 μm, the nucleation density increases to a maximum of about 109/cm2, and as the particles grow, they come into contact with each other and aggregate to form a diamond film. It has been reported (Electronics, November 1988 issue, p. 68).
【0012】また、特開昭61−201698号公報で
は、基板表面を10μm以下のダイヤモンド、窒化物、
炭化物等の無機パウダーで擦り、1μm以下の大きさの
傷を付けておくことにより、表面粗さ0.4μ以下の平
滑なダイヤモンド膜を得ている。Furthermore, in Japanese Patent Application Laid-Open No. 61-201698, the surface of the substrate is coated with diamond, nitride, or
A smooth diamond film with a surface roughness of 0.4 μm or less is obtained by rubbing with an inorganic powder such as carbide and making scratches with a size of 1 μm or less.
【0013】さらに、特開昭60−86096号公報で
は、Si基板を2μm以下のダイヤモンド粉末で摩擦し
て鋭利な傷を発生させ、マイクロ波CVD法により、3
μm/hrの成長速度で微細な結晶粒子よりなるダイヤ
モンド膜を得ている。Furthermore, in Japanese Patent Application Laid-Open No. 60-86096, a Si substrate is rubbed with diamond powder of 2 μm or less to generate sharp scratches, and then 3
A diamond film consisting of fine crystal grains was obtained at a growth rate of μm/hr.
【0014】しかしながら、前記のごとくダイヤモンド
膜の気相合成に先立って、Si基板の表面に傷付け処理
を施す従来方法では、ダイヤモンドの核発生密度はせい
ぜい1000Å平方当たり1個程度(1010個/cm
2に当たる)であって、得られたダイヤモンド膜を半導
体膜あるいは摩耗膜として使用するには、核発生密度を
向上させて、さらに表面の凹凸を平滑にする必要がある
。However, as described above, in the conventional method of scratching the surface of the Si substrate prior to the vapor phase synthesis of the diamond film, the diamond nucleation density is at most about 1 per 1000 Å square (1010 nucleation/cm).
2), and in order to use the obtained diamond film as a semiconductor film or an abrasion film, it is necessary to improve the nucleation density and further smooth the surface irregularities.
【0015】本発明はSi基板上にCVD法によりダイ
ヤモンド膜を形成する場合の前記のごとき問題点を解決
すべくなされたものであって、Si基板上にダイヤモン
ドの核発生密度を増やし、表面の凹凸を減らして平滑な
ダイヤモンド皮膜の得られるCVD法によるSi基板へ
のダイヤモンド膜形成方法を提供することを目的とする
。The present invention has been made to solve the above-mentioned problems when forming a diamond film on a Si substrate by the CVD method. It is an object of the present invention to provide a method for forming a diamond film on a Si substrate by a CVD method, which reduces unevenness and provides a smooth diamond film.
【0016】[0016]
【課題を解決するための手段】発明者は、基板表面に傷
を付けることがダイヤモンドの核発生密度の増加に有効
であることから、基板表面に段差を設けてやれば、この
段差部でダイヤモンド核発生のエネルギーが低下して、
ダイヤモンドの核が生成し易いことに着目した。そこで
、ダイヤモンドの核発生の起点となる基板表面の段差の
密度と深さについて鋭意研究を重ねた。その結果、基板
表面の段差部の密度を所望の数にする手法を見出すと共
に、段差部の深さについても最適範囲を見出すことによ
り、本発明を完成するに到ったものである。[Means for Solving the Problem] The inventor believes that scratching the surface of a substrate is effective in increasing the density of diamond nucleation, so if a step is provided on the surface of the substrate, diamond The energy for nuclear generation decreases,
We focused on the fact that diamond nuclei are easily generated. Therefore, we conducted extensive research into the density and depth of steps on the substrate surface, which are the starting point for diamond nucleation. As a result, the present invention was completed by finding a method for adjusting the density of the step portions on the surface of the substrate to a desired number, and also by finding an optimal range for the depth of the step portions.
