JPH0423757Y2 - - Google Patents

Info

Publication number
JPH0423757Y2
JPH0423757Y2 JP1986049089U JP4908986U JPH0423757Y2 JP H0423757 Y2 JPH0423757 Y2 JP H0423757Y2 JP 1986049089 U JP1986049089 U JP 1986049089U JP 4908986 U JP4908986 U JP 4908986U JP H0423757 Y2 JPH0423757 Y2 JP H0423757Y2
Authority
JP
Japan
Prior art keywords
compass
signal
ship
azimuth
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986049089U
Other languages
Japanese (ja)
Other versions
JPS62172698U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986049089U priority Critical patent/JPH0423757Y2/ja
Priority to SE8701352A priority patent/SE465316B/en
Priority to FI871435A priority patent/FI90148C/en
Priority to DK166487A priority patent/DK166815B1/en
Priority to NO87871356A priority patent/NO173154C/en
Publication of JPS62172698U publication Critical patent/JPS62172698U/ja
Application granted granted Critical
Publication of JPH0423757Y2 publication Critical patent/JPH0423757Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/02Initiating means for steering, for slowing down, otherwise than by use of propulsive elements, or for dynamic anchoring
    • B63H25/04Initiating means for steering, for slowing down, otherwise than by use of propulsive elements, or for dynamic anchoring automatic, e.g. reacting to compass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Description

【考案の詳細な説明】 a 産業上の利用分野 本考案は船舶に使用される自動操舵装置に関
し、特に切替スイツチにより、ジヤイロコンパス
又は磁気コンパスのいずれによつても自動操舵が
可能な船舶用自動操舵装置に関する。
[Detailed description of the invention] a. Field of industrial application The present invention relates to an automatic steering system used in ships, and in particular, an automatic steering system for ships that can be automatically steered by either a gyro compass or a magnetic compass using a changeover switch. It relates to an automatic steering device.

b 従来の技術 従来の船舶用自動操舵装置においては、コンパ
スの種類により船体の設定方位と現在方位との偏
差信号の検出方式が相異している。すなわち、第
2図を参照しながら従来の船舶用自動操舵装置の
構成及び動作を説明するが説明を簡略にするため
天候調整機構及び舵角制限機構は省略してある。
b. Prior Art In conventional marine automatic steering systems, the method for detecting the deviation signal between the set heading of the ship and the current heading differs depending on the type of compass. That is, the configuration and operation of a conventional marine vessel automatic steering system will be described with reference to FIG. 2, but the weather adjustment mechanism and the rudder angle limiting mechanism are omitted to simplify the explanation.

同図において、磁気コンパスによる場合はスイ
ツチSW1を開、スイツチSW2を閉とし、その
コンパス(図示せず)上に取り付けられた方位設
定用のマグネツトメータ7に交流電源E2から例
えば周波数2KHzの交流電圧を供給して、任意の
方位に設定されたマグネツトメータ7と磁気コン
パスによりその現在方位との偏差に相当する交流
偏差信号を検出し、これを復調器8で復調し直流
分の偏差信号を演算器4及び制御駆動部5を経由
して舵を駆動し船体の自動操舵を行なつている。
In the figure, when using a magnetic compass, switch SW1 is opened, switch SW2 is closed, and a magnetometer 7 for setting the direction attached to the compass (not shown) is connected to an AC power source E2, for example, with a frequency of 2KHz. By supplying voltage, a magnetometer 7 set at an arbitrary direction and a magnetic compass detect an AC deviation signal corresponding to the deviation from the current direction, which is demodulated by a demodulator 8 to generate a DC deviation signal. The rudder is driven via the computing unit 4 and the control drive unit 5 to automatically steer the ship.

