JPH04237826A - Internal combustion engine with supercharger - Google Patents

Internal combustion engine with supercharger

Info

Publication number
JPH04237826A
JPH04237826A JP3005179A JP517991A JPH04237826A JP H04237826 A JPH04237826 A JP H04237826A JP 3005179 A JP3005179 A JP 3005179A JP 517991 A JP517991 A JP 517991A JP H04237826 A JPH04237826 A JP H04237826A
Authority
JP
Japan
Prior art keywords
surge tank
supercharger
bypass passage
intake
intercooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3005179A
Other languages
Japanese (ja)
Inventor
Hiroaki Nihei
裕昭 仁平
Kenichi Nomura
憲一 野村
Tatsuo Kobayashi
辰夫 小林
Hiroshi Nomura
啓 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3005179A priority Critical patent/JPH04237826A/en
Publication of JPH04237826A publication Critical patent/JPH04237826A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)

Abstract

PURPOSE:To obtain a by-pass route structure which can extract supercharger by-pass air from the lower stream side of an inter-cooler provided in an intake surge tank without generating the difference in the amount of intake through each cylinder. CONSTITUTION:A by-pass route 5 is provided almost in parallel with the line of the opening of an intake connection pipe 7 to each cylinder 4 to a surge tank 1, while a plurality of ports 22 opened in the surge tank are arranged in the direction of the stream in the bypass route 5. The opening area of the port 22 is smaller as it is nearer to the lower stream side of the by-pass route 5.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は過給機付内燃機関に関し
、詳細には機関吸気系の過給機下流側に設けられるサー
ジタンク内部に過給空気冷却用インタクーラを配設した
過給機付内燃機関の過給機バイパス通路構造に関する。
[Field of Industrial Application] The present invention relates to a supercharged internal combustion engine, and more particularly to a supercharger equipped with an intercooler for cooling supercharged air inside a surge tank provided on the downstream side of the supercharger in the engine intake system. The present invention relates to a supercharger bypass passage structure for an internal combustion engine.

【0002】0002

【従来の技術】過給機付内燃機関では過給空気を冷却し
、吸気充填効率を改善するために過給機下流側の吸気管
にインタクーラを設けることが行なわれているが、過給
機としてルーツブロワ等の容積型過給機を用いた場合上
記インタクーラが騒音発生源となる場合がある。すなわ
ち容積型過給機の吐出空気は比較的脈動が大きいため、
この脈動により生じたインタクーラの伝熱フィンの振動
が薄肉板金構造のインタクーラケーシングから外部に伝
播して騒音源となるのである。
[Prior Art] In internal combustion engines with a supercharger, an intercooler is installed in the intake pipe downstream of the supercharger in order to cool the supercharged air and improve the intake air filling efficiency. When a positive displacement supercharger such as a Roots blower is used, the intercooler may become a source of noise. In other words, since the discharge air of a positive displacement turbocharger has relatively large pulsations,
The vibrations of the heat transfer fins of the intercooler caused by this pulsation propagate to the outside from the intercooler casing, which has a thin-walled sheet metal structure, and become a source of noise.

【0003】これを防止するため、例えば特開昭62−
247122号公報にはインタクーラを過給機下流部の
サージタンク内に収納した構造が開示されている。通常
、サージタンクはアルミニウム鋳造品等により製作され
、比較的肉厚の外壁を有することから、サージタンク内
でインタクーラ伝熱フィンの振動が生じた場合でも、振
動や騒音がサージタンク外壁により遮断若しくは減衰さ
れて外部に伝播しないため、吸気騒音が低減されるので
ある。また、騒音の問題以外にも、インタクーラをサー
ジタンク内に収納することにより吸気系の容積低減によ
る応答性の向上や吸気配管の簡略化が可能となる利点が
ある。
[0003] In order to prevent this, for example, Japanese Patent Laid-Open No. 1983-
Japanese Patent No. 247122 discloses a structure in which an intercooler is housed in a surge tank downstream of a supercharger. Normally, surge tanks are made of aluminum castings and have relatively thick outer walls, so even if the intercooler heat transfer fins vibrate inside the surge tank, the vibrations and noise can be blocked or blocked by the surge tank outer wall. Intake noise is reduced because it is attenuated and does not propagate to the outside. In addition to the problem of noise, housing the intercooler in the surge tank has the advantage of improving responsiveness by reducing the volume of the intake system and simplifying the intake piping.