【0017】本発明のCVD法によるSi基板へのダイ
ヤモンド膜形成方法は、Si基板上に50〜200Åの
結晶粒度の多結晶Si層を形成させた後、Siの結晶面
異方性エッチング液を用いて、前記多結晶Si層の特定
面をエッチングし、10〜50Åの深さのエッチピット
を形成させ、隣会うエッチピット間の距離を50〜20
0Åとした後、前記多結晶Si層上にダイヤモンド核を
形成させることを要旨とする。In the method of forming a diamond film on a Si substrate by the CVD method of the present invention, a polycrystalline Si layer with a crystal grain size of 50 to 200 Å is formed on the Si substrate, and then an etching solution with anisotropic Si crystal plane is applied. etch a specific surface of the polycrystalline Si layer to form etch pits with a depth of 10 to 50 Å, and the distance between adjacent etch pits to 50 to 20 Å.
The gist is to form diamond nuclei on the polycrystalline Si layer after setting the thickness to 0 Å.
【0018】本発明において、Si基板上に多結晶Si
層を形成させるには、真空蒸着法、スパッタリング法、
プラズマCVD法等を用いることができる。Si基板上
に多結晶Si層を形成する際に、真空蒸着法であれば基
板温度、スパッタリング法であればアルゴン圧および基
板温度、プラズマCVD法の場合はグロー放電条件およ
びシランガス濃度を適宜選択することにより、多結晶S
i層の結晶粒度を調整することができる。In the present invention, polycrystalline Si is deposited on a Si substrate.
To form the layer, vacuum evaporation method, sputtering method,
A plasma CVD method or the like can be used. When forming a polycrystalline Si layer on a Si substrate, appropriately select the substrate temperature for vacuum evaporation, the argon pressure and substrate temperature for sputtering, and the glow discharge conditions and silane gas concentration for plasma CVD. By this, polycrystalline S
The grain size of the i-layer can be adjusted.
【0019】多結晶Si層の結晶粒度を50〜200Å
としたのは、結晶粒度が50Å未満であると、エッチン
グにより所望の深さのエッチピットを形成することがで
きないからであり、200Åを越えると所望の密度のエ
ッチピットを形成することができないからである。また
、多結晶Si層の厚さは1000〜2000Åとするこ
とが好ましい。1000Å未満では結晶粒が充分に成長
しないからであり、2000Åを越えるとSi層に歪み
が発生し基板から剥離するおそれがあるからである。[0019] The crystal grain size of the polycrystalline Si layer is set to 50 to 200 Å.
This is because if the crystal grain size is less than 50 Å, etch pits with the desired depth cannot be formed by etching, and if it exceeds 200 Å, etch pits with the desired density cannot be formed. It is. Further, the thickness of the polycrystalline Si layer is preferably 1000 to 2000 Å. This is because if the thickness is less than 1000 Å, crystal grains will not grow sufficiently, and if it exceeds 2000 Å, the Si layer may become strained and may peel off from the substrate.
【0020】Siの異方性エッチング液としては、例え
ばエチレンジアミン(NH2(CH2)2NH2)とピ
ロカテコール(C6H4(OH)2)の水溶液を用いる
ことができる。この水溶液は多結晶Si層の内(100
)面のみを10〜50μmの深さまでV型にエッチング
することができる。なお、このエッチング液によるSi
の各面方位でのエッチング速度は、(100)面で50
μm/hであるのに対し、(110)面で30μm/h
、(111)面で3μm/hであって、多結晶Si層の
(110)面および(111)面は殆どエッチングされ
ない。As the anisotropic etching solution for Si, for example, an aqueous solution of ethylenediamine (NH2(CH2)2NH2) and pyrocatechol (C6H4(OH)2) can be used. This aqueous solution is in the polycrystalline Si layer (100
) surface can be etched in a V-shape to a depth of 10 to 50 μm. Note that this etching solution removes Si
The etching rate for each plane direction is 50 for the (100) plane.
μm/h, whereas on the (110) plane it is 30 μm/h.
, 3 μm/h for the (111) plane, and the (110) and (111) planes of the polycrystalline Si layer are hardly etched.
【0021】異法性エッチング液としては、その他に水
酸化カリウム(KOH)、ヒドラジン(N2H4)、ア
ンモニア水(NH4OH)などのアルカリ水溶液を用い
、緩衝剤にはイソプロパノール(CH3COOHCH3
)などのアルコールを用いることもできる。[0021] In addition, alkaline aqueous solutions such as potassium hydroxide (KOH), hydrazine (N2H4), and aqueous ammonia (NH4OH) are used as the heterogeneous etching solution, and isopropanol (CH3COOHCH3) is used as a buffer.