他方、ジヤイロコンパスによる場合は、第2図
のスイツチSW1を閉、スイツチSW2を開とし、
そのジヤイロコンパス(図示せず)に結合された
発信用シンクロ電機1の回転子側(端子R1,R
2)に交流電源E1から例えば周波数400Hzの交
流電圧を供給し、ジヤイロコンパスによる船体の
現在方位を交流電機信号に変えて発信用シンクロ
電機1の固定子側(端子S1,S2,S3)から
受信側シンクロ電機としての制御変圧機2の固定
子側(端子S1,S2,S3)に送出する。通
常、船体の方位はジヤイロコンパスに設けられら
コンパスカード6で読むことができる。そして、
この方位電気信号の受信側の制御変圧機2に任意
にその回転子軸に設定された方位と比較して交流
方位偏差信号を回転子側(端子R1,R2)から
検出し、これを復調器3で復調した後直流分の偏
差信号を前述と同様に演算器4及び制御駆動部5
を経由して舵を駆動し船体の自動操舵を行なつて
いる。
On the other hand, when using a gyroscope, close switch SW1 and open switch SW2 in Fig. 2.
The rotor side (terminals R1, R
2) Supply an AC voltage with a frequency of, for example, 400 Hz from the AC power source E1, convert the current direction of the ship using the gyro compass into an AC electric signal, and send the signal from the stator side (terminals S1, S2, S3) of the synchro electric machine 1 for transmission. It is sent to the stator side (terminals S1, S2, S3) of the control transformer 2 as the receiving side synchro electric machine. Normally, the heading of the ship can be read with a compass card 6 provided on a gyro compass. and,
The control transformer 2 on the receiving side of this azimuth electric signal detects an AC azimuth deviation signal from the rotor side (terminals R1, R2) by comparing it with the azimuth arbitrarily set on the rotor shaft, and outputs this to the demodulator. After demodulating in step 3, the DC component deviation signal is sent to the computing unit 4 and the control drive unit 5 in the same manner as described above.
The rudder is driven through the system to automatically steer the ship.

なお、前記演算部4においては、船体の操舵特
性に対する補償を行ない、通常PID方式を用いた
ものが多い。
Note that the calculation section 4 compensates for the steering characteristics of the ship, and usually uses the PID method.

c 考案が解決しようとする問題点 しかしながら、前記従来の船舶用自動操舵装置
においては、船体に磁気コンパスとジヤイロコン
パスの両者を配設し両者いずれでも自動操舵させ
るためには、方位設定部を2個所かつ個別に設け
なければならない。このようなことは操船上のほ
か船舶の計装、保守上からの極めて煩わしいとい
う問題点があつた。
c. Problems to be solved by the invention However, in the conventional marine automatic steering system, in order to provide both a magnetic compass and a gyro compass on the hull and to automatically steer either of them, the azimuth setting section is required. Must be installed in two separate locations. This poses a problem in that it is extremely troublesome not only in terms of ship operation but also in terms of ship instrumentation and maintenance.

本考案はかかる点に鑑みなされたもので、その
目的は船体上に配設された磁気コンパスとジヤイ
ロコンパスのいずれを現在方位検出のために使用
しても、1個所の方位設定で自動操舵が可能な船
舶用自動操舵装置を提供することにある。
The present invention was devised in view of these points, and its purpose is to automatically steer the ship by setting the direction in one location, regardless of whether the magnetic compass or the gyro compass installed on the hull is currently used to detect the direction. An object of the present invention is to provide an automatic steering system for a ship that is capable of

d 問題点を解決するための手段 上記目的を達成するための本考案の構成は、船
体上に配設されたジヤイロコンパスまたは磁気コ
ンパスのいずれかに切替え、該コンパスから発信
される現在方位信号と設定方位とを比較してその
偏差信号を検出し、該偏差信号に基づいて前記船
体を自動操舵する船舶用自動操舵装置において、
前記現在方位信号を発信するため、前記ジヤイロ
コンパスに発信用シンクロ電機を結合すると共
に、前記磁気コンパスに磁気センサを装着し、前
記現在方位信号を受信し、方位を設定すると共
に、その偏差信号を検出する制御変圧機を配設
し、前記発信用シンクロ電機または磁気センサの
いずれかの出力側と、前記制御変圧機の入力側と
の接続を、選択的に切替えるための切替えスイツ
チを設けたことを特徴とする。
d Means for solving the problem The configuration of the present invention to achieve the above object is to switch to either a gyro compass or a magnetic compass installed on the ship's hull, and to send a current direction signal from the compass. and a set azimuth, detecting a deviation signal thereof, and automatically steering the ship based on the deviation signal,
In order to transmit the current azimuth signal, a synchro electric machine for transmission is coupled to the gyroscope compass, and a magnetic sensor is attached to the magnetic compass to receive the current azimuth signal, set the azimuth, and receive its deviation signal. A control transformer is provided to detect the transmission, and a changeover switch is provided to selectively switch the connection between the output side of either the transmitting synchro electric machine or the magnetic sensor and the input side of the control transformer. It is characterized by

