JPH04236404A - Ferrite magnetic powder and magnetic recording medium using same - Google Patents

Ferrite magnetic powder and magnetic recording medium using same

Info

Publication number
JPH04236404A
JPH04236404A JP3005153A JP515391A JPH04236404A JP H04236404 A JPH04236404 A JP H04236404A JP 3005153 A JP3005153 A JP 3005153A JP 515391 A JP515391 A JP 515391A JP H04236404 A JPH04236404 A JP H04236404A
Authority
JP
Japan
Prior art keywords
ferrite
magnetic powder
magnetic
ratio
hexagonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3005153A
Other languages
Japanese (ja)
Inventor
Osamu Kubo
修 久保
Tatsumi Maeda
前田 辰巳
Toshiharu Kurisu
俊治 栗栖
Etsuji Ogawa
悦治 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3005153A priority Critical patent/JPH04236404A/en
Publication of JPH04236404A publication Critical patent/JPH04236404A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To realize the reduction of the temperature coefficient of coercive force, without decreasing the rectangularity ratio of ferrite magnetic powder of compound type hexagonal system. CONSTITUTION:Hexagonal system ferrite and spinel ferrite are compounded to obtain the title magnetic powder. The compound type magnetic powder contains 0.02-0.95 of Li element in 1mol of alkaline earth ions (one kind selected out of Ba, Sr, Pb and Ca) which are constituent elements of the hexagonal system ferrite. Further it is a characteristic that the ratio of the spinel ferrite phase to the hexagonal system ferrite phase is less than 0.1-2.0mols to hexagonal system ferrite of 1mol. The compound type magnetic powder is dispersed and contained in a magnetic layer to obtain magnetic recording medium. As the result of the above compounding, the rectangularity ratio of magnetic powder can be restrained, and the temperature stability of coercive force also is increased, so that highly reliable magnetic recording function is exhibited.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【発明の目的】[Purpose of the invention]

【0002】0002

【産業上の利用分野】本発明は、高密度磁気記録媒体の
構成に適する六方晶系フェライトとスピネルフェライト
の複合型のフェライト磁性粉およびこれを用いた磁気記
録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite type ferrite magnetic powder of hexagonal ferrite and spinel ferrite suitable for constructing high-density magnetic recording media, and a magnetic recording medium using the same.

【0003】0003

【従来の技術】面内長手方向の磁化を用いる磁気記録方
式に代りに、媒体面に垂直な方向の磁化を用いる垂直磁
気記録方式が、次世代の高密度磁気記録方式として注目
されている。このような垂直磁気記録媒体としては、媒
体面に垂直方向に磁化容易軸をもつCo−Cr 金属薄
膜や、板状結晶で板面に垂直方向に磁化容易軸をもつ六
方晶系フェライト磁性粉を、支持基体上に塗布し垂直配
向させた記録媒体が主に検討されている。
2. Description of the Related Art A perpendicular magnetic recording system that uses magnetization in a direction perpendicular to the medium surface, instead of a magnetic recording system that uses magnetization in the in-plane longitudinal direction, is attracting attention as a next-generation high-density magnetic recording system. Such perpendicular magnetic recording media include a Co-Cr metal thin film with an easy axis of magnetization perpendicular to the medium surface, and a hexagonal ferrite magnetic powder that is a plate-shaped crystal with an easy axis of magnetization perpendicular to the plate surface. , recording media coated on a supporting substrate and vertically oriented have been mainly studied.

【0004】ところで、上記六方晶系フェライト磁性粉
を用いた媒体においては、常温程度の温度で保磁力(H
c)の値が、温度上昇とともに増加するという特徴ある
温度特性を示し、温度変化に対して比較的安定な媒体で
あるが、実用的見地からはこの磁性粉にも、より一層の
温度安定性が望まれていた。
By the way, in the medium using the above-mentioned hexagonal ferrite magnetic powder, the coercive force (H
It shows a characteristic temperature characteristic in that the value of c) increases as the temperature rises, making it a relatively stable medium against temperature changes.However, from a practical point of view, this magnetic powder also requires further temperature stability. was desired.