) can also be used.
【0022】多結晶Si層に形成されるエッチピットの
深さを10〜50Åとしたのは、深さが10Å未満であ
るとダイヤモンド核が発生しなくなるからであり、深さ
が50Åを越えると生成するダイヤモンド膜のSi基板
への密着性が悪くなるからである。The reason why the depth of the etch pit formed in the polycrystalline Si layer is set to 10 to 50 Å is because diamond nuclei will not be generated if the depth is less than 10 Å, and if the depth exceeds 50 Å, This is because the adhesion of the resulting diamond film to the Si substrate deteriorates.
【0023】基板処理後のダイヤモンド膜の形成方法に
ついては、熱CVD法のほか、マイクロ波CVD法、レ
ーザCVD法、高周波プラズマCVD法、高周波アーク
プラズマCVD法、EACVD法等種々の方法のいずれ
でも同様の効果を引き出すことができる。[0023] As for the method of forming the diamond film after substrate processing, in addition to thermal CVD, various methods such as microwave CVD, laser CVD, high frequency plasma CVD, high frequency arc plasma CVD, and EACVD can be used. A similar effect can be obtained.
【0024】[0024]
【作用】本発明の作用を図3の本発明の工程図に従って
説明する。先ず、工程Aにおいてダイヤモンド膜を形成
する基板にはSi基板1を用い、表面をRCA洗浄(重
金属、油脂、無機を除去する洗浄方法)する。次に、工
程Bにおいて熱CVD法によりSi基板1の表面に結晶
粒度が50〜200Åの多結晶Si層2を形成する。次
に、工程Cにおいて多結晶Si層2の特定結晶面をエッ
チングする異方性エッチング液を用いエッチング深さ1
0〜50Åのエッチピット3を形成する。[Operation] The operation of the present invention will be explained according to the process diagram of the present invention shown in FIG. First, in step A, a Si substrate 1 is used as a substrate on which a diamond film is to be formed, and its surface is subjected to RCA cleaning (a cleaning method for removing heavy metals, oils and fats, and inorganic substances). Next, in step B, a polycrystalline Si layer 2 having a crystal grain size of 50 to 200 Å is formed on the surface of the Si substrate 1 by thermal CVD. Next, in step C, an anisotropic etching solution is used to etch a specific crystal plane of the polycrystalline Si layer 2 to an etching depth of 1.
Etch pits 3 of 0 to 50 Å are formed.
【0025】続いて、工程DにおいてCVD法によりダ
イヤモンド膜を形成すると、Si基板1に形成された多
結晶Si層2の表面にはエッチピット3との間に段差部
が多数形成されているので、この段差部がダイヤモンド
核発生の起点となり、3.3×1012個/cm2程度
の核発生密度で、ダイヤモンド核4が発生し、工程Fに
おいてSi基板1の表面に平滑なダイヤモンド膜5が形
成される。Next, in step D, when a diamond film is formed by the CVD method, many step portions are formed on the surface of the polycrystalline Si layer 2 formed on the Si substrate 1 between it and the etch pits 3. This stepped portion becomes the starting point for diamond nucleus generation, and diamond nuclei 4 are generated at a nucleus generation density of about 3.3 x 1012/cm2, and a smooth diamond film 5 is formed on the surface of the Si substrate 1 in step F. be done.
【0026】[0026]
【実施例】本発明の実施例を従来例と比較して説明し、
本発明の効果を明らかにする。Si基板をRCA洗浄し
た後、熱CVD法によりSi基板表面上に結晶粒度50
〜200Åの多結晶Si層を2000Åの厚さで堆積さ
せた。次いで、Siの異方性エッチング液として、エチ
レンジアミン(NH2(CH2)2NH2)とピロカテ
コール(C6H4(OH)2)の水溶液を用い、エッチ
ング温度10℃でエッチング時間2秒間で、この多結晶
Si層をエッチングしたところ、(100)面の選択的
エッチングにより、25Åの深さで微細なV型のエッチ
ピットが50〜200Åの幅で形成された。[Example] An example of the present invention will be explained in comparison with a conventional example,
The effects of the present invention will be clarified. After cleaning the Si substrate by RCA, a crystal grain size of 50 was deposited on the surface of the Si substrate by thermal CVD.