e 作用 船体に配設されたジヤイロコンパス及び磁気コ
ンパスにそれぞれ結合された船体の現在方位発信
用のシンクロ電機又は磁気センサと受信側シンク
ロ電機の制御変圧機との間に切替スイツチを介挿
し、方位設定を1個所で設定できるようにし、そ
の切替スイツチの任意の選択と信号の切替によつ
てジヤイロコンパス又は磁気コンパスのいずれか
による自動操舵を可能としたものである。
e. Effect: A changeover switch is inserted between the synchro electric machine or magnetic sensor for transmitting the ship's current direction, which is connected to the gyro compass and magnetic compass disposed on the ship's hull, respectively, and the control transformer of the receiving side synchro electric machine, The direction can be set in one place, and automatic steering using either a gyro compass or a magnetic compass is possible by arbitrarily selecting the switch and switching the signal.

f 実施例 以下、図面に基づいて本考案の好適な実施例を
例示的に詳しく説明する。
f. Embodiments Hereinafter, preferred embodiments of the present invention will be described in detail based on the drawings.

第1図は本考案の一実施例を示すもので、ジヤ
イロコンパス(図示せず)に回転子軸が結合され
た船体現在方位の発信用シンクロ電機(1Xの発
信シンクロ)11と船体上の磁気コンパス(図示
せず)上に装着された方位発信用磁気センサ17
の2つの方位発信装置11,17と、受信用シン
クロ電機としての制御変圧機12aとの間に、方
位信号を前記両コンパスのいずれかに選択、切替
えるため、切替スイツチ13を送受信の端子S
1,S2,S3と端子S1,S2,S3間のそれ
ぞれの相互間に介挿させる。受信側シンクロ電機
の制御変圧機12aの回転子軸には船体の航行し
たい針路の方位設定のための360度目盛を刻設し
た方位設定カード12bが結合され、制御変圧機
12aと共に方位設定器12を構成する。この制
御変圧機12aの回転子側端子R1,R2から
は、ジヤイロコンパス又は磁気コンパスの現在方
位と前記方位設定カード12b上に設定された設
定方位との方位偏差が、交流偏差信号として検出
される。そして、この交流偏差信号を切替えるた
めのスイツチSW11,SW12、この交流偏差
信号を復調するための復調器13,18のほか、
発信用シンクロ電機11の励磁用(回転子側端子
R1,R2から励磁)及び復調器13の基準用の
交流電源として発振器19、磁気センサ17の励
磁用(1次コイル側端子R1,R2から励磁)及
び復調器18の基準用交流電源として発振器2
0、更には演算部4及び制御駆動部5がある。
Fig. 1 shows an embodiment of the present invention, in which a synchro electric machine (1X transmission synchronizer) 11 for transmitting the ship's current direction, whose rotor shaft is connected to a gyro compass (not shown), and a synchro electric machine 11 on the ship's hull. A direction transmitting magnetic sensor 17 mounted on a magnetic compass (not shown)
In order to select and switch the direction signal to either of the two compasses, a changeover switch 13 is connected between the two direction transmitting devices 11 and 17 and the control transformer 12a as a receiving synchro electric machine.
1, S2, S3 and terminals S1, S2, S3, respectively. A direction setting card 12b on which a 360 degree scale is engraved for setting the direction of the course the ship wants to sail is coupled to the rotor shaft of the control transformer 12a of the receiving side synchro electric machine, and the direction setting device 12 is connected to the control transformer 12a. Configure. The azimuth deviation between the current azimuth of the gyro compass or magnetic compass and the set azimuth set on the azimuth setting card 12b is detected as an AC deviation signal from the rotor side terminals R1 and R2 of the control transformer 12a. Ru. In addition to switches SW11 and SW12 for switching this AC deviation signal, and demodulators 13 and 18 for demodulating this AC deviation signal,
The oscillator 19 is used as an AC power source for excitation of the synchro electric machine 11 for transmission (excitation from the rotor side terminals R1, R2) and the reference for the demodulator 13, and for the excitation of the magnetic sensor 17 (excitation from the primary coil side terminals R1, R2). ) and the oscillator 2 as a reference AC power source for the demodulator 18.
0, and further includes a calculation section 4 and a control drive section 5.