【0004】一方、容積型過給機においては通常、過給
機吐出空気の一部を過給機入口側に還流させるバイパス
通路を設け、このバイパス通路を通るバイパス空気量を
調節することにより過給制御を行なっている。特開昭6
1−19935号公報には、上記バイパス通路入口をイ
ンタクーラより下流側の吸気管に接続し、インタクーラ
で冷却された後の空気を過給機入口側に還流させるよう
にした構成が開示されている。冷却後の空気を還流させ
ることにより、機関の軽負荷高回転運転時等でバイパス
還流量が増大する場合にも過給機圧縮仕事による熱の蓄
積により過給機吐出温度が過度に上昇することを防止で
きる。
On the other hand, in a positive displacement turbocharger, a bypass passage is usually provided to recirculate a portion of the discharge air from the turbocharger to the turbocharger inlet side, and the amount of bypass air passing through this bypass passage is adjusted to reduce the overload. supply control. Tokukai Showa 6
Publication No. 1-19935 discloses a configuration in which the bypass passage inlet is connected to an intake pipe on the downstream side of the intercooler, and the air after being cooled by the intercooler is recirculated to the supercharger inlet side. . By recirculating the air after cooling, even when the bypass recirculation amount increases during light load high speed engine operation, the supercharger discharge temperature will not rise excessively due to heat accumulation due to the turbocharger compression work. can be prevented.

【0005】[0005]

【発明が解決しようとする課題】ところがサージタンク
内にインタクーラを配置した吸気系でインタクーラ下流
側にバイパス通路を接続した場合以下の問題が生じる。 サージタンクは吸気圧力の脈動や各気筒間の吸気干渉を
防止するために設置するものであるからエンジンに近接
した位置に置かれ、各気筒とは個別の吸気管で接続され
る構成となっている。
However, when a bypass passage is connected to the downstream side of the intercooler in an intake system in which an intercooler is disposed within a surge tank, the following problems occur. The surge tank is installed to prevent intake pressure pulsations and intake interference between cylinders, so it is placed close to the engine and connected to each cylinder through a separate intake pipe. There is.

【0006】従ってインタクーラ下流側の吸気系にバイ
パス通路を接続しようとした場合、バイパス通路は必然
的にサージタンクに接続されることになる。
[0006] Therefore, when attempting to connect a bypass passage to the intake system downstream of the intercooler, the bypass passage will inevitably be connected to the surge tank.

【0007】図3は上記構成の一例を示す図である。サ
ージタンク1は各気筒4と短い吸気接続管7で接続され
、内部にはインタクーラ2が配置されている。また、5
はバイパス通路であり、サージタンク1のインタクーラ
2下流側部分に開口するバイパスポート5aと過給機3
上流側を接続している。6はバイパス通路5を通って過
給機3上流側に還流するバイパス空気量を制御するバイ
パス制御弁である。
FIG. 3 is a diagram showing an example of the above configuration. The surge tank 1 is connected to each cylinder 4 through a short intake connecting pipe 7, and an intercooler 2 is disposed inside the surge tank 1. Also, 5
is a bypass passage, which connects the bypass port 5a that opens downstream of the intercooler 2 of the surge tank 1 and the supercharger 3.
The upstream side is connected. 6 is a bypass control valve that controls the amount of bypass air flowing back to the upstream side of the supercharger 3 through the bypass passage 5.

【0008】図に示すようにサージタンク1の形状や吸
気接続管5の配置はサージタンク1から各気筒4に供給
される空気ができるだけ均等に配分されるように、各気
筒に至る管路抵抗の差が生じないようにされている。と
ころが、上記のような構成とした場合、高負荷運転等で
バイパス通路5を還流する空気量が少い場合は問題ない
が、機関の低負荷高回転運転時等に各気筒の吸気量にば
らつきが生じる問題がある。
As shown in the figure, the shape of the surge tank 1 and the arrangement of the intake connecting pipes 5 are designed to minimize the resistance of the pipes leading to each cylinder so that the air supplied from the surge tank 1 to each cylinder 4 is distributed as evenly as possible. This is done so that no difference occurs. However, with the above configuration, there is no problem when the amount of air recirculating through the bypass passage 5 is small due to high load operation, etc., but when the engine is operated at low load and high speed, etc., the intake air amount of each cylinder may vary. There is a problem that arises.