【0005】[0005]

【発明が解決しようとする課題】上記六方晶系フェライ
ト磁性粉の保磁力の温度安定性を改善する方法としては
、たとえばSnなどの原子でFeの一部を置換する解決
策の他に、保磁力の温度係数が正の六方晶系フェライト
と、保磁力の温度係数が負のスピネルフェライトとを複
合化させたフェライト磁性粉が提案されている。しかし
、本発明者らの検討によれば、六方晶系フェライトとス
ピネルフェライトとを複合化させた磁性粉においては、
保磁力の温度係数をほぼゼロに制御することは可能であ
るが、スピネルフェライトの割合を多くすると磁性粉の
角型比が小さくなり、電磁変換特性が劣化する傾向にあ
った。
[Problems to be Solved by the Invention] As a method for improving the temperature stability of the coercive force of the above-mentioned hexagonal ferrite magnetic powder, in addition to the solution of partially replacing Fe with atoms such as Sn, A ferrite magnetic powder has been proposed that is a composite of hexagonal ferrite having a positive temperature coefficient of magnetic force and spinel ferrite having a negative temperature coefficient of coercive force. However, according to the studies of the present inventors, in magnetic powder that is a composite of hexagonal ferrite and spinel ferrite,
Although it is possible to control the temperature coefficient of coercive force to almost zero, increasing the proportion of spinel ferrite tends to decrease the squareness ratio of the magnetic powder and deteriorate the electromagnetic conversion characteristics.

【0006】本発明はかかる事情に鑑みなされたもので
あって、上記複合型六方晶系のフェライト磁性粉に所定
量のLi元素を含有させることにより、磁性粉の角型比
を低下させることなく、保磁力の温度係数の低減を実現
し得ることを見出した。
The present invention was made in view of the above circumstances, and by incorporating a predetermined amount of Li element into the above-mentioned composite hexagonal ferrite magnetic powder, it is possible to obtain a magnetic powder without reducing the squareness ratio of the magnetic powder. It was discovered that the temperature coefficient of coercive force can be reduced.

【0007】[0007]

【発明の構成】[Structure of the invention]

【0008】[0008]

【課題を解決するための手段】本発明に係る高密度磁気
記録用磁性粉は、六方晶系フェライトとスピネルフェラ
イトを複合化させた磁性粉であって、その複合型磁性粉
がLi元素を六方晶系フェライトの構成元素であるアル
カリ土類イオン(Ba、Sr、Pb、Caの中から選択
される一種) 1モル当り、 0.02 〜0.95含
有し、かつスピネルフェライト相の六方晶系フェライト
相に対する割合が、六方晶系フェライト 1モルに対し
、 0.1〜2.0 モル未満であることを特徴とし、
また本発明に係る磁気記録媒体は、前記複合型磁性粉を
磁性層に分散含有させたことを特徴としている。
[Means for Solving the Problems] The magnetic powder for high-density magnetic recording according to the present invention is a magnetic powder that is a composite of hexagonal ferrite and spinel ferrite, and the composite magnetic powder contains the Li element in a hexagonal manner. Contains 0.02 to 0.95 alkaline earth ions (one selected from Ba, Sr, Pb, and Ca) per mole, which is a constituent element of crystalline ferrite, and has a hexagonal system with a spinel ferrite phase. The ratio to the ferrite phase is 0.1 to less than 2.0 mol per 1 mol of hexagonal ferrite,
Further, the magnetic recording medium according to the present invention is characterized in that the composite magnetic powder is dispersed and contained in the magnetic layer.

【0009】ここで、スピネルフェライト相の六方晶系
フェライト相に対する割合とは、着目する複合型六方晶
系フェライトの組成を、  六方晶系フェライト相の基
本式+αM1 Fe2 O4 (スピネル相の基本式で
M1 は平均原子価 2価を持つ一種以上の元素)と表
した場合のαの値で示され、本発明においては、αは 
0.1以上2.0 未満であることを意味する。また、
六方晶系フェライト相の基本式とは、マグネトプランバ
イト型フェライトの場合は、BaO・nFe2 O3 
( n=5 〜6.0 )、M型の場合は、BaO・2
 M2 O・8 Fe2 O3 (M2 は平均原子価
 2価の一種以上の元素)で表されるが、これらの一部
は、他の元素で置換されたものであってもよい。
[0009] Here, the ratio of the spinel ferrite phase to the hexagonal ferrite phase is defined as the composition of the composite hexagonal ferrite of interest as follows: basic formula of hexagonal ferrite phase + αM1 Fe2 O4 (basic formula of spinel phase) M1 is the value of α when expressed as (one or more elements with an average valence of 2), and in the present invention, α is
It means 0.1 or more and less than 2.0. Also,
The basic formula of the hexagonal ferrite phase is BaO・nFe2O3 in the case of magnetoplumbite ferrite.
(n=5 to 6.0), in the case of M type, BaO・2
It is represented by M2 O.8 Fe2 O3 (M2 is one or more elements having an average valence of 2), but some of these may be substituted with other elements.