磁気センサ17としては、環状鉄心の上に一定
方向に巻回した1次コイル(端子R1,R2)
と、この1次コイルの生ずる励磁磁束に対しほぼ
鎖交磁束が零になるように前記環状鉄心上に等間
隔に配置され、かつ励磁磁束に対し逆極性に接続
した等巻数の2個1対の2次コイルを3組、スタ
ー及びデルタ(端子S1,S2,S3)に結線し
たものである(本実施例ではスター結線を示す)。
The magnetic sensor 17 is a primary coil (terminals R1, R2) wound in a certain direction on a ring-shaped core.
and a pair of two pieces having an equal number of turns arranged on the annular core at equal intervals so that the magnetic flux linkage to the excitation magnetic flux generated by the primary coil becomes almost zero, and connected with opposite polarity to the excitation magnetic flux. Three sets of secondary coils are connected to star and delta (terminals S1, S2, S3) (star connection is shown in this embodiment).

磁気センサ17としては好ましくは、前述のほ
か更に2次コイル間のほぼ中央部に等しい巻数を
もつ補正コイル付のものがよい。(本出願人によ
り特願昭60−123905号(特開昭61−281982号参
照)にて提案)このような磁気センサについて更
に説明を加えると、今、仮りに、上記鉄心の或る
直径方向に磁界を印加すると上記2次コイルの両
端には、該磁界に依つて生ずる鉄心内の磁束の該
2次コイルの入力軸方向成分の大きさ及び向きに
対応する第2高調波電圧が現れる。このとき、3
組の2次コイルを入力軸に異にして等間隔で配置
すれば、各2次コイルに現れる2次電圧(2次高
調波電圧)から印加磁界の方向、即ち磁気方位を
求めることができる。
The magnetic sensor 17 is preferably one with a correction coil having an equal number of turns located approximately at the center between the secondary coils in addition to the above. (Proposed by the present applicant in Japanese Patent Application No. 60-123905 (see Japanese Patent Application Laid-Open No. 61-281982)) To further explain such a magnetic sensor, suppose that When a magnetic field is applied to the secondary coil, a second harmonic voltage appears at both ends of the secondary coil, which corresponds to the magnitude and direction of the input axis direction component of the secondary coil of the magnetic flux within the iron core generated by the magnetic field. At this time, 3
By arranging a set of secondary coils at equal intervals on the input shaft, the direction of the applied magnetic field, that is, the magnetic orientation, can be determined from the secondary voltage (second harmonic voltage) appearing in each secondary coil.

従つて、この3組の2次コイルをスター結線し
て、その出力端子をS1,S2,S3とすればこ
の磁気センサはシンクロ電機の制御発振機と同等
に扱うことができ、受信側に制御変圧機を組合せ
て実用化することができる。
Therefore, if these three sets of secondary coils are star-connected and their output terminals are S1, S2, and S3, this magnetic sensor can be treated in the same way as Synchro Electric's controlled oscillator, and the receiving side can control It can be put into practical use by combining a transformer.