【0009】低負荷高速回転運転では過給機の回転数が
高く、しかも各気筒の吸入空気量が低く押えられるため
、バイパス通路5を通って多量の空気が還流する。この
ためサージタンク1内ではバイパスポート5aに向けて
圧力が低下する圧力分布が生じることになり、各接続管
7の入口圧力に差を生じるため各気筒へ新気を均等に配
分できなくなってしまう。
[0009] In low-load, high-speed rotational operation, the rotational speed of the supercharger is high and the amount of intake air in each cylinder is kept low, so a large amount of air is recirculated through the bypass passage 5. For this reason, a pressure distribution occurs in the surge tank 1 in which the pressure decreases toward the bypass port 5a, and a difference occurs in the inlet pressure of each connecting pipe 7, making it impossible to distribute fresh air evenly to each cylinder. .

【0010】特に2サイクル機関の場合、サージタンク
1内圧力は常に排気管7側圧力より高く保持され、各気
筒への吸気量はサージタンク1側と排気管11側との圧
力差によって決定される。従って低負荷運転時にはこの
差圧を低く保ち、各気筒の吸入空気量を減少させている
のであるが、サージタンク1と排気管11の圧力差が少
い状態で上述の圧力分布によって各気筒の吸入ポート圧
力に差が生じると、各気筒の吸入空気量は大きくばらつ
くことになる。このためトルク変動や排ガス性状の悪化
が生じ、極端な場合には失火を生じる可能性がある。
Particularly in the case of a two-stroke engine, the pressure inside the surge tank 1 is always maintained higher than the pressure on the exhaust pipe 7 side, and the amount of air taken into each cylinder is determined by the pressure difference between the surge tank 1 side and the exhaust pipe 11 side. Ru. Therefore, during low-load operation, this differential pressure is kept low and the amount of intake air in each cylinder is reduced. However, when the pressure difference between the surge tank 1 and the exhaust pipe 11 is small, the pressure distribution described above causes each cylinder to If a difference occurs in the intake port pressure, the amount of intake air in each cylinder will vary greatly. This causes torque fluctuations and deterioration of exhaust gas properties, and in extreme cases, misfires may occur.

【0011】これを防ぐためにはバイパスポート5aの
位置をサージタンク1より上流側に移してサージタンク
内の圧力を均一にする必要があるが、前述のようにイン
タクーラ下流部にバイパス通路を接続しようとした場合
にはバイパスポート5aは図示位置近傍に配置せざるを
得ない。このため、サージタンク7内にインタクーラを
配置した構成においてはインタクーラ下流部にバイパス
通路を接続することは困難であった。本発明は上述の圧
力分布を発生させずにサージタンク内からバイパス還流
空気を取り出すことのできるバイパス通路構造を提供し
、上述の問題を解決することを目的としている。
In order to prevent this, it is necessary to move the position of the bypass port 5a to the upstream side of the surge tank 1 to equalize the pressure inside the surge tank, but as mentioned above, it is necessary to connect the bypass passage downstream of the intercooler. In this case, the bypass port 5a must be placed near the illustrated position. For this reason, in a configuration in which the intercooler is disposed within the surge tank 7, it is difficult to connect a bypass passage downstream of the intercooler. The present invention aims to solve the above-mentioned problems by providing a bypass passage structure that can take out bypass return air from inside a surge tank without causing the above-mentioned pressure distribution.

