JPH04239009A - Synthesis of styrene/divinylbenzene copolymer and packing for liquid chromatography - Google Patents

Synthesis of styrene/divinylbenzene copolymer and packing for liquid chromatography

Info

Publication number
JPH04239009A
JPH04239009A JP3002753A JP275391A JPH04239009A JP H04239009 A JPH04239009 A JP H04239009A JP 3002753 A JP3002753 A JP 3002753A JP 275391 A JP275391 A JP 275391A JP H04239009 A JPH04239009 A JP H04239009A
Authority
JP
Japan
Prior art keywords
divinylbenzene
styrene
copolymer
liquid chromatography
divinylbenzene copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3002753A
Other languages
Japanese (ja)
Inventor
Manami Yonezawa
米澤 真奈美
Taiji Kamiguchi
上口 泰司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP3002753A priority Critical patent/JPH04239009A/en
Priority to EP19920300266 priority patent/EP0496513A3/en
Publication of JPH04239009A publication Critical patent/JPH04239009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To provide a process for synthesizing a styrene/divinylbenzene copolymer having excellent mechanical strengths and a high separation performance and giving a lowered column inlet pressure and a packing for liquid chromatography. CONSTITUTION:Styrene is reacted with m-divinylbenzene or p-divinylbenzene to obtain a styrene/divinylbenzene copolymer, which is sulfonated with chloro- sulfuric acid. Because the column inlet pressure can be lowered even when the eluent is passed at a high rate, the load on the apparatus can be lowered and the time necessary for analysis can be shortened.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はスチレン−ジビニルベン
ゼン共重合体の合成法および液体クロマトグラフィー用
充填剤に関し、さらに詳しくはカラム圧の低いスチレン
−ジビニルベンゼン共重合体の合成法およびこれを用い
た液体クロマトグラフィー用充填剤に関する。
[Field of Industrial Application] The present invention relates to a method for synthesizing a styrene-divinylbenzene copolymer and a packing material for liquid chromatography, and more particularly to a method for synthesizing a styrene-divinylbenzene copolymer with low column pressure and its use. This invention relates to a packing material for liquid chromatography.

【0002】0002

【従来の技術】従来、液体クロマトグラフィーにおける
高分子充填剤には、スチレン−ジビニルベンゼン共重合
体、アクリル系樹脂、ポリ酢酸ビニル、ポリアクリラー
トなどの架橋高分子物質にイオン交換基を付与したイオ
ン交換樹脂が用いられ、このイオン交換樹脂はイオン性
の化合物の分離に利用されている。
[Prior Art] Conventionally, polymer fillers used in liquid chromatography include ion exchange groups added to crosslinked polymer materials such as styrene-divinylbenzene copolymer, acrylic resin, polyvinyl acetate, and polyacrylate. Ion exchange resins are used to separate ionic compounds.

【0003】液体クロマトグラフィー分析の所要時間を
短縮するためには、溶離液を高速で流すことができる耐
圧性の装置と高分子充填剤が必要である。例えば、機械
的強度の小さい高分子充填剤を用いて溶離液を高速で流
すと、充填剤細孔の構造が圧縮され、その結果、カラム
圧が上昇し、装置、特に送液ポンプにかかる負担が大き
くなる。高分子充填剤の機械的強度は、高分子の架橋度
を増加することにより向上させることができるが、架橋
度を変化させると、分離性能、特に多成分アミノ酸の相
互分離性能に大きく影響する。
[0003] In order to shorten the time required for liquid chromatography analysis, pressure-resistant equipment and polymeric packing materials that can flow the eluent at high speed are required. For example, when a polymer packing material with low mechanical strength is used and the eluent is flowed at high speed, the pore structure of the packing material is compressed, resulting in an increase in column pressure and a strain on the equipment, especially the liquid pump. becomes larger. The mechanical strength of a polymer filler can be improved by increasing the degree of crosslinking of the polymer, but changing the degree of crosslinking greatly affects the separation performance, especially the ability to separate multicomponent amino acids from each other.

【0004】多成分アミノ酸を高い性能で分離する高速
アミノ酸分析計用充填剤としては、スチレン−ジビニル
ベンゼン共重合体にスルホン基を導入したイオン交換樹
脂が用いられている。スチレン−ジビニルベンゼン共重
合体は、スチレンとジビニルベンゼンを水溶液中で懸濁
重合して得られるが、架橋剤モノマーであるジビニルベ
ンゼンには、m−ジビニルベンゼン、p−ジビニルベン
ゼン、エチルビニルベンゼンなどが混在した混合物が用
いられている。例えば特公昭54−26396号公報で
は、架橋剤モノマーとして純度55重量%のジビニルベ
ンゼン、40重量%のエチルビニルベンゼンおよび5重
量%のその他飽和化合物の混合物が用いられている。し
かしながら、近年、特に高速アミノ酸分析計用充填剤と
して、装置に負担をかけないカラム圧の低いスチレン−
ジビニルベンゼン共重合体が要望されている。
[0004] As a packing material for a high-speed amino acid analyzer that separates multicomponent amino acids with high performance, an ion exchange resin in which a sulfone group is introduced into a styrene-divinylbenzene copolymer is used. Styrene-divinylbenzene copolymer is obtained by suspension polymerization of styrene and divinylbenzene in an aqueous solution. Divinylbenzene, which is a crosslinking monomer, includes m-divinylbenzene, p-divinylbenzene, ethylvinylbenzene, etc. A mixture of these is used. For example, in Japanese Patent Publication No. 54-26396, a mixture of divinylbenzene with a purity of 55% by weight, ethylvinylbenzene with a purity of 40% by weight and other saturated compounds with a purity of 5% by weight is used as a crosslinking monomer. However, in recent years, styrene, which has low column pressure and does not put a burden on the equipment, has been used as a packing material for high-speed amino acid analyzers.
Divinylbenzene copolymers are desired.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、前記
従来技術の問題を解決し、機械的強度に優れ、高い分離
性能を有するとともにカラム入口圧を低くすることがで
きるスチレン−ジビニルベンゼン共重合体の合成法およ
びこれを用いた液体クロマトグラフィー用充填剤を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art described above, and to provide a styrene-divinylbenzene copolymer which has excellent mechanical strength, high separation performance, and can lower column inlet pressure. An object of the present invention is to provide a method for synthesizing a polymer and a packing material for liquid chromatography using the same.

【0006】[0006]

【課題を解決するための手段】本発明は、スチレンと、
実質的に異性体が混在しないジビニルベンゼンとを反応
させることを特徴とするスチレン−ジビニルベンゼン共
重合体の合成法およびこれにより得られたスチレン−ジ
ビニルベンゼン共重合体をスルホン化したことを特徴と
する液体クロマトグラフィー用充填剤に関する。
[Means for Solving the Problems] The present invention provides styrene and
A method for synthesizing a styrene-divinylbenzene copolymer characterized by reacting it with divinylbenzene in which substantially no isomers are mixed, and the styrene-divinylbenzene copolymer obtained thereby is sulfonated. The present invention relates to a packing material for liquid chromatography.

【0007】[0007]

【作用】従来のようにスチレンとジビニルベンゼンを共
重合する際に、異性体および多成分が混在するジビニル
ベンゼンを用いると、共重合体中に構造の異なるモノマ
ーが架橋することになり、液体クロマトグラフィー分析
のカラム圧や分離性能に影響を及ぼす充填剤細孔の構造
が不均一となり、充填剤の膨潤度や収縮率等に差が生じ
るため、溶離液を高速で流すとカラム圧が高くなる。し
かし、本発明においては、実質的に異性体が混在しない
ジビニルベンゼンを用いるため、構造のほぼ等しいモノ
マーを架橋することができ、充填剤細孔の構造がほぼ均
一となり、カラム入口圧を低くすることができる。
[Function] When copolymerizing styrene and divinylbenzene as in the past, if divinylbenzene, which is a mixture of isomers and multiple components, is used, monomers with different structures will be crosslinked in the copolymer, resulting in liquid chromatography. The structure of the pores of the packing material, which affects the column pressure and separation performance in graphical analysis, becomes non-uniform, resulting in differences in the degree of swelling and shrinkage of the packing material, so the column pressure increases when the eluent is passed at high speed. . However, in the present invention, since divinylbenzene is used that does not substantially contain isomers, monomers with almost the same structure can be crosslinked, and the structure of the packing pores becomes almost uniform, reducing the column inlet pressure. be able to.

【0008】本発明に用いられるスチレン−ジビニルベ
ンゼン共重合体は、スチレンと、実質的に異性体(m−
ジビニルベンゼンまたはp−ジビニルベンゼン)が混在
しないジビニルベンゼンとの共重合により得られる。本
発明において、実質的に異性体が混在しない範囲とは、
異性体の割合が0〜20体積%、好ましくは0〜10体
積%をいう。
The styrene-divinylbenzene copolymer used in the present invention is substantially an isomer (m-
Divinylbenzene or p-divinylbenzene) is copolymerized with divinylbenzene. In the present invention, the range in which isomers are not substantially mixed is defined as
The proportion of isomers is 0 to 20% by volume, preferably 0 to 10% by volume.

【0009】共重合は、例えば、粒径調整剤としてポリ
ビニルアルコール等の水溶性高分子を、粒径付着防止剤
としてドデシル硫酸ナトリウム等の界面活性剤を溶解し
た水溶液中に、スチレン、ジビニルベンゼンおよび重合
開始剤を仕込み、懸濁重合法によって行われる。分離性
能に優れた微粒子状の共重合体を得るためには、モノマ
ー濃度を水1リットルに対して100g以下、水溶性高
分子の濃度を5.0×10−2g/ml以上、攪拌速度
を毎分1,500回転以上、重合温度を50〜100℃
の範囲とするのが好ましい。
Copolymerization is carried out by, for example, adding styrene, divinylbenzene, and A polymerization initiator is charged and suspension polymerization is carried out. In order to obtain a fine particulate copolymer with excellent separation performance, the monomer concentration should be 100 g or less per liter of water, the water-soluble polymer concentration should be 5.0 x 10-2 g/ml or more, and the stirring speed should be adjusted. 1,500 revolutions per minute or more, polymerization temperature 50-100℃
It is preferable to set it as the range of.

【0010】重合開始剤としては、過酸化ベンゾイル、
過酸化tert−ブチル等の過酸化物、アゾビスイソブ
チルニトリル、アゾビスシクロヘキサンニトリル等のア
ゾ化合物が用いられ、通常、モノマーに対して1重量%
以上添加される。
As a polymerization initiator, benzoyl peroxide,
Peroxides such as tert-butyl peroxide, azo compounds such as azobisisobutylnitrile and azobiscyclohexanenitrile are used, and usually 1% by weight based on the monomer.
or more is added.

【0011】本発明になる液体クロマトグラフィー用充
填剤は、例えば、上記で得られた微粒子状のスチレン−
ジビニルベンゼン共重合体を、テトラクロロエタンで膨
潤させたのち、クロロ硫酸を作用させてスルホン化する
ことにより得られ、この充填剤は、3meq/g以上の
イオン交換容量を有する。
The packing material for liquid chromatography according to the present invention is, for example, the fine particulate styrene obtained above.
It is obtained by swelling a divinylbenzene copolymer with tetrachloroethane and then sulfonating it with chlorosulfuric acid, and this filler has an ion exchange capacity of 3 meq/g or more.

【0012】0012

【実施例】以下、本発明を実施例により詳しく説明する
[Examples] The present invention will be explained in detail below using examples.

【0013】実施例1 (1)スチレン−p−ジビニルベンゼン共重合体(a)
 の合成 内容積500mlのセパラブル円筒形3つ口フラスコに
、プロペラ形攪拌翼を有する攪拌機、還流冷却器および
窒素導入管を取りつけ、ポリビニルアルコール(重合度
2,000、ケン化度80モル%)12.5gおよびド
デシル硫酸ナトリウム0.01gを入れ、200mlの
蒸留水で溶解した(ポリビニルアルコール濃度:6.2
5×10−2g/ml、ドデシル硫酸ナトリウム濃度:
5.0×10−5g/ml)。次いで、過酸化ベンゾイ
ル0.36gおよびp−ジビニルベンゼン1.15gを
スチレン18.7mlに溶解して上記水溶液に加え、窒
素ガスを導入しながら毎分3,000回転で攪拌しつつ
、油浴で反応溶液温度を90℃に保った。6時間後、反
応器を冷却し、生成物を熱湯トルエンで充分洗浄し、5
0℃以下で乾燥してスチレン−p−ジビニルベンゼン共
重合体(a) を得た。この共重合体(a) は1〜1
0μmの球形微粒子であった。またKBr法により共重
合体(a) の赤外吸収スペクトルを測定し、その結果
を図2に示したが、p−ジビニルベンゼンに由来するp
−二置換ベンゼン環の吸収が1510cm−1に見られ
た。
Example 1 (1) Styrene-p-divinylbenzene copolymer (a)
Synthesis A separable cylindrical three-necked flask with an internal volume of 500 ml was equipped with a stirrer with propeller-shaped stirring blades, a reflux condenser, and a nitrogen introduction tube, and polyvinyl alcohol (degree of polymerization 2,000, degree of saponification 80 mol%) 12 .5g and 0.01g of sodium dodecyl sulfate were added and dissolved in 200ml of distilled water (polyvinyl alcohol concentration: 6.2
5x10-2g/ml, sodium dodecyl sulfate concentration:
5.0 x 10-5 g/ml). Next, 0.36 g of benzoyl peroxide and 1.15 g of p-divinylbenzene were dissolved in 18.7 ml of styrene, added to the above aqueous solution, and stirred at 3,000 rpm while introducing nitrogen gas in an oil bath. The reaction solution temperature was maintained at 90°C. After 6 hours, the reactor was cooled and the product was thoroughly washed with hot water toluene.
It was dried at 0°C or lower to obtain a styrene-p-divinylbenzene copolymer (a). This copolymer (a) is 1 to 1
They were spherical fine particles with a diameter of 0 μm. In addition, the infrared absorption spectrum of copolymer (a) was measured using the KBr method, and the results are shown in Figure 2.
An absorption of the -disubstituted benzene ring was observed at 1510 cm-1.

【0014】(2)陽イオン交換樹脂(A) の調製テ
トラクロロエタン15mlが入った三角フラスコに、上
記で得られた共重合体(a) 5gを加えて60℃で3
0分間加温し、共重合体を膨潤させ、水冷した後、クロ
ロ硫酸10mlを加えて攪拌しつつ4時間反応させた。 反応後、氷酢酸により残存クロロ硫酸を分解してスルホ
ニルクロライドが導入された共重合体を、1N−NaO
H溶液中で1時間煮沸し、スルホン基を導入し、球状の
陽イオン交換樹脂(A) を7g得た。得られた陽イオ
ン交換樹脂(A) のイオン交換容量は3.44meg
/gであり、液体クロマトグラフィー用充填剤としては
充分なイオン交換容量を有することがわかった。
(2) Preparation of cation exchange resin (A) 5 g of the copolymer (a) obtained above was added to an Erlenmeyer flask containing 15 ml of tetrachloroethane, and the mixture was heated at 60°C for 30 minutes.
After heating for 0 minutes to swell the copolymer and cooling with water, 10 ml of chlorosulfuric acid was added and reacted for 4 hours with stirring. After the reaction, the remaining chlorosulfuric acid was decomposed with glacial acetic acid, and the copolymer into which sulfonyl chloride was introduced was treated with 1N-NaO
The mixture was boiled in H solution for 1 hour to introduce sulfone groups, and 7 g of spherical cation exchange resin (A) was obtained. The ion exchange capacity of the obtained cation exchange resin (A) was 3.44 meg.
/g, indicating that it has a sufficient ion exchange capacity as a packing material for liquid chromatography.

【0015】(3)生体液アミノ酸の分離得られた陽イ
オン交換樹脂(A) をNa型からLi型の樹脂に変え
て内径4.6mmで長さ60mmの液体クロマトグラフ
ィー用空カラムに充填した。この充填カラムに、リチウ
ム濃度0.09MでpH2.8のクエン酸系緩衝液を、
カラム温度38℃、流速0.35ml/min で流し
、生体液アミノ酸の分離を行った。このときのカラム圧
は56kg/cm2 であった。
(3) Separation of amino acids in biological fluids The obtained cation exchange resin (A) was changed from Na-type to Li-type resin and packed into an empty column for liquid chromatography with an inner diameter of 4.6 mm and a length of 60 mm. . A citric acid buffer solution with a lithium concentration of 0.09M and a pH of 2.8 was added to this packed column.
The column was run at a temperature of 38° C. and a flow rate of 0.35 ml/min to separate amino acids from biological fluids. The column pressure at this time was 56 kg/cm2.

【0016】(4)標準アミノ酸の分離Na型の陽イオ
ン交換樹脂(A) を充填した充填カラムに、ナトリウ
ム濃度0.16MでpH3.3のクエン酸系緩衝液を、
カラム温度57℃で流速0.40ml/min で流し
、標準アミノ酸の分離を行った。このときのカラム圧は
90kg/cm2 であった。
(4) Separation of standard amino acids A citric acid buffer solution with a sodium concentration of 0.16M and a pH of 3.3 was added to a packed column filled with Na-type cation exchange resin (A).
Standard amino acids were separated by running the column at a flow rate of 0.40 ml/min at a column temperature of 57°C. The column pressure at this time was 90 kg/cm2.

【0017】実施例2 (1)スチレン−m−ジビニルベンゼン共重合体(b)
 の合成 実施例1(1)において、p−ジビニルベンゼンをm−
ジビニルベンゼンに替えた以外は実施例1(1)と同様
の方法で共重合を行い、粒径1〜10μmの球形微粒子
のスチレン−m−ジビニルベンゼン共重合体(b) を
得た。この共重合体(b) を実施例1(1)と同様に
赤外吸収スペクトルを測定し、その結果を図3に示した
が、m−ジビニルベンゼンに由来するm−二置換ベンゼ
ン環の吸収が795cm−1に見られた。
Example 2 (1) Styrene-m-divinylbenzene copolymer (b)
In Synthesis Example 1 (1), p-divinylbenzene was converted to m-
Copolymerization was carried out in the same manner as in Example 1 (1) except that divinylbenzene was used to obtain a styrene-m-divinylbenzene copolymer (b) in the form of spherical fine particles with a particle size of 1 to 10 μm. The infrared absorption spectrum of this copolymer (b) was measured in the same manner as in Example 1 (1), and the results are shown in Figure 3. was observed at 795 cm-1.

【0018】(2)陽イオン交換樹脂(B) の調製実
施例1(2)において、上記共重合体(b) を用いた
以外は実施例1(2)と同様にしてスルホン基を導入し
、球状の陽イオン交換樹脂(B) を7g得た。得られ
た陽イオン交換樹脂(B) のイオン交換容量は3.0
4meq/gであり、液体クロマトグラフィー用充填剤
としては充分なイオン交換容量を有することがわかった
(2) Preparation of cation exchange resin (B) In Example 1 (2), a sulfone group was introduced in the same manner as in Example 1 (2) except that the above copolymer (b) was used. , 7g of spherical cation exchange resin (B) was obtained. The ion exchange capacity of the obtained cation exchange resin (B) was 3.0.
It was found that the ion exchange capacity was 4 meq/g, which was sufficient as a packing material for liquid chromatography.

【0019】(3)生体液アミノ酸の分離実施例1(3
)において、上記陽イオン交換樹脂(B) を用いた以
外は実施例1(3)と同様にして生体液アミノ酸の分離
を行った。このときのカラム圧は63kg/cm2 で
あった。
(3) Example 1 of separation of amino acids from biological fluids (3)
), biological fluid amino acids were separated in the same manner as in Example 1 (3) except that the above cation exchange resin (B) was used. The column pressure at this time was 63 kg/cm2.

【0020】(4)標準アミノ酸の分離実施例1(4)
において、陽イオン交換樹脂(B) を用いた以外は実
施例1(4)と同様にして標準アミノ酸の分離を行った
。このときのカラム圧は97kg/cm2 であった。
(4) Standard amino acid separation Example 1 (4)
Standard amino acids were separated in the same manner as in Example 1 (4) except that cation exchange resin (B) was used. The column pressure at this time was 97 kg/cm2.

【0021】比較例1 実施例1(1)において、p−ジビニルベンゼンに替え
てm−ジビニルベンゼン、p−ジビニルベンゼン、m−
エチルビニルベンゼンおよびp−エチルビニルベンゼン
の混合物を用いた以外は実施例1(1)と同様の方法で
共重合を行い、スチレン−ジビニルベンゼン共重合体(
c) を得た。この共重合体(c)の形状は1〜10μ
mの球形微粒子であった。またKBr法により共重合体
(c) の赤外吸収スペクトルを測定し、その結果を図
4に示したが、m−ジビニルベンゼンとp−ジビニルベ
ンゼンに由来するm−二置換ベンゼン環およびp−二置
換ベンゼン環の吸収が1510cm−1と795cm−
1に見られた。
Comparative Example 1 In Example 1 (1), m-divinylbenzene, p-divinylbenzene, m-divinylbenzene was used instead of p-divinylbenzene.
Copolymerization was carried out in the same manner as in Example 1 (1) except that a mixture of ethylvinylbenzene and p-ethylvinylbenzene was used, and styrene-divinylbenzene copolymer (
c) obtained. The shape of this copolymer (c) is 1 to 10μ
They were spherical fine particles of m. In addition, the infrared absorption spectrum of copolymer (c) was measured using the KBr method, and the results are shown in Figure 4. The absorption of disubstituted benzene ring is 1510 cm-1 and 795 cm-1.
Seen in 1.

【0022】この共重合体(c) を用いて実施例1(
2)と同様にしてスルホン化を行い、イオン交換容量2
.96meq/gの陽イオン交換樹脂(C) を得た。 この陽イオン交換樹脂(C) を用いて実施例1(3)
および(4)と同様にして生体液アミノ酸と標準アミノ
酸の分離を行った。このときのカラム圧は生体液アミノ
酸分離時では92kg/cm2 、標準アミノ酸分離時
では115kg/cm2 であり、実施例1および2に
比較して高い値を示した。
Using this copolymer (c), Example 1 (
Sulfonation is performed in the same manner as in 2), and the ion exchange capacity is 2.
.. A cation exchange resin (C) of 96 meq/g was obtained. Example 1 (3) using this cation exchange resin (C)
And biological fluid amino acids and standard amino acids were separated in the same manner as in (4). The column pressure at this time was 92 kg/cm2 during biological fluid amino acid separation and 115 kg/cm2 during standard amino acid separation, which were higher values compared to Examples 1 and 2.

【0023】実施例3〜8および比較例2〜6実施例1
(1)において、p−ジビニルベンゼンに10、15、
20、25、30、50、70、75、80、85およ
び90体積%のm−ジビニルベンゼンを加えた以外は実
施例1(1)と同様にして共重合体を合成し、また実施
例1(2)と同様にしてNa型陽イオン交換樹脂を調製
した。さらにこれらを用いて実施例1(3)と同様にし
て生体液アミノ酸の分離を行い、そのときのカラム圧を
測定し、このときの結果を実施例1および2の結果とと
もに図1に示した。図中の○印は実施例1〜8を示し、
△印は比較例2〜6を示す。
Examples 3 to 8 and Comparative Examples 2 to 6 Example 1
In (1), p-divinylbenzene has 10, 15,
A copolymer was synthesized in the same manner as in Example 1 (1) except that 20, 25, 30, 50, 70, 75, 80, 85 and 90% by volume of m-divinylbenzene was added, and Example 1 A Na-type cation exchange resin was prepared in the same manner as in (2). Furthermore, using these, biological fluid amino acids were separated in the same manner as in Example 1 (3), and the column pressure at that time was measured. The results are shown in Figure 1 together with the results of Examples 1 and 2. . The ○ marks in the figure indicate Examples 1 to 8,
△ marks indicate Comparative Examples 2 to 6.

【0024】図1から、20体積%以下のm−ジビニル
ベンゼンを含むp−ジビニルベンゼン(実施例1、3〜
5)および20体積%以下のpジビニルベンゼンを含む
m−ジビニルベンゼン(実施例2、6〜8)を用いた場
合にはカラム圧が低いことが示される。
From FIG. 1, it can be seen that p-divinylbenzene containing 20% by volume or less of m-divinylbenzene (Examples 1 and 3 to
5) and m-divinylbenzene containing 20% by volume or less of p-divinylbenzene (Examples 2, 6-8) show that the column pressure is low.

【0025】[0025]

【発明の効果】本発明によれば、実質的に異性体の混在
しないジビニルベンゼンを用いて得られたスチレン−ジ
ビニルベンゼン共重合体をイオン交換樹脂化しているた
め、溶離液を高速で流してもカラム入口圧を低くするこ
とができ、液体クロマトグラフィー装置にかかる負担を
減少することができる。また分離性能を低下させずに高
流速で分離を行うことができるため、分析時間を短縮す
ることができる。
[Effects of the Invention] According to the present invention, since the styrene-divinylbenzene copolymer obtained using divinylbenzene, which is substantially free of isomers, is made into an ion exchange resin, the eluent can be flowed at high speed. Also, the column inlet pressure can be lowered, and the load placed on the liquid chromatography apparatus can be reduced. Furthermore, since separation can be performed at a high flow rate without reducing separation performance, analysis time can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】m−ジビニルベンゼンの使用割合とカラム圧と
の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the usage ratio of m-divinylbenzene and column pressure.

【図2】実施例1で得られたスチレン−p−ジビニルベ
ンゼン共重合体(a)の赤外吸収スペクトル図である。
FIG. 2 is an infrared absorption spectrum diagram of the styrene-p-divinylbenzene copolymer (a) obtained in Example 1.

【図3】実施例2で得られたスチレン−m−ジビニルベ
ンゼン共重合体(b)の赤外吸収スペクトル図である。
FIG. 3 is an infrared absorption spectrum diagram of the styrene-m-divinylbenzene copolymer (b) obtained in Example 2.

【図4】比較例1で得られたスチレン−ジビニルベンゼ
ン共重合体(c) の赤外吸収スペクトル図である。
FIG. 4 is an infrared absorption spectrum diagram of the styrene-divinylbenzene copolymer (c) obtained in Comparative Example 1.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  スチレンと、実質的に異性体が混在し
ないジビニルベンゼンとを反応させることを特徴とする
スチレン−ジビニルベンゼン共重合体の合成法。
1. A method for synthesizing a styrene-divinylbenzene copolymer, which comprises reacting styrene with divinylbenzene in which substantially no isomers are present.
【請求項2】  20体積%以下の異性体が混在するジ
ビニルベンゼンを用いることを特徴とする請求項1記載
のスチレン−ジビニルベンゼン共重合体の合成法。
2. The method for synthesizing a styrene-divinylbenzene copolymer according to claim 1, wherein divinylbenzene containing 20% by volume or less of isomers is used.
【請求項3】  請求項1または2記載のスチレン−ジ
ビニルベンゼン共重合体をスルホン化したことを特徴と
する液体クロマトグラフィー用充填剤。
3. A packing material for liquid chromatography, characterized in that the styrene-divinylbenzene copolymer according to claim 1 or 2 is sulfonated.
JP3002753A 1991-01-14 1991-01-14 Synthesis of styrene/divinylbenzene copolymer and packing for liquid chromatography Pending JPH04239009A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3002753A JPH04239009A (en) 1991-01-14 1991-01-14 Synthesis of styrene/divinylbenzene copolymer and packing for liquid chromatography
EP19920300266 EP0496513A3 (en) 1991-01-14 1992-01-13 Process for producing ionexchange resins and use of the resins for separating amino acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3002753A JPH04239009A (en) 1991-01-14 1991-01-14 Synthesis of styrene/divinylbenzene copolymer and packing for liquid chromatography

Publications (1)

Publication Number Publication Date
JPH04239009A true JPH04239009A (en) 1992-08-26

Family

ID=11538108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3002753A Pending JPH04239009A (en) 1991-01-14 1991-01-14 Synthesis of styrene/divinylbenzene copolymer and packing for liquid chromatography

Country Status (1)

Country Link
JP (1) JPH04239009A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181842A1 (en) * 2017-03-30 2018-10-04 新日鉄住金化学株式会社 Soluble polyfunctional vinyl aromatic copolymer, method for producing same, curable resin composition and cured product thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181842A1 (en) * 2017-03-30 2018-10-04 新日鉄住金化学株式会社 Soluble polyfunctional vinyl aromatic copolymer, method for producing same, curable resin composition and cured product thereof
JPWO2018181842A1 (en) * 2017-03-30 2020-02-20 日鉄ケミカル&マテリアル株式会社 Soluble polyfunctional vinyl aromatic copolymer, method for producing the same, curable resin composition and cured product thereof
US11130861B2 (en) 2017-03-30 2021-09-28 Nippon Steel Chemical & Material Co., Ltd. Soluble polyfunctional vinyl aromatic copolymer, method for producing same, curable resin composition and cured product thereof

Similar Documents

Publication Publication Date Title
US5902834A (en) Method of manufacturing particles, and particles that can be produced in accordance with the method
EP0626976B1 (en) Preparation of surface-functional polymer particles
US4093570A (en) Production of porous polymers
EP0831113B1 (en) Alkylated porous resin, process for production thereof, and use thereof
JPS5858026B2 (en) Packing material for chromatography and its manufacturing method
WO2023082566A1 (en) Solid-phase extraction material and preparation method therefor and use thereof
US4725646A (en) Method of producing hard polyvinyl alcohol gel
US6365683B2 (en) Process for preparing monodisperse crosslinked bead polymers
Liang et al. Preparation and functionalization of reactive monodisperse macroporous poly (chloromethylstyrene‐co‐styrene‐co‐divinylbenzene) beads by a staged templated suspension polymerization
KR860001409B1 (en) Method of producing for bead-like polymer production
JPH04239009A (en) Synthesis of styrene/divinylbenzene copolymer and packing for liquid chromatography
JPH04317740A (en) Filler for liquid chromatography
JPH11193310A (en) Alkyl-group-containing porous polymer, manufacture thereof and application thereof
JP2007505209A (en) Improved solventless sulfonation of exchange resins
EP0496513A2 (en) Process for producing ionexchange resins and use of the resins for separating amino acids
JPH03152108A (en) Synthesis of fine-grain styrene-divinylbenzene copolymer and production of filler for liquid chromatography
JP2000007711A (en) Preparation of crosslinked spherical polymer
JPH0623279A (en) Strongly acidic cation exchange resin for liquid chromatography
JPH02196810A (en) Acrylic crosslinked polymer particle and production thereof
JPH0623280A (en) Weakly acidic exchange resin for liquid chromatography
JPH05133946A (en) Method of separation amino acids
JPS5829134B2 (en) Adsorption separation agent for blood purification
JPH0623281A (en) Anion exchange resin for liquid chromatography
JP3541917B2 (en) Ester group-containing porous resin and method for producing the same
JPH02126155A (en) Separation column