次に、本実施例の動作を第1図により説明す
る。ジヤイロコンパスによる場合は切替スイツチ
SW13をG側に投入し、スイツチSW11を閉、
スイツチSW12を開とし、そのジヤイロコンパ
ス(図示せず)に結合された発信用シンクロ電機
11の回転子側(端子R1,R2)に発振器19
から例えば400Hzの交流電圧を供給し、船体の現
在方位信号を交流電気信号に変えて発信用シンク
ロ電機11の固定子側(端子S1,S2,S3)
から切替スイツチSW13を経由して、方位設定
器12の受信側シンクロ電機としての制御変圧器
12aの固定子側(端子S1,S2,S3)に送
出する。そして、この方位信号を制御変圧機12
aの回転軸に結合された方位設定カード12b上
で設定された設定方位(設定針路ともいう)と比
較して交流方位偏差信号を制御変圧機12aの回
転子側(端子R1,R2)から検出し、これをス
イツチSW11を介して復調器13で、発振器1
9からの基準周波数電源を基に復調する。復調器
13で得た直流分の方位偏差信号を演算器4及び
制御駆動部5を経由して舵を駆動し、船体の自動
操舵を行う。
Next, the operation of this embodiment will be explained with reference to FIG. If using a gyro compass, switch
Put SW13 into G side, close switch SW11,
When the switch SW12 is opened, the oscillator 19 is connected to the rotor side (terminals R1, R2) of the synchro electric machine 11 for transmitting, which is connected to the gyro compass (not shown).
For example, an AC voltage of 400 Hz is supplied from the source, and the current direction signal of the ship is converted into an AC electric signal to the stator side (terminals S1, S2, S3) of the synchro electric machine 11 for transmission.
The signal is sent to the stator side (terminals S1, S2, S3) of the control transformer 12a, which serves as the receiving side synchro electric machine of the direction setting device 12, via the changeover switch SW13. Then, this azimuth signal is transmitted to the control transformer 12.
An AC azimuth deviation signal is detected from the rotor side (terminals R1, R2) of the control transformer 12a by comparing it with a set azimuth (also referred to as a set course) set on the azimuth setting card 12b connected to the rotating shaft of the control transformer 12a. The demodulator 13 outputs this via the switch SW11 to the oscillator 1.
demodulates based on the reference frequency power source from 9. The direct current azimuth deviation signal obtained by the demodulator 13 is passed through the calculator 4 and the control drive section 5 to drive the rudder, thereby automatically steering the ship.

他方、磁気コンパスによる場合は切替スイツチ
SW13をM側に投入し、スイツチSW11を開、
スイツチSW12を閉とし、その磁気コンパス
(図示せず)上に装着された方位発信用磁気セン
サ17の1次コイル側(端子R1,R2)に発振
器20から例えば400Hzの交流電圧を供給し、船
体の現在方位信号を交流電気信号に変換して磁気
センサ17の二次コイル側(端子S1,S2,S
3)から切替スイツチSW13を経由して、方位
設定器12の受信側シンクロ電機としての制御変
圧機12aの固定子側(端子S1,S2,S3)
に送出する。以下、前述のジヤイロコンパスによ
る場合と同様に制御変圧機12aにおいて、設定
方位と比較して、交流方位偏差信号をその回転子
側(端子R1,R2)から検出し、スイツチSW
12を通つて、復調器18で復調し(基準周波数
電源を発振器20から受けて)、演算部4及び制
御駆動部5を経由して舵を駆動し、船体の自動操
舵を行う。この場合、復調器18に供給する発振
器20からの基準周波数電源の周波数は、磁気セ
ンサ17の検出方位信号がその励磁用電源周波数
の第2高調波電圧のため、励磁用電源周波数の2
倍、例えば800Hzとなる。
On the other hand, when using a magnetic compass, there is a changeover switch.
Put SW13 into the M side, open switch SW11,
The switch SW12 is closed, and an AC voltage of, for example, 400 Hz is supplied from the oscillator 20 to the primary coil side (terminals R1, R2) of the direction transmitting magnetic sensor 17 mounted on the magnetic compass (not shown). Converts the current direction signal of the
3) via the changeover switch SW13 to the stator side (terminals S1, S2, S3) of the control transformer 12a as the receiving side synchro electric machine of the direction setting device 12.
Send to. Thereafter, in the control transformer 12a, as in the case using the above-mentioned gyroscope, an AC azimuth deviation signal is detected from its rotor side (terminals R1, R2) in comparison with the set azimuth, and the switch SW is detected.
12, the signal is demodulated by a demodulator 18 (receiving reference frequency power from the oscillator 20), and the rudder is driven via the arithmetic unit 4 and control drive unit 5, thereby automatically steering the ship. In this case, the frequency of the reference frequency power supply from the oscillator 20 supplied to the demodulator 18 is 2 times higher than the excitation power supply frequency because the detected azimuth signal of the magnetic sensor 17 is the second harmonic voltage of the excitation power supply frequency.
times, for example 800Hz.