【0012】0012

【課題を解決するための手段】本発明によれば、機関吸
気管に過給機と、前記過給機下流側の吸気管に配置した
サージタンクと、前記サージタンク内に配設したインタ
クーラと、前記サージタンクから各気筒に吸気を供給す
る複数の接続管と、前記サージタンク内部のインタクー
ラ下流側部分を過給機上流側に連通するバイパス通路と
を備えた過給機付内燃機関において、前記バイパス通路
は、前記複数の接続管のサージタンクとの各接続口が形
成する開口列と略平行な流路を備え、該流路に沿って配
置された複数のポートを介してサージタンク内に連通す
るとともに、前記複数のポートの各ポート開口面積がバ
イパス通路内流れ方向の下流側になるにつれて減少して
いることを特徴とする過給機付内燃機関が提供される。
[Means for Solving the Problems] According to the present invention, a supercharger is provided in an engine intake pipe, a surge tank is provided in the intake pipe on the downstream side of the supercharger, and an intercooler is provided in the surge tank. , a supercharged internal combustion engine comprising a plurality of connecting pipes that supply intake air from the surge tank to each cylinder, and a bypass passage that communicates a downstream part of the intercooler inside the surge tank to an upstream side of the supercharger, The bypass passage includes a flow path that is substantially parallel to a row of openings formed by the connection ports of the plurality of connection pipes with the surge tank, and the bypass passage is provided with a flow path that is substantially parallel to an opening row formed by each connection port of the plurality of connection pipes with the surge tank, and that allows the flow of water into the surge tank through a plurality of ports arranged along the flow path. There is provided an internal combustion engine with a supercharger, characterized in that the opening area of each of the plurality of ports decreases toward the downstream side in the flow direction within the bypass passage.

【0013】[0013]

【作用】バイパス通路を通り過給機入口側に還流する空
気流が存在する場合、バイパス通路内圧力は通路内流れ
方向下流側になる程低下する。従ってサージタンク内の
圧力とバイパス通路内圧力との差は、バイパス通路下流
側になる程大きくなる。本発明のバイパス通路は、その
流れ方向に沿って配置されてサージタンク内に開口する
複数の開口部を備え、この開口部のサージタンク内への
開口面積がバイパス通路下流側になる程減少しているた
め、開口部を通ってサージタンクからバイパス通路に流
入する気流に対する絞り抵抗も下流側程大きくなってい
る。
[Operation] When there is an air flow flowing back to the supercharger inlet side through the bypass passage, the pressure inside the bypass passage decreases as it moves downstream in the flow direction within the passage. Therefore, the difference between the pressure in the surge tank and the pressure in the bypass passage increases as the position moves downstream of the bypass passage. The bypass passage of the present invention includes a plurality of openings arranged along the flow direction and opening into the surge tank, and the opening area of the openings into the surge tank decreases as the bypass passage becomes downstream. Therefore, the throttle resistance to the airflow flowing from the surge tank into the bypass passage through the opening also increases toward the downstream side.

【0014】従ってバイパス通路下流側に向って差圧が
増大すると共に開口部の絞り抵抗も増大するため、両者
が相殺され、各開口部を通ってサージタンクからバイパ
ス通路に流入する流量はバイパス通路内流れ方向に沿っ
て略一様になる。従ってバイパス通路を還流する空気量
が増大した場合でもサージタンク内にはバイパス通路内
流れ方向に圧力分布が生じない。
[0014] Therefore, as the differential pressure increases toward the downstream side of the bypass passage, the throttling resistance of the openings also increases. It becomes approximately uniform along the inner flow direction. Therefore, even when the amount of air flowing back through the bypass passage increases, no pressure distribution occurs in the surge tank in the flow direction within the bypass passage.

【0015】[0015]

【実施例】図1に本発明の1実施例の構成を示す。図に
おいて1は吸気管8に設けられたサージタンク、2はサ
ージタンク内に配置されたインタクーラ、3は吸気管8
のサージタンク1上流側に設けられた過給機で、本実施
例においてはエンジン10から図示しないベルト等によ
り駆動されるルーツタイプの容積型過給機とされる。ま
た9は吸気管8の過給機上流側に設けられたスロットル
弁、5はサージタンク1のインタクーラ2下流側と前記
スロットル弁9と過給機3との間の吸気管を接続するバ
イパス通路、6はバイパス通路5内を通って過給機上流
側に戻るバイパス空気量を制御するバイパス制御弁であ
る。
Embodiment FIG. 1 shows the configuration of one embodiment of the present invention. In the figure, 1 is a surge tank installed in the intake pipe 8, 2 is an intercooler located inside the surge tank, and 3 is the intake pipe 8.
This supercharger is provided upstream of the surge tank 1, and in this embodiment, it is a roots-type positive displacement supercharger driven from the engine 10 by a belt (not shown) or the like. Further, 9 is a throttle valve provided on the upstream side of the supercharger in the intake pipe 8, and 5 is a bypass passage connecting the downstream side of the intercooler 2 of the surge tank 1 and the intake pipe between the throttle valve 9 and the supercharger 3. , 6 is a bypass control valve that controls the amount of bypass air that passes through the bypass passage 5 and returns to the upstream side of the supercharger.