A ~200 Å polycrystalline Si layer was deposited to a thickness of 2000 Å. Next, using an aqueous solution of ethylenediamine (NH2(CH2)2NH2) and pyrocatechol (C6H4(OH)2) as an anisotropic etching solution for Si, this polycrystalline Si layer was etched at an etching temperature of 10°C for an etching time of 2 seconds. As a result of selective etching of the (100) plane, fine V-shaped etch pits with a depth of 25 Å and a width of 50 to 200 Å were formed.
【0027】図4は本実施例に用いた熱フィラメントC
VD装置の概略図である。真空反応室10は排気ポンプ
16により真空排気されており、真空反応室16の中央
には埋め込みヒータ14と熱電対15を内蔵した基板ホ
ルダ13が設置され、基板1が固定される。基板ホルダ
13に固定された基板1に対向してTaフィラメント1
1が設けられ、さらに、基板1に向けてマスフローコン
トローラ6およびバルブ7を取り付けた原料ガス供給管
からCH4ガス8およびH2ガス9が供給される。FIG. 4 shows the hot filament C used in this example.
It is a schematic diagram of a VD device. The vacuum reaction chamber 10 is evacuated by an exhaust pump 16, and a substrate holder 13 containing an embedded heater 14 and a thermocouple 15 is installed in the center of the vacuum reaction chamber 16, and the substrate 1 is fixed thereto. A Ta filament 1 is placed opposite the substrate 1 fixed to the substrate holder 13.
1 is provided, and CH4 gas 8 and H2 gas 9 are further supplied toward the substrate 1 from a source gas supply pipe to which a mass flow controller 6 and a valve 7 are attached.
【0028】表面に形成した多結晶Si膜に25Åの深
さで微細なV型のエッチピットを50〜200Åの幅で
形成したSi基板1を基板ホルダ13にセットした後、
埋め込みヒータ14とTaフィラメント11とに通電し
、Taフィラメント11は1800℃以上、基板1は熱
電対15によって900℃に保持した。その後原料ガス
であるCH4ガス5cc/minと、H2ガス500c
c/minを、マスフローコントローラ6で所定の流量
に調整し、バルブ7を通して真空反応室10に供給し、
Taフィラメント11でガスを活性化し、分解して基板
1の上にダイヤモンド核の形成およびダイヤモンド膜の
形成を行った。After setting the Si substrate 1 in which fine V-shaped etch pits are formed on the surface of the polycrystalline Si film to a depth of 25 Å and a width of 50 to 200 Å to a substrate holder 13,
Electricity was applied to the embedded heater 14 and the Ta filament 11, and the temperature of the Ta filament 11 was maintained at 1800° C. or higher, and the temperature of the substrate 1 was maintained at 900° C. using the thermocouple 15. After that, the raw material gas CH4 gas 5cc/min and H2 gas 500cc
c/min to a predetermined flow rate with a mass flow controller 6, and supplied to the vacuum reaction chamber 10 through a valve 7.
The gas was activated and decomposed using the Ta filament 11 to form diamond nuclei and a diamond film on the substrate 1.
【0029】また、比較のために従来例として表面を2
5μmの粉末ダイヤモンドで傷付け処理を行ったSi基
板についても、図4に示すと同じ熱フィラメントCVD
装置を用いて、ダイヤモンド膜の形成を行った。得られ
た本発明例と従来例のダイヤモンド膜について、核発生
密度および表面粗さのついて測定したところ、図1およ
び図2に示すような結果を得た。For comparison, as a conventional example, the surface was
The same hot filament CVD method is also used for the Si substrate scratched with 5 μm powder diamond as shown in Figure 4.
A diamond film was formed using the apparatus. The nucleation density and surface roughness of the obtained diamond films of the present invention example and the conventional example were measured, and the results shown in FIGS. 1 and 2 were obtained.