前記発信用シンクロ電機11及び制御変圧機1
2aは適用周波数を含めた同種、同型が好ましい
が異種、異型のものでも設計的に考慮を払えば実
用上大きな差異はない。
The transmitting synchro electric machine 11 and the control transformer 1
It is preferable that 2a be of the same type or type including the applicable frequency, but there is no practical difference in the use of different types or different types if consideration is given to the design.

なお本考案は前記実施例に限定されるものでは
なく、同様な機能を果す他の態様でもよい。本考
案は又、上記構成の範囲内において種々の変更、
付加が可能である。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and may have other embodiments that perform similar functions. The present invention also includes various modifications within the scope of the above configuration.
It is possible to add.

g 考案の効果 以上説明から明らかなように本考案の船舶用自
動操舵装置によれば、ジヤイロコンパスによる自
動操舵の場合及び磁気コンパスによる自動操舵の
場合のいずれにおいても、従来のように方位設定
部をそれぞれ個別に設ける必要は全くなく、前記
制御変圧機12aと、その回転軸に結合された方
位設定カード12bとからなる方位設定器12の
1個所のみで船体の方位設定が可能な自動操舵装
置を得ることができる。このため操船が容易とな
るほか、方位設定器はコンパスから離れた場所に
配設できるため船舶の計装が及び保守が容易とな
る。
g. Effects of the invention As is clear from the above explanation, according to the marine automatic steering system of the present invention, the direction can be set as before in both cases of automatic steering using a gyro compass and automatic steering using a magnetic compass. There is no need to provide separate parts for each part, and the automatic steering allows the direction of the ship to be set with only one point, which is the direction setting device 12, which is made up of the control transformer 12a and the direction setting card 12b connected to its rotating shaft. You can get the equipment. This makes ship maneuvering easier, and the azimuth setting device can be placed away from the compass, making vessel instrumentation and maintenance easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す船舶用自動操
舵装置のブロツク系統図、第2図は従来の船舶用
自動操舵装置のブロツク系統図である。 11……発信用シンクロ電機、12……方位設
定器、12a……制御変圧機、12b……方位設
定カード、13,18……復調器、17……磁気
センサ、19,20……発振器、SW11,SW
12……スイツチ、SW13……切替スイツチ。
FIG. 1 is a block system diagram of a marine vessel automatic steering system showing an embodiment of the present invention, and FIG. 2 is a block system diagram of a conventional marine vessel automatic steering system. DESCRIPTION OF SYMBOLS 11... Synchro electric machine for transmission, 12... Direction setter, 12a... Control transformer, 12b... Direction setting card, 13, 18... Demodulator, 17... Magnetic sensor, 19, 20... Oscillator, SW11, SW
12... Switch, SW13... Changeover switch.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 船体上に配設されたジヤイロコンパスまたは磁
気コンパスのいずれかに切替え、該コンパスから
発信される現在方位信号と設定方位とを比較して
その偏差信号を検出し、該偏差信号に基づいて前
記船体を自動操舵するものにおいて、前記現在方
位信号を発信するため、前記ジヤイロコンパスに
発信用シンクロ電機を結合すると共に、前記磁気
コンパスに磁気センサを装着し、前記現在方位信
号を受信し、方位を設定すると共に、その偏差信
号を検出する制御変圧機を配設し、前記発信用シ
ンクロ電機または磁気センサのいずれかの出力側
と、前記制御変圧機の入力側との接続を、選択的
に切替えるための切替スイツチを設けたことを特
徴とする船舶用自動操舵装置。
Switch to either a gyro compass or a magnetic compass disposed on the hull, compare the current direction signal sent from the compass with the set direction, detect the deviation signal, and use the deviation signal to detect the In a device that automatically steers a ship, in order to transmit the current azimuth signal, a synchro electric machine for transmitting is coupled to the gyroscope compass, and a magnetic sensor is attached to the magnetic compass to receive the current azimuth signal and calculate the azimuth. is set, and a control transformer is provided to detect the deviation signal, and the connection between the output side of either the transmitting synchro electric machine or the magnetic sensor and the input side of the control transformer is selectively established. An automatic steering device for a ship, characterized in that it is provided with a changeover switch for switching.
JP1986049089U 1986-04-02 1986-04-02 Expired JPH0423757Y2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1986049089U JPH0423757Y2 (en) 1986-04-02 1986-04-02
SE8701352A SE465316B (en) 1986-04-02 1987-04-01 Marine autopilot system
FI871435A FI90148C (en) 1986-04-02 1987-04-01 AUTOMATISKT STYRNINGSSYSTEM FOER FARTYG
DK166487A DK166815B1 (en) 1986-04-02 1987-04-01 MARITIME AUTOPILOT CONSTRUCTION
NO87871356A NO173154C (en) 1986-04-02 1987-04-01 MARINT AUTOPILOT SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986049089U JPH0423757Y2 (en) 1986-04-02 1986-04-02