【0016】本実施例では、エンジン10は6気筒の2
サイクルエンジンであり、各気筒4の吸気ポートはそれ
ぞれ独立した吸気接続管7でサージタンク1のインタク
ーラ2下流側に接続されている。また、バイパス通路5
はサージタンク1内に挿入された管部材21を備えてい
る。 管部材21はサージタンク1内で各接続管7の接続口の
配列と略平行になるように延設されている。
In this embodiment, the engine 10 has six cylinders, two
This is a cycle engine, and the intake ports of each cylinder 4 are connected to the downstream side of the intercooler 2 of the surge tank 1 through independent intake connection pipes 7, respectively. In addition, the bypass passage 5
includes a tube member 21 inserted into the surge tank 1. The pipe member 21 extends within the surge tank 1 so as to be substantially parallel to the arrangement of the connection ports of the respective connection pipes 7.

【0017】図2は管状部材21の軸線を含む断面を示
す拡大図である。管状部材21の管壁にはそれぞれ軸線
に平行に配列された貫通孔から成る4つの孔列22a〜
22dが設けられており、孔列22aと22c、22b
と22d(図示せず)は、それぞれ管状部材21の軸線
に対して対称位置に配置され、孔列22a,22cと2
2b,22cとは軸線まわりに90度回転した位置に配
置されている。孔列22a,22cを構成する貫通孔と
孔列22b,22cを構成する貫通孔とは軸線方向に沿
って互いに半ピッチずつ離れた位置に開口している各孔
列の貫通孔は、管状部材21の先端部21aからサージ
タンク外壁貫通部21bに向けて次第に孔径が減少する
ように配置されている。各貫通孔の径とピッチ、数、及
び管状部材21の径は、各エンジン毎にバイパス通路5
を通って過給機3入口側に還流するバイパス空気量が最
大になる条件下で、各孔列の貫通孔を通って管状部材2
1に流入する空気量が略一様になるように予め実験によ
り決定される。
FIG. 2 is an enlarged view showing a cross section of the tubular member 21 including its axis. The tube wall of the tubular member 21 has four hole rows 22a to 22, each consisting of through holes arranged parallel to the axis.
22d is provided, and hole rows 22a, 22c, and 22b are provided.
and 22d (not shown) are arranged at symmetrical positions with respect to the axis of the tubular member 21, respectively, and the hole rows 22a, 22c and 2
2b and 22c are arranged at positions rotated by 90 degrees around the axis. The through holes constituting the hole rows 22a and 22c and the through holes constituting the hole rows 22b and 22c are open at positions separated by a half pitch from each other along the axial direction. The holes are arranged such that the hole diameter gradually decreases from the tip 21a of the surge tank 21 toward the surge tank outer wall penetrating portion 21b. The diameter, pitch, and number of each through hole and the diameter of the tubular member 21 are determined by the bypass passage 5 for each engine.
Under conditions where the amount of bypass air that returns to the inlet side of the supercharger 3 through the through-holes in each hole row is maximized,
It is determined in advance through experiments so that the amount of air flowing into the tube 1 is approximately uniform.

【0018】エンジン10の運転中、吸気はスロットル
弁9を通過後過給機3で昇圧されてサージタンク1に供
給される。この空気はインタクーラ2の伝熱フィンを通
過して冷却されると同時にフィン列を通過することによ
り整流された状態でサージタンク1の下流側に流入する
。 従ってこの状態ではサージタンク1内の吸気流に直角な
各断面では流れは一様になっており、圧力分布も均一で
ある。バイパス通路5を通って還流する流れがある場合
には、この状態から管状部材21の貫通孔内に空気が流
入するが、前述のように各貫通孔から管状部材21に流
入する空気流量は略一様であるため、管状部材21通過
後の吸気流の管状部材21に沿った方向の圧力分布も略
一様でなる。
During operation of the engine 10, intake air passes through the throttle valve 9, is pressurized by the supercharger 3, and is supplied to the surge tank 1. This air passes through the heat transfer fins of the intercooler 2 and is cooled, and at the same time flows into the downstream side of the surge tank 1 in a rectified state by passing through the fin rows. Therefore, in this state, the flow is uniform in each cross section perpendicular to the intake flow in the surge tank 1, and the pressure distribution is also uniform. When there is a flow flowing back through the bypass passage 5, air flows into the through holes of the tubular member 21 from this state, but as described above, the flow rate of air flowing into the tubular member 21 from each through hole is approximately Since it is uniform, the pressure distribution of the intake air flow after passing through the tubular member 21 in the direction along the tubular member 21 is also substantially uniform.

【0019】従って各気筒4の吸気量も略一様になるた
め、吸気量のばらつきが生じない。なお、本実施例では
、サージタンク1内に管状部材21を挿入した形式のバ
イパス通路としたが、サージタンク1内に管状部材21
を設けず、例えば各気筒の吸気接続管のサージタンク接
続部の配列に平行になるようにサージタンク1外壁に上
記と同様な貫通孔から成る孔列を配置してサージタンク
1の外側に設けたバイパス通路に連通させるような構造
とすることも可能である。
[0019] Therefore, the amount of intake air in each cylinder 4 is also substantially uniform, so that variations in the amount of intake air do not occur. In addition, in this embodiment, the bypass passage has a type in which the tubular member 21 is inserted into the surge tank 1, but the tubular member 21 is inserted into the surge tank 1.
For example, a row of through holes similar to those described above may be arranged on the outer wall of the surge tank 1 so as to be parallel to the arrangement of the surge tank connections of the intake connection pipes of each cylinder. It is also possible to have a structure that communicates with a bypass passage.

【0020】[0020]

【発明の効果】本発明は上述のように構成したことによ
り、サージタンク内にインタクーラを配置した過給機付
内燃機関において各気筒の吸気量ばらつきを生じること
なくインタクーラ下流部に過給機バイパス通路を接続す
ることを可能とする効果を有する。
[Effects of the Invention] By having the above-described structure, the present invention can bypass the supercharger downstream of the intercooler without causing variations in the intake air amount of each cylinder in a supercharged internal combustion engine in which the intercooler is disposed in the surge tank. It has the effect of allowing passages to be connected.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の構成を示す図である。FIG. 1 is a diagram showing the configuration of an embodiment of the present invention.

【図2】同上実施例のバイパス通路入口部拡大断面図で
ある。
FIG. 2 is an enlarged cross-sectional view of the bypass passage inlet of the embodiment.

【図3】従来技術の例を示す図である。FIG. 3 is a diagram showing an example of conventional technology.

【符号の説明】[Explanation of symbols]

1…サージタンク 2…インタクーラ 3…過給機 5…バイパスポート 10…エンジン 21…管部材 22…孔列 1...Surge tank 2...Intercooler 3...Supercharger 5...Bypassport 10...Engine 21...Pipe member 22...hole row

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  機関吸気管に過給機と、前記過給機下
流側の吸気管に配置したサージタンクと、前記サージタ
ンク内に配設したインタクーラと、前記サージタンクか
ら各気筒に吸気を供給する複数の接続管と、前記サージ
タンク内部のインタクーラ下流側部分を過給機上流側に
連通するバイパス通路とを備えた過給機付内燃機関にお
いて、前記バイパス通路は、前記複数の接続管のサージ
タンクとの各接続口が形成する開口列と略平行な流路を
備え、該流路に沿って配置された複数のポートを介して
サージタンク内に連通するとともに、前記複数のポート
の各ポート開口面積がバイパス通路内流れ方向の下流側
になるにつれて減少していることを特徴とする過給機付
内燃機関。
1. A supercharger in an engine intake pipe, a surge tank disposed in the intake pipe downstream of the supercharger, an intercooler disposed in the surge tank, and intake air supplied from the surge tank to each cylinder. In a supercharged internal combustion engine, the turbocharged internal combustion engine includes a plurality of connection pipes for supplying the surge tank, and a bypass passage that communicates a downstream portion of the intercooler inside the surge tank with an upstream side of the supercharger, wherein the bypass passage is connected to the plurality of connection pipes. It has a flow path that is substantially parallel to the row of openings formed by each connection port with the surge tank, and communicates with the inside of the surge tank through a plurality of ports arranged along the flow path. A supercharged internal combustion engine characterized in that the opening area of each port decreases toward the downstream side in the flow direction within the bypass passage.
JP3005179A 1991-01-21 1991-01-21 Internal combustion engine with supercharger Pending JPH04237826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3005179A JPH04237826A (en) 1991-01-21 1991-01-21 Internal combustion engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3005179A JPH04237826A (en) 1991-01-21 1991-01-21 Internal combustion engine with supercharger

Publications (1)

Publication Number Publication Date
JPH04237826A true JPH04237826A (en) 1992-08-26

Family

ID=11604011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3005179A Pending JPH04237826A (en) 1991-01-21 1991-01-21 Internal combustion engine with supercharger

Country Status (1)

Country Link
JP (1) JPH04237826A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074432A (en) * 2007-09-20 2009-04-09 Daihatsu Motor Co Ltd Intake device for multiple cylinder internal combustion engine
US20120192839A1 (en) * 2009-10-14 2012-08-02 Hisatoyo Arima Engine supercharging device
JP2019138155A (en) * 2018-02-06 2019-08-22 マツダ株式会社 Intake structure of electric supercharged engine
US10550804B2 (en) 2017-11-07 2020-02-04 Mazda Motor Corporation Air intake apparatus of multi-cylinder engine having secondary gas inlet passage connected to intake air inlet passage

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074432A (en) * 2007-09-20 2009-04-09 Daihatsu Motor Co Ltd Intake device for multiple cylinder internal combustion engine
US20120192839A1 (en) * 2009-10-14 2012-08-02 Hisatoyo Arima Engine supercharging device
US8707931B2 (en) * 2009-10-14 2014-04-29 Kawasaki Jukogyo Kaubshiki Kaisha Engine supercharging device
US10550804B2 (en) 2017-11-07 2020-02-04 Mazda Motor Corporation Air intake apparatus of multi-cylinder engine having secondary gas inlet passage connected to intake air inlet passage
JP2019138155A (en) * 2018-02-06 2019-08-22 マツダ株式会社 Intake structure of electric supercharged engine

Similar Documents

Publication Publication Date Title
US6116026A (en) Engine air intake manifold having built-in intercooler
US4615324A (en) Exhaust gas recirculation system for a V-type engine
US7311090B2 (en) Engine exhaust gas passage flow orifice and method
US20070028901A1 (en) Exhaust gas recirculation system for internal combustion engine having superchargers
JP6026825B2 (en) Intake device for internal combustion engine
US8713936B2 (en) Multi-functional valve for use in an exhaust breathing system
JP2004092646A (en) Supercharging device for internal-combustion engine
US7584748B2 (en) Exhaust gas recirculation system for an internal combustion engine
JP2007231906A (en) Multi-cylinder engine
US10196969B2 (en) Exhaust device for engine
JP3893895B2 (en) EGR gas cooling structure
JPH04237826A (en) Internal combustion engine with supercharger
US10316738B2 (en) Turbocharger engine
JP3937612B2 (en) Multi-cylinder engine EGR device
JPS6088821A (en) Suction air cooling device for supercharged engine
JP2000064912A (en) Egr device
WO2021065723A1 (en) Exhaust gas recirculation device
JP7296272B2 (en) internal combustion engine
JP3387193B2 (en) Exhaust gas recirculation device
JP4165730B2 (en) Multi-cylinder engine intake structure
JP6965835B2 (en) Engine intake system
JP2000220540A (en) Structure of intake manifold
JP4282068B2 (en) Exhaust system structure of internal combustion engine
JP6631315B2 (en) Intake device for internal combustion engine
JPH01187320A (en) Exhaust for engine with turbo supercharger