【0030】核発生密度については、図1から明らかな
ように、25μmの粉末ダイヤモンドで傷付け処理を行
った従来例が1010個/cm2であったのに対し、本
発明例は本発明方法による基板処理により多数の段差部
が形成されたので、核発生密度は3.3×1012個/
cm2であって、本発明の効果が確認された。また、表
面粗さについては、従来例が1500〜3500Åであ
ったのに対し、本発明例は600〜1200Åであって
、核発生密度が高いことに関連して、本発明方法によれ
ば平滑なダイヤモンド膜の得られることが明らかとなっ
た。As for the nucleus generation density, as is clear from FIG. 1, the conventional example in which the scratching process was performed with powdered diamond of 25 μm was 1010 nuclei/cm2, whereas the present invention example had Since a large number of step portions were formed by the treatment, the nucleation density was 3.3 x 1012/nuclei.
cm2, and the effect of the present invention was confirmed. Regarding the surface roughness, the conventional example had a surface roughness of 1500 to 3500 Å, while the present invention had a surface roughness of 600 to 1200 Å. It has become clear that a diamond film with excellent properties can be obtained.
【0031】[0031]
【発明の効果】本発明のCVD法によるSi基板へのダ
イヤモンド膜形成方法は、以上説明したように、Si基
板上に50〜200Åの結晶粒度の多結晶Si層を形成
させた後、Siの結晶面異方性エッチング液を用いて、
前記多結晶Si層の特定面をエッチングし、10〜50
Åの深さのエッチピットを形成させることにより、Si
基板の表面にダイヤモンド核の発生の起点となる段差部
を多数形成するものであって、この表面処理したSi基
板上にCVD法によりダイヤモンド皮膜を形成する工程
により、ダイヤモンドの核発生密度が著しく増加すると
ともに表面の平滑なダイヤモンド膜が得られる。Effects of the Invention As explained above, in the method of forming a diamond film on a Si substrate by the CVD method of the present invention, after forming a polycrystalline Si layer with a crystal grain size of 50 to 200 Å on a Si substrate, Using a crystal plane anisotropic etching solution,
Etching a specific surface of the polycrystalline Si layer,
By forming etch pits with a depth of Å, Si
This process forms many steps on the surface of the substrate that serve as starting points for the generation of diamond nuclei, and the process of forming a diamond film on the surface-treated Si substrate using the CVD method significantly increases the density of diamond nucleus generation. At the same time, a diamond film with a smooth surface can be obtained.
【図1】従来例と本発明例のダイヤモンド核発生密度を
示す図である。FIG. 1 is a diagram showing the diamond nucleation density of a conventional example and an example of the present invention.
【図2】従来例と本発明例のダイヤモンド膜の表面粗さ
を示す図である。FIG. 2 is a diagram showing the surface roughness of diamond films of a conventional example and an example of the present invention.
【図3】本発明方法を説明する工程図である。FIG. 3 is a process diagram illustrating the method of the present invention.
【図4】実施例に用いた熱フィラメントCVD装置の概
略図である。FIG. 4 is a schematic diagram of a hot filament CVD apparatus used in Examples.
1 Si基板
2 多結晶Si層3 Si基板のエッチピ
ット 4 ダイヤモンド核1 Si substrate
2 Polycrystalline Si layer 3 Etch pit of Si substrate 4 Diamond nucleus
Claims (1)
度の多結晶Si層を形成させた後、Siの結晶面異方性
エッチング液を用いて、前記多結晶Si層の特定面をエ
ッチングし、10〜50Åの深さのエッチピットを形成
させ、隣会うエッチピット間の距離を50〜200Åと
した後、前記多結晶Si層上にダイヤモンド核を形成さ
せることを特徴とするCVD法によるSi基板上へのダ
イヤモンド膜形成方法。1. After forming a polycrystalline Si layer with a crystal grain size of 50 to 200 Å on a Si substrate, a specific surface of the polycrystalline Si layer is etched using a Si crystal plane anisotropic etching solution. , forming etch pits with a depth of 10 to 50 Å and setting the distance between adjacent etch pits to 50 to 200 Å, and then forming diamond nuclei on the polycrystalline Si layer. A method for forming a diamond film on a substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP530491A JP2780495B2 (en) | 1991-01-21 | 1991-01-21 | Method for forming diamond film on Si substrate by CVD method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP530491A JP2780495B2 (en) | 1991-01-21 | 1991-01-21 | Method for forming diamond film on Si substrate by CVD method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04240189A true JPH04240189A (en) | 1992-08-27 |
JP2780495B2 JP2780495B2 (en) | 1998-07-30 |
Family
ID=11607529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP530491A Expired - Fee Related JP2780495B2 (en) | 1991-01-21 | 1991-01-21 | Method for forming diamond film on Si substrate by CVD method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2780495B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997047789A1 (en) * | 1996-06-12 | 1997-12-18 | Matsushita Electric Industrial Co., Ltd. | Diamond film and process for preparing the same |
US5851658A (en) * | 1995-07-05 | 1998-12-22 | Ngk Spark Plug Co., Ltd. | Diamond coated article and process for producing thereof |
JP2016050139A (en) * | 2014-08-29 | 2016-04-11 | 国立大学法人電気通信大学 | Method for manufacturing single crystal diamond, single crystal diamond, method for manufacturing single crystal diamond substrate, single crystal diamond substrate and semiconductor device |
-
1991
- 1991-01-21 JP JP530491A patent/JP2780495B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5851658A (en) * | 1995-07-05 | 1998-12-22 | Ngk Spark Plug Co., Ltd. | Diamond coated article and process for producing thereof |
US5955155A (en) * | 1995-07-05 | 1999-09-21 | Ngk Spark Plug Co., Ltd. | CVD method of depositing a plurality of polycrystalline diamond film layers |
WO1997047789A1 (en) * | 1996-06-12 | 1997-12-18 | Matsushita Electric Industrial Co., Ltd. | Diamond film and process for preparing the same |
US6068883A (en) * | 1996-06-12 | 2000-05-30 | Matushita Electric Industrial Co., Ltd. | Process for forming diamond films by nucleation |
KR100262259B1 (en) * | 1996-06-12 | 2000-07-15 | 모리시타 요이찌 | Diamond film and process for preparing the same |
JP2016050139A (en) * | 2014-08-29 | 2016-04-11 | 国立大学法人電気通信大学 | Method for manufacturing single crystal diamond, single crystal diamond, method for manufacturing single crystal diamond substrate, single crystal diamond substrate and semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP2780495B2 (en) | 1998-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5006203A (en) | Diamond growth method | |
US5626922A (en) | Plasma processing method | |
EP0030638B2 (en) | Method for depositing silicon or germanium containing films | |
US5114696A (en) | Diamond growth method | |
US5370912A (en) | Diamond film deposition with a microwave plasma | |
JPH0881299A (en) | Synthetic diamond film for decreasing arcuate curving and its preparation | |
JP3194820B2 (en) | Method for forming oriented diamond film | |
JP3728467B2 (en) | Method for forming single crystal diamond film | |
JP3728464B2 (en) | Method for manufacturing substrate for vapor phase synthesis of single crystal diamond film | |
Maeda et al. | Diamond growth from a mixture of fluorocarbon and hydrogen in a microwave plasma | |
JP2780495B2 (en) | Method for forming diamond film on Si substrate by CVD method | |
Sun et al. | Crystal morphology and phase purity of diamond crystallites during bias enhanced nucleation and initial growth stages | |
Gouzman et al. | Formation of the precursor for diamond growth by in situ direct current glow discharge pretreatment | |
JP2978023B2 (en) | Manufacturing method of synthetic diamond film | |
JP2780497B2 (en) | Method for forming diamond film on Si substrate by CVD method | |
JPH03141198A (en) | Production of polycrystal diamond layer | |
JP2780494B2 (en) | Method for forming diamond film on Si substrate by CVD method | |
Regel et al. | Selective patterned deposition of diamond using a new technique | |
Nakamura et al. | High quality chemical vapor deposition diamond growth on iron and stainless steel substrates | |
JP2679023B2 (en) | Method for manufacturing substrate for diamond thin film deposition | |
JP3728466B2 (en) | Method for producing single crystal diamond film | |
JP3185289B2 (en) | Diamond deposition method | |
JPH0341435B2 (en) | ||
JPH05892A (en) | Diamond crystal and substrate for forming diamond | |
JP3195093B2 (en) | Method of forming diamond film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |