JPH04238811A - Ammonia-recovering device in gas soft nitriding device - Google Patents
Ammonia-recovering device in gas soft nitriding deviceInfo
- Publication number
- JPH04238811A JPH04238811A JP3002040A JP204091A JPH04238811A JP H04238811 A JPH04238811 A JP H04238811A JP 3002040 A JP3002040 A JP 3002040A JP 204091 A JP204091 A JP 204091A JP H04238811 A JPH04238811 A JP H04238811A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- ammonia
- nitriding
- soft
- gas soft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005121 nitriding Methods 0.000 title claims abstract description 40
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 112
- 238000007906 compression Methods 0.000 claims abstract description 26
- 230000006835 compression Effects 0.000 claims abstract description 26
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 20
- 238000001816 cooling Methods 0.000 claims abstract description 15
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 6
- 239000010959 steel Substances 0.000 claims abstract description 6
- 238000001704 evaporation Methods 0.000 claims description 10
- 238000011084 recovery Methods 0.000 claims description 8
- 230000008020 evaporation Effects 0.000 claims description 6
- 238000004381 surface treatment Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 abstract description 7
- 230000008016 vaporization Effects 0.000 abstract 2
- 238000009834 vaporization Methods 0.000 abstract 2
- 239000007789 gas Substances 0.000 description 95
- 239000007788 liquid Substances 0.000 description 8
- 239000000498 cooling water Substances 0.000 description 6
- 239000001273 butane Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 5
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000003507 refrigerant Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Landscapes
- Treating Waste Gases (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明はアンモニアを含む高温下
の雰囲気ガス中で鉄鋼部品等の表面処理を行うガス軟窒
化装置に関し、特に、ガス軟窒化炉から排出される未分
解アンモニアガスを回収して再利用するようにしたガス
軟窒化装置におけるアンモニア回収装置に関する。[Industrial Application Field] The present invention relates to a gas nitrocarburizing apparatus that performs surface treatment of steel parts, etc. in a high-temperature atmospheric gas containing ammonia, and in particular recovers undecomposed ammonia gas discharged from a gas nitrocarburizing furnace. The present invention relates to an ammonia recovery device in a gas nitrocarburizing device that is recycled.
【0002】0002
【従来の技術】ガス軟窒化処理は、鉄鋼部品等のワーク
の耐摩耗性および疲労強度の向上を目的として、前記鉄
鋼部品等をCO、H2 、N2 を主成分とする吸熱型
変成ガス(ENDガス)とアンモニアガスから成る雰囲
気ガス中で570〜600°Cの温度で熱処理するもの
である。[Prior Art] Gas nitrocarburizing treatment is a process to improve the wear resistance and fatigue strength of workpieces such as steel parts. The heat treatment is performed at a temperature of 570 to 600°C in an atmospheric gas consisting of ammonia gas and ammonia gas.
【0003】吸熱型変成ガスのCO成分とアンモニアガ
スは、ガス軟窒化炉中におけるワークとの接触により以
下のように反応する。
(i) 吸熱型変成ガス 2CO→C(浸炭)
+CO2
(ii) アンモニアガス 2NH3 →3H2
+2N(窒化)このように、ガス軟窒化炉内で吸熱型変
成ガスのCO成分とアンモニアガスNH3 が分解して
それぞれ炭素原子Cと窒素原子Nを生成し、その炭素原
子Cと窒素原子Nがワークの表面より内部に侵入拡散し
て表面に耐摩耗性を有する化合物層を形成すると同時に
、その内部に疲労強度を向上させる窒素の拡散層を形成
する。[0003] The CO component of the endothermic metamorphosed gas and the ammonia gas react as follows when they come into contact with the workpiece in the gas nitrocarburizing furnace. (i) Endothermic transformed gas 2CO→C (carburizing)
+CO2 (ii) Ammonia gas 2NH3 →3H2
+2N (Nitriding) In this way, the CO component of the endothermic metamorphic gas and the ammonia gas NH3 are decomposed in the gas soft-nitriding furnace to produce carbon atoms C and nitrogen atoms N, respectively, and the carbon atoms C and nitrogen atoms N are It penetrates and diffuses into the interior of the workpiece to form a wear-resistant compound layer on the surface, and at the same time forms a nitrogen diffusion layer inside the workpiece that improves fatigue strength.
【0004】前記雰囲気ガスは、エアーとブタンC4
H10を変成炉内で変成して一定混合率のCO、H2
、N2 (例えば、CO24%、H2 30%、N2
46%)から成る吸熱型変成ガスを作成し、この吸熱型
変成ガスに液体アンモニアを蒸発させたアンモニアガス
を一定の比率(例えば、吸熱型変成ガス46%、アンモ
ニアガス54%)で混合することにより得ることができ
る。[0004] The atmospheric gas is air and butane C4.