Publications (2)

Publication Number Publication Date
JPS62172698U JPS62172698U (en) 1987-11-02
JPH0423757Y2 true JPH0423757Y2 (en) 1992-06-03

Family

ID=12821369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986049089U Expired JPH0423757Y2 (en) 1986-04-02 1986-04-02

Country Status (5)

Country Link
JP (1) JPH0423757Y2 (en)
DK (1) DK166815B1 (en)
FI (1) FI90148C (en)
NO (1) NO173154C (en)
SE (1) SE465316B (en)

Also Published As

Publication number Publication date
NO173154B (en) 1993-07-26
DK166487D0 (en) 1987-04-01
DK166487A (en) 1987-10-03
FI90148B (en) 1993-09-15
NO871356D0 (en) 1987-04-01
SE465316B (en) 1991-08-26
SE8701352L (en) 1987-10-03
FI871435A (en) 1987-10-03
SE8701352D0 (en) 1987-04-01
JPS62172698U (en) 1987-11-02
NO871356L (en) 1987-10-05
DK166815B1 (en) 1993-07-19
FI871435A0 (en) 1987-04-01
FI90148C (en) 1993-12-27
NO173154C (en) 1993-11-03

Similar Documents

Publication Publication Date Title
US3888201A (en) Auto-pilot
JPH0423757Y2 (en)
US2088659A (en) Phase shift control for three element electron tubes
US4116057A (en) Pendulous induction compass transmitter with means to compensate for heading errors in turns due to the vertical component of the Earth's magnetic field and due to two cycle error
JPH1059291A (en) Ship position control device for small ship
JPS6169388A (en) Pole position detecting method and device
US4103279A (en) Diver navigation system
JP2000344193A (en) Automatic return navigation device
EP0100625B1 (en) Measuring system of magnetometer setting direction
CA1047807A (en) Start-up conditioning means for an azimuth reference
US2534293A (en) Servomotor and system having improved torque characteristics
US2176101A (en) Angular positional control system
JPS6489988A (en) Induction machine controller
US2887782A (en) Gyro magnetic compass system
US2924023A (en) Electrical error compensation arrangements
JPS6489987A (en) Controller for induction machine
JPS5926517B2 (en) Course setting mechanism of marine automatic steering system
US2456430A (en) Telemetering apparatus
JPH08172799A (en) Simple vector control system of three-phase induction motor
SU1534661A1 (en) Device for control of thyratron motor
JPS6210877B2 (en)
JPH0245771Y2 (en)
GB2143995A (en) Position-pick-off devices
GB1279840A (en) Synchro indicating system
JPH063161A (en) Connecting apparatus for resolver signal