【0010】本発明の特徴は、上記複合型六方晶系フェ
ライトにLiを含有させることにより、磁性粉の角型比
を向上させるところにあるが、Li元素の含有量は、磁
性粉の構成元素であるアルカリ土類イオン 1モル当り
、0.02〜0.95モルの範囲に選択される。Liの
含有量が0.02モル未満では、角型比向上の効果がさ
ほど現れず、0.95モルより多くなると、粒度分布が
悪くなり所望の機能を呈さない。
[0010] A feature of the present invention is that the squareness ratio of the magnetic powder is improved by incorporating Li into the above-mentioned composite hexagonal ferrite. The alkaline earth ion is selected in a range of 0.02 to 0.95 mol per mol. When the Li content is less than 0.02 mol, the effect of improving the squareness ratio is not so pronounced, and when it is more than 0.95 mol, the particle size distribution deteriorates and the desired function is not exhibited.

【0011】一方、本発明においては、磁性粉中におけ
るスピネルフェライト相の六方晶系フェライト相に対す
る割合を 0.1以上2.0 未満の範囲内で選択され
る。なぜならば、この割合が 0.1未満では、保磁力
の温度係数が十分に改善されず、 2.0より大きい場
合、磁性粉の粒度分布が悪くなるためである。
On the other hand, in the present invention, the ratio of the spinel ferrite phase to the hexagonal ferrite phase in the magnetic powder is selected within the range of 0.1 or more and less than 2.0. This is because if this ratio is less than 0.1, the temperature coefficient of coercive force will not be sufficiently improved, and if it is more than 2.0, the particle size distribution of the magnetic powder will deteriorate.

【0012】0012

【作用】本発明に係る高密度磁気記録用磁性粉は、六方
晶系フェライトとスピネルフェライトを複合化させた磁
性粉であって、かつ、その複合型磁性粉に所定量のLi
元素を含有させると同時に、スピネルフェライト相の六
方晶系フェライト相に対する割合を所定範囲に制御する
ことにより、複合化による磁性粉の角型比の低下を抑制
する一方、保磁力の温度安定性を高められ信頼性の高い
機能を呈する。
[Operation] The magnetic powder for high-density magnetic recording according to the present invention is a magnetic powder that is a composite of hexagonal ferrite and spinel ferrite, and the composite magnetic powder contains a predetermined amount of Li.
By controlling the ratio of the spinel ferrite phase to the hexagonal ferrite phase within a predetermined range while containing the elements, we can suppress the decrease in the squareness ratio of the magnetic powder due to compounding, and at the same time improve the temperature stability of the coercive force. Exhibits enhanced and reliable functionality.

【0013】[0013]

【実施例】以下本発明の実施例を説明する。具体的な実
施例の説明に先立って、本発明の構成に関する一般的な
事項を説明する。先ず、前記Li含有の複合化されたフ
ェライト系磁性粉において、Liと同時にZnを含有さ
せることにより、飽和磁化をさらに向上させることがで
きる。Znの含有量は、Zn/Liモル比で 0.1〜
3.0 の範囲が好ましい。Zn/Li比が0.1 よ
り小さい場合は、飽和磁化向上の効果が顕著でなくなり
、3.0 を超えると、逆に飽和磁化が顕著に低下する
傾向があるためである。
[Examples] Examples of the present invention will be described below. Prior to describing specific embodiments, general matters regarding the configuration of the present invention will be described. First, by containing Zn at the same time as Li in the Li-containing composite ferrite magnetic powder, saturation magnetization can be further improved. The Zn content is from 0.1 to Zn/Li molar ratio.
A range of 3.0 is preferred. This is because if the Zn/Li ratio is less than 0.1, the effect of improving saturation magnetization becomes less noticeable, and if it exceeds 3.0, saturation magnetization tends to decrease significantly.

【0014】また、本発明に係るLi含有の複合化され
たフェライト系磁性粉は、平均粒径が0.02〜0.2
 μm 、好ましくは0.04〜 0.1μm に選択
される。すなわち、平均粒径が0.02μm 未満では
、熱ゆらぎの影響で磁化が残りにくく、 0.2μm 
を超えると、短波長領域での記録分解能が低下する傾向
が認められるからである。一方、保磁力については、 
200〜2000 Oe 、好ましくは400 〜15
00 Oe に選択・設定される。つまり、保磁力が2
00 Oe未満では磁化が残りにくく、2000 Oe
 を超えると磁気ヘッドでの書き込みが困難となるため
である。
[0014] Furthermore, the Li-containing composite ferrite magnetic powder according to the present invention has an average particle size of 0.02 to 0.2.
μm, preferably 0.04 to 0.1 μm. In other words, when the average particle size is less than 0.02 μm, magnetization is difficult to remain due to the influence of thermal fluctuations, and 0.2 μm
This is because, if it exceeds , there is a tendency for the recording resolution in the short wavelength region to decrease. On the other hand, regarding coercive force,
200-2000 Oe, preferably 400-15
Selected and set to 00 Oe. In other words, the coercive force is 2
Below 00 Oe, magnetization is difficult to remain, and below 2000 Oe
This is because writing with a magnetic head becomes difficult if the value exceeds .

【0015】本発明において、スピネルフェライトが複
合化される場合、母体となる六方晶系フェライトとして
は、前述のように、マグネトプランバイト型フェライト
もしくはW型フェライトを使用されるが、マグネトプラ
ンバイト型フェライトの単体もしくは置換体が好ましい
。具体的には、一般式 AO・n(Fe2−x−y M1xM2yO3 )(A
:Ba、Sr、Pb、Ca、M1 :Co、Ni、Cu
、Zn、Mn、M2 :Ti、Sn、Nb、Sb、Zr
、  X:0 〜0.3 、Y:0 〜0.3 、n=
5 〜6.0 )で表されるフェライトが挙げられる。
In the present invention, when spinel ferrite is composited, magnetoplumbite ferrite or W-type ferrite is used as the base hexagonal ferrite, as described above. A simple substance or a substituted substance of ferrite is preferable. Specifically, the general formula AO・n(Fe2-x-y M1xM2yO3) (A
:Ba, Sr, Pb, Ca, M1 :Co, Ni, Cu
, Zn, Mn, M2: Ti, Sn, Nb, Sb, Zr
, X: 0 ~ 0.3, Y: 0 ~ 0.3, n=
5 to 6.0).

【0016】また、前記Li含有の複合化されたフェラ
イト系磁性粉の製造方法としては、たとえば特開昭56
−67904号記載のガラス結晶化法や、特開昭61−
168532 号記載の水熱合成−焼成法などが好適で
ある。
[0016] Further, as a method for producing the Li-containing composite ferrite magnetic powder, for example,
- Glass crystallization method described in No. 67904 and JP-A-61-
The hydrothermal synthesis-calcination method described in No. 168532 is suitable.

【0017】次に本発明の具体的な実施例を記載する。Next, specific examples of the present invention will be described.

【0018】BaCo3 、Fe2 O3 、CoO、
ZnO、Li2 O、TiO2 の各原料粉末を、Ba
:Fe:Co:Zn:Li:Tiのモル比が表1に示す
ごとく比較例を含め9種類の混合物を調合し、これらの
混合粉末原料をそれぞれBaO/B2 O3 ガラスと
ともにルツボの中に入れ、1350℃で溶融した。この
溶融物を高速回転する金属製双ロールで圧延急冷し非晶
質化した。この非晶質フレークを電気炉にて 800℃
の温度で結晶化し、BaO/B2 O3 ガラス中に磁
性粉をそれぞれ結晶化させた。次いで、これらの結晶化
物をそれぞれ10% の酢酸溶液にて洗浄することによ
り、BaO/B2 O3 ガラスを除去した後、水洗し
て磁性粉を作製した。これらの磁性粉は、 X線回折の
結果、Baフェライトとスピネルフェライトに相当する
ピークを有していた。次いで、これらの磁性粉の飽和磁
化σs 、保磁力HcおよびHcの温度依存性を、最大
磁場10 KOeの振動試料型磁化測定装置(VSM)
 にて測定した。Hcの温度測定は 0〜60℃の範囲
で行い、その温度係数dHc/dTは、dHc/dT=
Hc(60℃)−Hc(0℃)/dTで定義した。
[0018] BaCo3, Fe2O3, CoO,
Raw material powders of ZnO, Li2O, and TiO2 were mixed with Ba
:Fe:Co:Zn:Li:Ti molar ratios are as shown in Table 1. Nine types of mixtures including a comparative example were prepared, and each of these mixed powder raw materials was placed in a crucible together with BaO/B2O3 glass. It melted at 1350°C. This melt was rapidly cooled by rolling with twin metal rolls rotating at high speed to form an amorphous material. This amorphous flake is heated to 800℃ in an electric furnace.
The magnetic powder was crystallized in BaO/B2O3 glass at a temperature of . Next, each of these crystallized products was washed with a 10% acetic acid solution to remove the BaO/B2 O3 glass, and then washed with water to produce magnetic powder. As a result of X-ray diffraction, these magnetic powders had peaks corresponding to Ba ferrite and spinel ferrite. Next, the temperature dependence of the saturation magnetization σs, coercive force Hc, and Hc of these magnetic powders was measured using a vibrating sample magnetization measuring device (VSM) with a maximum magnetic field of 10 KOe.
Measured at The temperature measurement of Hc is carried out in the range of 0 to 60℃, and the temperature coefficient dHc/dT is dHc/dT=
It was defined as Hc (60°C) - Hc (0°C)/dT.

【0019】また、これらの磁性粉の平均粒径(Dm)
および最大粒径(Dmax)は、10万倍の透過電子顕
微鏡写真上の 400個の粒子につき行った。これらの
磁性粉の組成および特性を表2にまとめて示した。
[0019] Also, the average particle diameter (Dm) of these magnetic powders
The maximum particle diameter (Dmax) was determined for 400 particles on a transmission electron micrograph taken at a magnification of 100,000 times. The composition and properties of these magnetic powders are summarized in Table 2.

【0020】                          
     表1          Ba:Fe:Co
:Li:Zn:Ti           Li/Ba
       Zn/Li       α*    
      (モル比)              
    (モル比)  (モル比)  実 1  1:
10,55:0,85:0.05: 0 :0.85 
     0.05         0      
    0.1      2  1:13,00:0
.75:0.50: 0 :0.75      0.
50         0          1.0
   施 3  1:14,31:0.72:0.75
: 0 :0.72      0.75      
   0          1.5      4 
 1:15,35:0.70:0.95: 0 :0.
70      0.95         0   
       1.9   例 5  1:12,80
:0.75:0.30:0.40:0.75     
0.30         1.1        1
.0      6  1:12,90:0.75:0
.40:0.20:0.75     0.40   
      0.5        1.0   比 
1  1:10.30:0.85: 0 : 0 :0
.85       0             −
        0         較 2  1:
16.10:0.70:1.10: 0 :0.70 
     1.10         0      
    2.2     例 3  1:13.60:
1.90: 0 :0.30:0.70      0
             −        1.5
   α*はスピネルフェライトの六方晶フェライトに
対するモル比である。
[0020]
Table 1 Ba:Fe:Co
:Li:Zn:Ti Li/Ba
Zn/Li α*
(molar ratio)
(Mole ratio) (Mole ratio) Real 1 1:
10,55:0,85:0.05:0:0.85
0.05 0
0.1 2 1:13,00:0
.. 75:0.50:0:0.750.
50 0 1.0
3 1:14, 31:0.72:0.75
: 0 :0.72 0.75
0 1.5 4
1:15, 35:0.70:0.95:0:0.
70 0.95 0
1.9 Example 5 1:12,80
:0.75:0.30:0.40:0.75
0.30 1.1 1
.. 0 6 1:12,90:0.75:0
.. 40:0.20:0.75 0.40
0.5 1.0 ratio
1 1:10.30:0.85: 0: 0:0
.. 85 0 -
0 comparison 2 1:
16.10:0.70:1.10:0:0.70
1.10 0
2.2 Example 3 1:13.60:
1.90: 0 :0.30:0.70 0
-1.5
α* is the molar ratio of spinel ferrite to hexagonal ferrite.

【0021】                       表2 
         飽和磁化    保磁力    角
型比  Hcの温度係数  平均粒径  最大粒径  
        σs(emu/g)  Hc(Oe)
             (Oe/ ℃)     
 Dm(nm)  Dmax(nm)  実 1   
   57         850       0
.49      3.8           50
       122      2      58
         860       0.49  
    1.5           52     
  122   施 3      59      
   830       0.50      1.
0           51       131 
     4      60         86
0       0.50      0.4    
       55       150   例 5
      65         850     
  0.49      1.1          
 51       122      6     
 63         840       0.4
9      1.3           52  
     125   比 1      57   
      760       0.47     
 4.9           50       1
22   較 2      61         
870       0.50      0.3  
         68       370   例
 3      58         840   
    0.42      1.2        
   52       136 前記で得た各磁性粉
を用いて下記の組成の磁気塗料を調製し、 1μm フ
ィルタで濾過した後、ポリエチレンテレフタレートフィ
ルム面上に塗布した。すなわち、磁性粉 100重量部
、塩化ビニル酢酸ビニル共重合体10重量部、ポリウレ
タン10重量部、レシチン 4重量部、メチルイソブチ
ルケトン93重量部、トルエン93重量部およびコロネ
ートL (商品名、日本ポリウレタン社製、ポリイソシ
アネート化合物) 3重量部を組成分とし、常套の手段
に従って磁気塗料を調製した。
Table 2
Saturation magnetization Coercive force Squareness ratio Temperature coefficient of Hc Average grain size Maximum grain size
σs (emu/g) Hc (Oe)
(Oe/℃)
Dm (nm) Dmax (nm) Actual 1
57 850 0
.. 49 3.8 50
122 2 58
860 0.49
1.5 52
122 3 59
830 0.50 1.
0 51 131
4 60 86
0 0.50 0.4
55 150 Example 5
65 850
0.49 1.1
51 122 6
63 840 0.4
9 1.3 52
125 ratio 1 57
760 0.47
4.9 50 1
22 comparison 2 61
870 0.50 0.3
68 370 Example 3 58 840
0.42 1.2
52 136 A magnetic paint having the following composition was prepared using each of the magnetic powders obtained above, and after filtering through a 1 μm filter, it was applied onto a polyethylene terephthalate film. That is, 100 parts by weight of magnetic powder, 10 parts by weight of vinyl chloride vinyl acetate copolymer, 10 parts by weight of polyurethane, 4 parts by weight of lecithin, 93 parts by weight of methyl isobutyl ketone, 93 parts by weight of toluene, and Coronate L (trade name, Nippon Polyurethane Co., Ltd.) A magnetic coating material was prepared using 3 parts by weight of a polyisocyanate compound (manufactured by Polyisocyanate Compound) according to a conventional method.

【0022】次いで、前記磁性塗料を塗布したポリエチ
レンテレフタレートフィルムの塗布面に、垂直方向の4
000 Oe の磁界をそれぞれ作用させて磁性粉を磁
場配向させつつ乾燥し、カレンダー処理を施して表面を
平滑化した。これをそれぞれ 1/2インチ幅に切断し
て媒体試料とした。これらの媒体試料にそれぞれ磁気記
録を行った後、再生出力を測定してそのテープの特性を
調べた。この時、使用した磁気ヘッドはリング型フェラ
イトヘッドでギャップ幅0.3μm 、トラック幅35
μm であり、ヘッドとテープの相対速度は3.75m
/sec 、記録周波数は5MHzであった。これらの
媒体の磁気特性および再生出力値を表3にまとめて示す
Next, the coated surface of the polyethylene terephthalate film coated with the magnetic paint is coated with four
The magnetic powder was dried while being applied with a magnetic field of 000 Oe to orient it in the magnetic field, and the surface was smoothed by calendering. Each of these pieces was cut into 1/2 inch width pieces to serve as media samples. After performing magnetic recording on each of these media samples, the reproduction output was measured to examine the characteristics of the tape. The magnetic head used at this time was a ring-type ferrite head with a gap width of 0.3 μm and a track width of 35 mm.
μm, and the relative speed of the head and tape is 3.75 m.
/sec, and the recording frequency was 5 MHz. Table 3 summarizes the magnetic properties and reproduction output values of these media.

【0023】                          
     表3          媒体飽和磁化  
媒体保磁力  Hcの温度係数  角型比  媒体出力
          Ms(emu/g)     H
c(Oe)      (Oe/℃)     (垂直
)   (dB)       1       13
0          880          3
.0        0.75     +0.1  
実  2       132          8
70          0.8        0.
75     +0.2  施  3       1
35          830          
0.3        0.76     +0.3 
 例  4       137          
840         −0.3        0
.78     +0.5      5      
 150          850        
  0.6        0.75     +1.
2      6       140       
   850          0.7      
  0.76     +0.7  比  1    
   128          860      
    4.5        0.73      
  0  較  2       134      
    840         −0.5     
   0.82     −3.4  例  3   
    132          850     
     0.6        0.63     
−1.5表3において、実施例および比較例の番号は前
記表1および表2の番号に対応している。
[0023]
Table 3 Media saturation magnetization
Media coercive force Temperature coefficient of Hc Squareness ratio Media output Ms (emu/g) H
c(Oe) (Oe/℃) (Vertical) (dB) 1 13
0 880 3
.. 0 0.75 +0.1
Real 2 132 8
70 0.8 0.
75 +0.2 3 1
35 830
0.3 0.76 +0.3
Example 4 137
840 -0.3 0
.. 78 +0.5 5
150 850
0.6 0.75 +1.
2 6 140
850 0.7
0.76 +0.7 ratio 1
128 860
4.5 0.73
0 comparison 2 134
840 -0.5
0.82 -3.4 Example 3
132 850
0.6 0.63
-1.5 In Table 3, the numbers of Examples and Comparative Examples correspond to the numbers in Tables 1 and 2 above.

【0024】表1に示したように、本発明の磁性粉は、
六方晶系フェライトとスピネルフェライトを複合化させ
たことにより、六方晶系フェライト単相(比較例1の磁
性粉参照)に比較し、保磁力の温度依存性が改善されて
いるのみならず、六方晶系フェライトとスピネルフェラ
イトの割合αが所定範囲に制御されていることにより、
複合化による粒度分布の広がり(比較例2の磁性粉参照
)が抑制されている。さらに、本発明に係る磁性粉は、
Liを含有していることにより、複合化による角型比の
低下(比較例3の磁性粉参照)も抑制されている。 このような特徴から、本発明の磁性粉を用いた媒体は、
保磁力の温度依存性が小さいばかりでなく、高密度特性
に優れた媒体となっている。
As shown in Table 1, the magnetic powder of the present invention is
By combining hexagonal ferrite and spinel ferrite, not only the temperature dependence of coercive force is improved compared to single-phase hexagonal ferrite (see magnetic powder in Comparative Example 1), but also the hexagonal By controlling the ratio α of crystalline ferrite and spinel ferrite within a predetermined range,
The spread of particle size distribution due to compositing (see magnetic powder of Comparative Example 2) is suppressed. Furthermore, the magnetic powder according to the present invention is
By containing Li, the decrease in squareness ratio due to compositing (see magnetic powder of Comparative Example 3) is also suppressed. Due to these characteristics, the medium using the magnetic powder of the present invention is
This medium not only has a small temperature dependence of coercive force, but also has excellent high-density characteristics.

【0025】[0025]

【発明の効果】以上説明したように本発明によれば、六
方晶系フェライトとスピネルフェライトの複合化された
磁性粉において、磁性粉に所定量のLiを含有させるこ
とにより、磁性粉の角型比がを向上し、かつ六方晶系フ
ェライト相とスピネルフェライト相の複合化比率を制御
したことにより、複合化による磁性粉の粒度分布の劣化
も抑制される。そして前記角型比の向上および粒度分布
の劣化抑制により、保持力の温度依存性が小さく、かつ
高密度記録特性のすぐれた磁気記録媒体の提供が可能と
なる。
As explained above, according to the present invention, in a composite magnetic powder of hexagonal ferrite and spinel ferrite, by containing a predetermined amount of Li in the magnetic powder, the square shape of the magnetic powder can be improved. By improving the ratio and controlling the composite ratio of the hexagonal ferrite phase and the spinel ferrite phase, deterioration of the particle size distribution of the magnetic powder due to composite is also suppressed. By improving the squareness ratio and suppressing deterioration of the particle size distribution, it is possible to provide a magnetic recording medium with small temperature dependence of coercive force and excellent high-density recording characteristics.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  六方晶系フェライトとスピネルフェラ
イトとの複合化された磁性粉であって、前記磁性粉は六
方晶系フェライトの構成元素であるアルカリ土類イオン
 1モル当り0.02〜0.95モルのLi元素を含有
し、かつスピネルフェライトの含有量が六方晶系フェラ
イト 1モル当り 0.1〜2.0 モル未満の範囲で
あることを特徴とする高密度磁気記録用複合型六方晶系
のフェライト磁性粉。
1. A composite magnetic powder of hexagonal ferrite and spinel ferrite, wherein the magnetic powder contains 0.02 to 0.0.0. A composite hexagonal crystal for high-density magnetic recording, which contains 95 moles of Li element and has a content of spinel ferrite in the range of 0.1 to less than 2.0 moles per mole of hexagonal ferrite. ferrite magnetic powder.
【請求項2】  六方晶系フェライトとスピネルフェラ
イトとの複合化された磁性粉であって、前記磁性粉は六
方晶系フェライトの構成元素であるアルカリ土類イオン
 1モル当り0.02〜0.95モルのLi元素を含有
し、かつスピネルフェライトの含有量が六方晶系フェラ
イト 1モル当り 0.1〜2.0 モル未満の範囲で
ある高密度磁気記録用複合型六方晶系のフェライト磁性
粉を含む磁性層を非磁性基体面上に設けてなることを特
徴とする磁気記録媒体。
2. A composite magnetic powder of hexagonal ferrite and spinel ferrite, wherein the magnetic powder contains 0.02 to 0.0.0. A composite hexagonal ferrite magnetic powder for high-density magnetic recording containing 95 mol of Li element and having a spinel ferrite content in the range of 0.1 to less than 2.0 mol per 1 mol of hexagonal ferrite. 1. A magnetic recording medium comprising: a magnetic layer comprising a magnetic layer on a non-magnetic substrate surface.
JP3005153A 1991-01-21 1991-01-21 Ferrite magnetic powder and magnetic recording medium using same Withdrawn JPH04236404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3005153A JPH04236404A (en) 1991-01-21 1991-01-21 Ferrite magnetic powder and magnetic recording medium using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3005153A JPH04236404A (en) 1991-01-21 1991-01-21 Ferrite magnetic powder and magnetic recording medium using same

Publications (1)

Publication Number Publication Date
JPH04236404A true JPH04236404A (en) 1992-08-25

Family

ID=11603326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3005153A Withdrawn JPH04236404A (en) 1991-01-21 1991-01-21 Ferrite magnetic powder and magnetic recording medium using same

Country Status (1)

Country Link
JP (1) JPH04236404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343617A (en) * 2001-05-17 2002-11-29 Sony Corp Magnetic powder and magnetic recording medium using the same
US8681451B2 (en) 2011-03-25 2014-03-25 Fujifilm Corporation Magnetic tape and method of manufacturing the same, and magnetic recording device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343617A (en) * 2001-05-17 2002-11-29 Sony Corp Magnetic powder and magnetic recording medium using the same
US8681451B2 (en) 2011-03-25 2014-03-25 Fujifilm Corporation Magnetic tape and method of manufacturing the same, and magnetic recording device

Similar Documents

Publication Publication Date Title
US4636433A (en) Magnetic powders for magnetic recording media and magnetic recording media employing said magnetic powder therein
US4493779A (en) Process for the preparation of ferrite magnetic particulate for magnetic recording
JP2721205B2 (en) Amorphous oxide magnetic material, magnetic core, and magnetic recording medium
US5576114A (en) High density magnetic recording medium containing hexagonal system ferrite powder
JPS61136923A (en) Hexagonal ferrite magnetic body for magnetic recording and its manufacture
JP3251753B2 (en) Method for producing Ba ferrite magnetic powder
JPH04236404A (en) Ferrite magnetic powder and magnetic recording medium using same
US5686137A (en) Method of providing hexagonal ferrite magnetic powder with enhanced coercive force stability
JPH05144615A (en) Magnetic recording magnetic powder and magnetic recording medium using the same
JPH09232123A (en) Hexagonal system ferrite magnetic powder
KR910006148B1 (en) Magnetic powder for high density recording and the medium thereof
JPH09213513A (en) Magnetic powder of hexagonal system ferrite
JP2735281B2 (en) Method for producing magnetic powder for magnetic recording medium
JP2691790B2 (en) Method for producing magnetic powder for magnetic recording medium
JP2717720B2 (en) Method for producing magnetic powder for magnetic recording medium
JP2807278B2 (en) Method for producing magnetic powder for magnetic recording medium
EP0526661B1 (en) Magnetic powder for magnetic recording and magnetic recording medium made thereof
JP2585243B2 (en) Magnetic powder for high density magnetic recording and magnetic recording medium using the same
JP2735382B2 (en) Magnetic powder for magnetic recording
KR960000501B1 (en) Method of preparing high density magnetic hexagonal ferrite powder
JP2706774B2 (en) Method for producing substitution type hexagonal ferrite magnetic powder
JP2635568B2 (en) Magnetic powder for high density magnetic recording and magnetic recording medium using the same
JPH04337521A (en) Magnetic powder for magnetic recording medium and magnetic recording medium formed by using the powder
JPS6255904A (en) Hexagonal system ferrite magnetic powder
JPS63193506A (en) Magnetic powder for high density magnetic recording and magnetic recording medium using the powder

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514