H10 is transformed in a transformation furnace to produce CO and H2 at a constant mixing ratio.
, N2 (e.g. CO2 4%, H2 30%, N2
46%), and mix ammonia gas obtained by evaporating liquid ammonia into this endothermic metamorphic gas at a certain ratio (for example, endothermic metamorphic gas 46% and ammonia gas 54%). It can be obtained by
【0005】前記ガス軟窒化処理を経た雰囲気ガスは、
前述のようにCOとNH3 が分解するために不要なC
O2 、H2 、N2 が増加して適正な組成でなくな
るだけでなく、臭気が強い未分解のアンモニアガスを大
量に含んでいる。このために、絶えず新しい雰囲気ガス
を供給することにより古い雰囲気ガスをガス軟窒化炉か
ら押出し、排出された古い雰囲気ガスを他の燃料と混合
して焼却している。[0005] The atmospheric gas that has undergone the gas nitrocarburizing treatment is
As mentioned above, unnecessary C is decomposed by CO and NH3.
Not only does O2, H2, and N2 increase and the composition is no longer appropriate, but it also contains a large amount of undecomposed ammonia gas, which has a strong odor. For this purpose, old atmospheric gas is forced out of the gas nitrocarburizing furnace by constantly supplying new atmospheric gas, and the discharged old atmospheric gas is mixed with other fuel and incinerated.
【0006】[0006]
【発明が解決しようとする課題】ところで、ガス軟窒化
炉内において前記(i)式、および(ii)式に基づい
て反応する雰囲気ガスはワークの表面に接触している一
部のみであって、他の大部分の雰囲気ガスは未反応のま
ま残留する。また一部の雰囲気ガスは熱分解により消費
されるが、全体として消費される雰囲気ガスの比率は極
一部に限られ、その多くは前述のように廃棄されている
。例えば、ガス軟窒化炉に供給する雰囲気ガスの吸熱型
変成ガスとアンモニアガスの混合比率を46:54とす
れば、表1の右欄に示すように、ガス軟窒化炉から排出
される混合ガスの吸熱型変成ガス(N2 、H2 、C
O)とアンモニアガス(NH3 )の混合比率は52.
1:47.5となる。これからガス軟窒化炉において分
解されるアンモニアの比率を計算すると僅かに4.4%
となり、他の大部分のアンモニアは未分解のまま排出さ
れることになる。また、過去におけるガス軟窒化処理で
は、混合ガスにおける未分解のアンモニアガスの混合比
率は35%程度と低いものであったが(表1の左欄参照
)、前述のように現在ではアンモニアガスの混合比率が
47.5%と高まっていることもあり、省資源およびコ
スト低減の観点から未分解のアンモニアガスを回収して
再利用することが要請されている。[Problems to be Solved by the Invention] Incidentally, in the gas soft-nitriding furnace, the atmospheric gas that reacts based on the above equations (i) and (ii) is only a part of it that is in contact with the surface of the workpiece. , most of the other atmospheric gases remain unreacted. Further, although some of the atmospheric gas is consumed by thermal decomposition, the proportion of the atmospheric gas that is consumed as a whole is limited to a very small portion, and most of it is discarded as described above. For example, if the mixing ratio of endothermic metamorphic gas and ammonia gas in the atmosphere gas supplied to the gas soft-nitriding furnace is 46:54, the mixed gas discharged from the gas soft-nitriding furnace will be as shown in the right column of Table 1. endothermic gases (N2, H2, C
The mixing ratio of O) and ammonia gas (NH3) is 52.
It becomes 1:47.5. From this calculation, the ratio of ammonia decomposed in the gas soft-nitriding furnace is only 4.4%.
Therefore, most of the other ammonia is discharged undecomposed. In addition, in past gas soft-nitriding treatments, the mixing ratio of undecomposed ammonia gas in the mixed gas was as low as about 35% (see the left column of Table 1), but as mentioned above, currently Partly because the mixing ratio has increased to 47.5%, there is a demand for recovering and reusing undecomposed ammonia gas from the viewpoint of resource conservation and cost reduction.
【0007】[0007]
【表1】[Table 1]
【0008】本発明は前述の事情に鑑みてなされたもの
で、ガス軟窒化炉から未分解のまま排出されたアンモニ
アガスを回収して再利用することが可能なガス軟窒化装
置におけるアンモニア回収装置を提供することを目的と
する。The present invention has been made in view of the above-mentioned circumstances, and provides an ammonia recovery device for a gas soft-nitriding apparatus that is capable of recovering and reusing ammonia gas discharged undecomposed from a gas soft-nitriding furnace. The purpose is to provide
【0009】[0009]
【課題を解決するための手段】前記目的を達成するため
、本発明のガス軟窒化装置におけるアンモニア回収装置
は、アンモニアを含む高温下の雰囲気ガス中で鉄鋼部品
等の表面処理を行うガス軟窒化装置において、ガス軟窒
化炉から排出される未分解アンモニアガスを含む混合ガ
スのうち、前記未分解アンモニアガスを液化して分離す
る冷却手段および圧縮手段と、この冷却手段および圧縮
手段により液化した液体アンモニアを加熱して蒸発させ
、前記ガス軟窒化炉に戻す蒸発手段とを有することを第
1の特徴とする。[Means for Solving the Problems] In order to achieve the above object, the ammonia recovery device in the gas soft nitriding apparatus of the present invention provides a gas soft nitriding system for surface treatment of steel parts, etc. in a high temperature atmospheric gas containing ammonia. In the apparatus, a cooling means and a compression means for liquefying and separating the undecomposed ammonia gas out of the mixed gas containing undecomposed ammonia gas discharged from the gas soft-nitriding furnace, and a liquid liquefied by the cooling means and the compression means. The first feature is that the method includes an evaporating means for heating and evaporating ammonia and returning it to the gas soft-nitriding furnace.
【0010】また本発明は、前述の第1の特徴に加えて
、前記冷却手段および/または圧縮手段において回収し
た熱を、前記蒸発手段のエネルギー源として用いること
を第2の特徴とする。In addition to the above-mentioned first feature, the present invention has a second feature in that the heat recovered in the cooling means and/or the compression means is used as an energy source for the evaporation means.
【0011】[0011]
【実施例】以下、図面に基づいて本発明の実施例を説明
する。Embodiments Hereinafter, embodiments of the present invention will be explained based on the drawings.
【0012】図1および図2は本発明の一実施例を示す
もので、図1はそのアンモニア回収装置の全体構成図、
図2は同じく概略構成図である。FIGS. 1 and 2 show an embodiment of the present invention, and FIG. 1 is an overall configuration diagram of the ammonia recovery apparatus;
FIG. 2 is also a schematic configuration diagram.
【0013】1a〜1dは4基のガス軟窒化炉であって
、570〜600°Cに保持された炉内において鉄鋼部
品等のワークに雰囲気ガスを反応させてガス軟窒化処理
を行うものである。ガス軟窒化炉1a〜1dは各々ガス
流量調節器2a〜2dを介して共通のアンモニアガス供
給路3に接続され、そのアンモニアガス供給路3の上流
端には液体アンモニアタンク4が蒸発器5と圧力指示調
節計6により作動する開閉弁を介して接続される。一方
、前記各ガス流量調節器2a〜2dに接続される共通の
吸熱型変成ガス供給路7の上流端には、ブタンタンク8
および変成炉9が接続される。而して、液体アンモニア
タンク4内に貯留された液体アンモニアは蒸発器5で気
化してアンモニアガスとなり、アンモニアガス供給路3
を介して4基のガス軟窒化炉1a〜1dに供給される。
また、ブタンタンク8に貯留されたブタンは変成炉9に
おいてエアーと共に変成されて、例えば、CO24%、
H2 40%、N2 46%の組成を有する吸熱型変成
ガスとなり、吸熱型変成ガス供給路7を介して4基のガ
ス軟窒化炉1a〜1dに供給される。このとき、各ガス
軟窒化炉1a〜1dに対応して設けられたガス流量調節
器2a〜2dで吸熱型変成ガスとアンモニアガスを例え
ば46:54の比率で混合することにより、所望の成分
を含む雰囲気ガスをガス軟窒化炉1a〜1dに供給する
ことができる。[0013] 1a to 1d are four gas soft nitriding furnaces, which perform gas soft nitriding treatment by reacting atmospheric gas with workpieces such as steel parts in the furnace maintained at 570 to 600°C. be. The gas soft-nitriding furnaces 1a to 1d are connected to a common ammonia gas supply path 3 via gas flow rate regulators 2a to 2d, respectively, and a liquid ammonia tank 4 is connected to an evaporator 5 at the upstream end of the ammonia gas supply path 3. It is connected via an on-off valve operated by a pressure indicating regulator 6. On the other hand, a butane tank 8 is provided at the upstream end of the common endothermic gas supply path 7 connected to each of the gas flow rate regulators 2a to 2d.
and a converter furnace 9 are connected. The liquid ammonia stored in the liquid ammonia tank 4 is vaporized in the evaporator 5 to become ammonia gas, and the ammonia gas supply path 3 is
The gas is supplied to four gas soft-nitriding furnaces 1a to 1d through the gas nitrocarburizing furnaces 1a to 1d. In addition, the butane stored in the butane tank 8 is transformed together with air in the transformation furnace 9, and for example, CO24%,
The endothermic transformed gas has a composition of 40% H2 and 46% N2, and is supplied to the four gas soft-nitriding furnaces 1a to 1d via the endothermic transformed gas supply path 7. At this time, the desired components are mixed by mixing endothermic gas and ammonia gas at a ratio of, for example, 46:54 using gas flow rate regulators 2a to 2d provided corresponding to the respective gas soft-nitriding furnaces 1a to 1d. The atmospheric gas containing the gas can be supplied to the gas soft-nitriding furnaces 1a to 1d.
【0014】さて、ガス軟窒化炉1a〜1dにおいて、
雰囲気ガスに含まれるアンモニアガスの一部(4〜5%
)がH2 とNに分解してガス軟窒化処理に供されるが
、残りの大部分の未分解のアンモニアガスと他のN2
、H2 、CO、O2 、Ar等の混合ガスは、連続的
に流入する新しい雰囲気ガスにより流路10に押し出さ
れてプレクーラ11に供給される。プレクーラ11には
、冷却水タンク12に貯留した冷却水がポンプ13によ
り流路14を介して供給され、約600°Cの混合ガス
は約40°Cまで冷やされる。このようにプレクーラ1
1でアンモニアガスを予め冷却することにより、後続の
圧縮・冷却工程においてアンモニアガスを容易に液化す
ることができる。Now, in the gas soft nitriding furnaces 1a to 1d,
Part of the ammonia gas contained in the atmospheric gas (4 to 5%)
) is decomposed into H2 and N and subjected to gas nitrocarburizing treatment, but most of the remaining undecomposed ammonia gas and other N2
, H2, CO, O2, Ar, etc., are pushed into the flow path 10 by the continuously flowing new atmospheric gas and supplied to the precooler 11. Cooling water stored in a cooling water tank 12 is supplied to the precooler 11 via a flow path 14 by a pump 13, and the mixed gas at about 600°C is cooled to about 40°C. Precooler 1 like this
By cooling the ammonia gas in advance in step 1, the ammonia gas can be easily liquefied in the subsequent compression and cooling process.
【0015】続いて、前記混合ガスは流路15を介して
3つの圧縮段を有するコンプレッサ16に供給され、例
えば第1圧縮段で4.8気圧、第2圧縮段で23気圧、
第3圧縮段で110気圧に圧縮される。このとき、圧縮
により温度が上昇した混合ガスを冷却すべく、第1圧縮
段と第2圧縮段の間に流路17,18を介して1段イン
タークーラ19が介装されるとともに、第2圧縮段と第
3圧縮段の間に流路20,21,22を介して直列に接
続された2段インタークーラA23と2段インタークー
ラB24が介装される。これら3個のインタークーラ1
9,23,24のうち、最初の2個のインタークーラ1
9,23には、各々流路25,26を介して前記冷却水
ポンプ13から冷却水が供給され、また最後のインタク
ーラ24には後述するように液体アンモニアが冷媒とし
て供給される。[0015] Subsequently, the mixed gas is supplied to a compressor 16 having three compression stages through a flow path 15. For example, the first compression stage has a pressure of 4.8 atm, the second compression stage has a pressure of 23 atm,
It is compressed to 110 atmospheres in the third compression stage. At this time, in order to cool the mixed gas whose temperature has increased due to compression, a first stage intercooler 19 is interposed between the first compression stage and the second compression stage via channels 17 and 18, and a second stage intercooler 19 is interposed between the first compression stage and the second compression stage. A two-stage intercooler A23 and a two-stage intercooler B24 connected in series via flow paths 20, 21, and 22 are interposed between the compression stage and the third compression stage. These three intercoolers 1
The first two intercoolers 1 among 9, 23, and 24
9 and 23 are supplied with cooling water from the cooling water pump 13 via channels 25 and 26, respectively, and liquid ammonia is supplied as a refrigerant to the last intercooler 24 as described later.
【0016】前記コンプレッサ16の前後に各々設けら
れたバッファータンク27,28の下流位置と上流位置
とは圧力指示調節計29により開閉されるバイパス流路
30で接続され、そのバイパス流路30には流路31を
介して冷却水が供給されるバイパスクーラ32が介装さ
れる。前記バッファータンク27,28は、ガス軟窒化
炉1a〜1dの扉を開閉した際の一時的な圧力低下を緩
衝するように機能する。また、コンプレッサ16の吸入
量が不足する場合には、バイパス流路30を介して混合
ガスの一部がコンプレッサ16の吐出側から吸入側に戻
され、その際混合ガスがバイパスクーラ32により冷却
される。The downstream and upstream positions of the buffer tanks 27 and 28 provided before and after the compressor 16 are connected by a bypass flow path 30 that is opened and closed by a pressure indicating regulator 29, and the bypass flow path 30 has a A bypass cooler 32 to which cooling water is supplied via a flow path 31 is provided. The buffer tanks 27 and 28 function to buffer a temporary pressure drop when the doors of the gas soft-nitriding furnaces 1a to 1d are opened and closed. Further, when the suction amount of the compressor 16 is insufficient, a part of the mixed gas is returned from the discharge side to the suction side of the compressor 16 via the bypass passage 30, and at this time, the mixed gas is cooled by the bypass cooler 32. Ru.
【0017】さて、コンプレッサ16から吐出された1
10気圧、200°Cの混合ガスは、流路33,34,
35に直列に介装されたコンデンサA36およびコンデ
ンサB37において冷却され、その際混合ガスの成分中
で最も高沸点(−35.35°C)かつ高臨界温度(1
32.3°C)を有するアンモニアガスが液化して気液
分離タンク38に30気圧、5°Cの条件で貯留される
。また、その他の利用できないN2 、H2 、CO、
O2 、Ar等の混合ガスは、気液分離タンク38の上
部から圧力指示調整計39により開閉される流路40を
介してバーナー41に供給され、そこで流路42から供
給されるブタンガスと混合して燃焼される。なお、前記
コンデンサA36には流路43を介して冷却水が供給さ
れ、またコンデンサB37には後述するように液体アン
モニアが冷媒として供給される。Now, the 1 discharged from the compressor 16
The mixed gas at 10 atm and 200°C flows through channels 33, 34,
It is cooled in a condenser A36 and a condenser B37 which are installed in series with the gas mixture, and the highest boiling point (-35.35°C) and highest critical temperature (1
Ammonia gas having a temperature of 32.3°C) is liquefied and stored in the gas-liquid separation tank 38 at 30 atmospheres and 5°C. In addition, other unavailable N2, H2, CO,
A mixed gas such as O2 and Ar is supplied from the upper part of the gas-liquid separation tank 38 to the burner 41 through a channel 40 that is opened and closed by a pressure indicator regulator 39, where it is mixed with butane gas supplied from a channel 42. is burned. Note that cooling water is supplied to the capacitor A36 through a flow path 43, and liquid ammonia is supplied as a refrigerant to the capacitor B37 as described later.
【0018】気液分離タンク38内の液体アンモニアは
温度指示計44および液面指示調節計45により監視さ
れ、流路46を介して減圧器47に送られる。減圧器4
7では液体アンモニア内に溶存していたCO等が除去さ
れ、それらは圧力指示調整計48により開閉される流路
49を介して前記バーナー41に供給されて燃焼される
。このように、気液分離タンク38により液体アンモニ
アに溶け込まないガス(例えば、N2 、H2 、…)
を除去した後、減圧器47で液体アンモニアに溶け込ん
だガス(例えば、CO2 )を除去しているので、極め
て純度の高い液体アンモニアを得ることが可能となる。Liquid ammonia in the gas-liquid separation tank 38 is monitored by a temperature indicator 44 and a liquid level indicator 45, and is sent to a pressure reducer 47 via a flow path 46. Pressure reducer 4
At step 7, CO and the like dissolved in the liquid ammonia are removed, and they are supplied to the burner 41 through a flow path 49 opened and closed by a pressure indicator regulator 48 and burned. In this way, gases that do not dissolve in liquid ammonia (for example, N2, H2,...) are removed by the gas-liquid separation tank 38.
After removing the gas, the gas (for example, CO2) dissolved in the liquid ammonia is removed by the pressure reducer 47, making it possible to obtain liquid ammonia with extremely high purity.
【0019】このようにして純粋に分離された液体アン
モニアは、前記減圧器47の液面指示調節計50により
開閉される流路51、および前記流路22内のアンモニ
アの温度を検出する温度記録調節計52により開閉され
る流路53を介して前記2段インタークーラB24に冷
媒として供給される。この2段インタークーラB24で
は、コンプレッサ16の第2圧縮段で圧縮されて2段イ
ンタークーラA23を通過した高温のアンモニアガスが
低温の液体アンモニアにより更に冷却され、逆にその液
体アンモニアにはアンモニアガスから熱を奪って蒸発す
る。なお、この2段インタ−クーラB24においてアン
モニアガスから分離された水分に含まれるガスは、ドレ
ン分離器54で分離された後、流路55を介して前記バ
ーナー41に供給されて燃焼される。The liquid ammonia purified in this way is stored in a flow path 51 that is opened and closed by a liquid level indicating controller 50 of the pressure reducer 47, and a temperature recorder that detects the temperature of ammonia in the flow path 22. It is supplied as a refrigerant to the two-stage intercooler B24 via a flow path 53 that is opened and closed by a controller 52. In this two-stage intercooler B24, the high-temperature ammonia gas that has been compressed in the second compression stage of the compressor 16 and passed through the two-stage intercooler A23 is further cooled by low-temperature liquid ammonia. It absorbs heat and evaporates. Note that the gas contained in the water separated from the ammonia gas in the two-stage intercooler B24 is separated in the drain separator 54, and then supplied to the burner 41 through the flow path 55 and burned.
【0020】一方、前記流路51から分岐する流路56
を介してコンデンサB37に供給された低温の液体アン
モニアは、そのコンデンサB37で高温のアンモニアガ
スを冷却することにより液体から気体へと蒸発する。そ
して、前記2段インタークーラB24およびコンデンサ
B37において気化したアンモニアガスは、流路57,
58を介して温度指示計59を介装した流路60に合流
し、そこから前記アンモニアガス供給路3を介して各ガ
ス軟窒化炉1a〜1dに戻される。このとき、ガス軟窒
化炉1a〜1dにおいて実際に消費されたアンモニアガ
スを補充すべく、前記蒸発器5とアンモニアガス供給炉
3との間に介装した圧力指示調節計6により、流路60
内を戻るアンモニアガスの圧力が大気圧よりも400m
m水柱だけ大きくなるように調節される。On the other hand, a flow path 56 branching from the flow path 51
The low temperature liquid ammonia supplied to the condenser B37 is evaporated from liquid to gas by cooling the high temperature ammonia gas in the condenser B37. The ammonia gas vaporized in the two-stage intercooler B24 and the condenser B37 flows through the flow path 57,
58, it joins a flow path 60 in which a temperature indicator 59 is installed, and from there it is returned to each gas soft-nitriding furnace 1a to 1d via the ammonia gas supply path 3. At this time, in order to replenish the ammonia gas actually consumed in the gas soft-nitriding furnaces 1a to 1d, the flow path 60 is
The pressure of ammonia gas returning inside is 400m higher than atmospheric pressure.
It is adjusted so that the water column increases by m water column.
【0021】このようにして、ガス軟窒化炉1a〜1d
から排出される混合ガスに含まれる未分解のアンモニア
ガスを回収して再利用しているので、ガス軟窒化処理に
より実際に消費された僅かな量のアンモニアを補充する
だけで適正な雰囲気ガスを得ることが可能となる。しか
も、2段インタークーラB24およびコンデンサB37
の冷媒としてガス軟窒化炉1a〜1dから排出される混
合ガスから回収した低温の液体アンモニアに使用してい
るので、前記2段インタークーラB24およびコンデン
サB37は液体アンモニアの蒸発器としての役割も兼ね
ることになり、その結果アンモニアガスの冷却および液
体アンモニアの蒸発のためのエネルギー源を省略するこ
とができる。In this way, the gas soft nitriding furnaces 1a to 1d
Since the undecomposed ammonia gas contained in the mixed gas discharged from the gas is recovered and reused, the appropriate atmospheric gas can be created by simply replenishing the small amount of ammonia actually consumed during the gas nitrocarburizing process. It becomes possible to obtain. Moreover, two-stage intercooler B24 and capacitor B37
Since the low-temperature liquid ammonia recovered from the mixed gas discharged from the gas soft-nitriding furnaces 1a to 1d is used as a refrigerant, the two-stage intercooler B24 and condenser B37 also serve as an evaporator for the liquid ammonia. As a result, an energy source for cooling the ammonia gas and evaporating the liquid ammonia can be omitted.
【0022】以上、本発明の実施例を詳述したが、本発
明は前記実施例に限定されるものではなく、特許請求の
範囲に記載された本発明を逸脱することなく、種々の小
設計変更を行うことが可能である。Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various small designs can be made without departing from the scope of the invention described in the claims. It is possible to make changes.
【0023】例えば、実施例では液体アンモニアを蒸発
させるために高温のアンモニアガスを利用しているが、
その際に液体アンモニアの蒸発を前記2段インタークー
ラB24あるいはコンデンサB37のいずれか一方にお
いて行っても良く、また液体アンモニアの蒸発を個別の
熱源を有する蒸発器により行っても良い。For example, in the embodiment, high temperature ammonia gas is used to evaporate liquid ammonia, but
At this time, the liquid ammonia may be evaporated in either the two-stage intercooler B24 or the condenser B37, or the liquid ammonia may be evaporated using an evaporator having a separate heat source.
【0024】[0024]
【発明の効果】以上のように本発明の第1の特徴によれ
ば、ガス軟窒化炉から排出される未分解アンモニアガス
を含む混合ガスのうち、前記未分解アンモニアガスを冷
却手段および圧縮手段で液化して分離するとともに、分
離した液体アンモニアを蒸発手段により蒸発させて再利
用しているので、ガス軟窒化処理により実際に消費され
た僅かな量のアンモニアを補充するだけで雰囲気ガス組
成を適正に保持することができ、その結果コスト低減と
資源の節約が可能となる。As described above, according to the first feature of the present invention, out of the mixed gas containing undecomposed ammonia gas discharged from the gas soft-nitriding furnace, the undecomposed ammonia gas is removed by the cooling means and the compressing means. At the same time, the separated liquid ammonia is evaporated and reused by an evaporation means, so the atmospheric gas composition can be changed by simply replenishing the small amount of ammonia actually consumed during the gas soft-nitriding process. It can be properly maintained, resulting in cost reduction and resource savings.
【0025】また本発明の第2の特徴によれば、冷却手
段および/または圧縮手段から回収した熱を蒸発手段に
おいて利用しているので、特別のエネルギー源を用いる
ことなくアンモニアガスの液化と液体アンモニアを蒸発
を行うことが可能となり、一層のエネルギー節減が達成
される。According to the second feature of the present invention, the heat recovered from the cooling means and/or the compression means is utilized in the evaporation means, so that the liquefaction and liquidization of ammonia gas can be carried out without using a special energy source. It becomes possible to evaporate ammonia and further energy savings are achieved.
【図1】ガス軟窒化装置におけるアンモニア回収装置の
全体構成図[Figure 1] Overall configuration diagram of ammonia recovery equipment in gas soft-nitriding equipment
【図2】同じくアンモニア回収装置の概略構成図[Figure 2] Schematic diagram of the same ammonia recovery equipment
1a〜1d ガス軟窒化炉
11 プレクーラ(冷却手段)16
コンプレッサ(圧縮手段)19
1段インタークーラ(圧縮手段)23
2段インタークーラA(圧縮手段)24
2段インタークーラB(圧縮手段、蒸発手段)1a to 1d Gas soft nitriding furnace 11 Precooler (cooling means) 16
Compressor (compression means) 19
1-stage intercooler (compression means) 23
Two-stage intercooler A (compression means) 24
Two-stage intercooler B (compression means, evaporation means)
Claims (2)
中で鉄鋼部品等の表面処理を行うガス軟窒化装置におい
て、ガス軟窒化炉(1a〜1d)から排出される未分解
アンモニアガスを含む混合ガスのうち、前記未分解アン
モニアガスを液化して分離する冷却手段(11,36,
37)および圧縮手段(16,19,23,24)と、
この冷却手段(11,36,37)および圧縮手段(1
6,19,23,24)により液化した液体アンモニア
を加熱して蒸発させ、前記ガス軟窒化炉(1a〜1d)
に戻す蒸発手段(24,37)とを有することを特徴と
する、ガス軟窒化装置におけるアンモニア回収装置。Claim 1: A mixed gas containing undecomposed ammonia gas discharged from a gas soft-nitriding furnace (1a to 1d) in a gas soft-nitriding apparatus that performs surface treatment of steel parts, etc. in a high-temperature atmospheric gas containing ammonia. Among them, cooling means (11, 36,
37) and compression means (16, 19, 23, 24),
This cooling means (11, 36, 37) and compression means (1
6, 19, 23, 24) to heat and evaporate the liquid ammonia liquefied by the gas soft nitriding furnace (1a to 1d).
An ammonia recovery device in a gas soft-nitriding device, characterized in that it has an evaporation means (24, 37) for returning the ammonia to the gas.
よび/または圧縮手段(16,19,23,24)にお
いて回収した熱を、前記蒸発手段(24,37)のエネ
ルギー源として用いることを特徴とする、請求項1記載
のガス軟窒化装置におけるアンモニア回収装置。2. The heat recovered in the cooling means (11, 36, 37) and/or the compression means (16, 19, 23, 24) is used as an energy source for the evaporation means (24, 37). An ammonia recovery device in a gas soft-nitriding device according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00204091A JP3261137B2 (en) | 1991-01-11 | 1991-01-11 | Ammonia recovery unit in gas soft nitriding unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00204091A JP3261137B2 (en) | 1991-01-11 | 1991-01-11 | Ammonia recovery unit in gas soft nitriding unit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04238811A true JPH04238811A (en) | 1992-08-26 |
JP3261137B2 JP3261137B2 (en) | 2002-02-25 |
Family
ID=11518214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00204091A Expired - Fee Related JP3261137B2 (en) | 1991-01-11 | 1991-01-11 | Ammonia recovery unit in gas soft nitriding unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3261137B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008013406A (en) * | 2006-07-06 | 2008-01-24 | Air Water Inc | Method for recovering ammonia, method for reutilizing ammonia, ammonia recovery system and ammonia reutilization system |
JP2009179816A (en) * | 2008-01-29 | 2009-08-13 | Chugai Ro Co Ltd | Carburizing apparatus |
JP2014124584A (en) * | 2012-12-26 | 2014-07-07 | Japan Pionics Co Ltd | Ammonia and hydrogen collection method and ammonia and hydrogen recycling method |
WO2024202229A1 (en) * | 2023-03-28 | 2024-10-03 | Jfeスチール株式会社 | Manufacturing facility and method for operating manufacturing facility |
-
1991
- 1991-01-11 JP JP00204091A patent/JP3261137B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008013406A (en) * | 2006-07-06 | 2008-01-24 | Air Water Inc | Method for recovering ammonia, method for reutilizing ammonia, ammonia recovery system and ammonia reutilization system |
JP2009179816A (en) * | 2008-01-29 | 2009-08-13 | Chugai Ro Co Ltd | Carburizing apparatus |
JP2014124584A (en) * | 2012-12-26 | 2014-07-07 | Japan Pionics Co Ltd | Ammonia and hydrogen collection method and ammonia and hydrogen recycling method |
WO2024202229A1 (en) * | 2023-03-28 | 2024-10-03 | Jfeスチール株式会社 | Manufacturing facility and method for operating manufacturing facility |
Also Published As
Publication number | Publication date |
---|---|
JP3261137B2 (en) | 2002-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3086857B2 (en) | Method for generating cold, cooling cycle using this method, and air rectification method and apparatus using this method | |
AU2009338577B2 (en) | Method and device for separating carbon dioxide from an exhaust gas of a fossil fired power plant | |
KR100186953B1 (en) | Cryogenic vapour recovery process and system | |
JP3294390B2 (en) | Ultra high purity nitrous oxide production method and apparatus | |
CN101231130A (en) | Purification of carbon dioxide | |
KR20070075323A (en) | Method and apparatus for producing products from natural gas including helium and liquefied natural gas | |
JPH0316597B2 (en) | ||
US5728354A (en) | Process and plant for generating nitrogen for heat treatment | |
US4149857A (en) | Process for the two-stage separation of ammonia | |
JP7576359B2 (en) | Cascade utilization system of cold energy and waste heat combined with low-temperature carbon capture for LNG-fueled ships | |
JPH04238811A (en) | Ammonia-recovering device in gas soft nitriding device | |
JPH0564722A (en) | Separation of carbon dioxide in combustion exhaust gas | |
US8549878B2 (en) | Method of generating nitrogen and apparatus for use in the same | |
JP3099131B2 (en) | Ammonia recovery unit in gas soft nitriding unit | |
US6598423B1 (en) | Sacrificial cryogen gas liquefaction system | |
CA2243817C (en) | Multi-component recovery apparatus and method | |
US2754666A (en) | Method and apparatus for liquefying gases | |
FR3054304A1 (en) | METHOD AND APPARATUS FOR CLEANING AT CRYOGENIC TEMPERATURE FOR THE PRODUCTION OF A MIXTURE OF HYDROGEN AND NITROGEN | |
US20210310733A1 (en) | Method for recycling argon | |
FR3052239A1 (en) | PROCESS FOR THE LIQUEFACTION OF NATURAL GAS AND CARBON DIOXIDE | |
KR20210038351A (en) | High-purity oxygen production apparatus | |
JP3871457B2 (en) | Furnace air regeneration method and apparatus | |
WO2023222637A1 (en) | Method and apparatus for low-temperature separation of a gas containing co2 to produce a co2-rich fluid | |
JPH11151415A (en) | Production of ultra clean air and device therefor | |
KR102700398B1 (en) | Seperation method for liquid carbon dioxide using cool thermal energy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |