JPH04236240A - High-strength biaxially orientated styrenic resin sheet - Google Patents

High-strength biaxially orientated styrenic resin sheet

Info

Publication number
JPH04236240A
JPH04236240A JP447191A JP447191A JPH04236240A JP H04236240 A JPH04236240 A JP H04236240A JP 447191 A JP447191 A JP 447191A JP 447191 A JP447191 A JP 447191A JP H04236240 A JPH04236240 A JP H04236240A
Authority
JP
Japan
Prior art keywords
weight
styrenic
styrenic resin
resin sheet
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP447191A
Other languages
Japanese (ja)
Inventor
Kazuhiko Sho
正 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP447191A priority Critical patent/JPH04236240A/en
Publication of JPH04236240A publication Critical patent/JPH04236240A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title sheet having a shortened molding cycle in vacuum molding and pressure forming by molding a styrenic resin comprising a specific styrenic monomer, an acrylic ester monomer and methyl methacrylate into a sheetlike state. CONSTITUTION:A styrenic resin comprising (A) 40-89 wt.% constituent unit shown by formula I (R1 is H or methyl; R2 is H or 1-5C alkyl), (B) 0.5-20wt.% constituent unit shown by formula II (R3 is H or methyl; R4 is 2-8C alkyl) and (C) 10-55wt.% constituent unit shown by formula III is made into a sheetlike state by an extruder, etc., and orientated by a drawing device, etc., to give the objective high-strength orientated styrenic resin sheet not causing draw cracks during trimming. The sheet has preferably 1-15kg/cm<2> orientation relaxing stress.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は真空成形、圧空成形時の
成形サイクルを短縮させると共に強靱性を高めて成形品
のトリミング時の抜き割れ防止を付与した透明性の優れ
た二軸延伸スチレン系樹脂シートに関する。
[Industrial Application Field] The present invention is a biaxially oriented styrene system with excellent transparency that shortens the molding cycle during vacuum forming and pressure forming, increases toughness, and prevents punching and cracking during trimming of molded products. Regarding resin sheets.

【0002】0002

【従来の技術】従来の二軸延伸ポリスチレン系樹脂シー
トは腰の強さ、透明性、成形性に優れている等の理由で
食品収納用の軽量容器等に多用されている。二軸延伸ポ
リスチレン系樹脂シートは真空成形、圧空成形機により
各種軽量容器に熱成形されるが、熱成形する際の成形サ
イクルの短縮は生産性を向上させるので成形サイクルの
短縮できる二軸延伸スチレン系樹脂シートが要望されて
いる。
BACKGROUND OF THE INVENTION Conventional biaxially oriented polystyrene resin sheets are widely used in lightweight containers for storing food products because of their excellent stiffness, transparency, and moldability. Biaxially oriented polystyrene resin sheets are thermoformed into various lightweight containers using vacuum forming and pressure forming machines. Shortening the molding cycle during thermoforming improves productivity, so biaxially oriented styrene can shorten the molding cycle. There is a demand for resin sheets based on this type of resin.

【0003】成形サイクルを短縮させる為に、延伸によ
る分子配向を小さくし、配向緩和応力を低くした二軸延
伸ポリスチレン系樹脂シート、分子量を小さくした二軸
延伸ポリスチレン系樹脂シート等が試みられているが、
成形品を重ねてトリミングした際、成形品が割れるとい
う問題点があった。又、成形サイクルを短縮させる為に
、内部可塑剤を添加した二軸延伸ポリスチレン系樹脂シ
ートが試みられているが、大きな改善効果は認められな
い。又、強度を高める為にゴム状弾性体、例えば、スチ
レン−ブタジエンブロック共重合体をブレンドした二軸
延伸スチレン系樹脂シートが試みられているが、強度の
向上は認められるものの、成形サイクル短縮の改善効果
は認められない。又、透明性も悪くなる。又、シート、
成形品の成形時の残部を再使用すると、ゴム状弾性体が
ゲル化し、シート表面の外観を悪化させるという問題が
あった。
In order to shorten the molding cycle, attempts have been made to create biaxially oriented polystyrene resin sheets that have less molecular orientation due to stretching and lower orientation relaxation stress, and biaxially oriented polystyrene resin sheets that have lower molecular weight. but,
There was a problem in that the molded products would break when they were overlapped and trimmed. Furthermore, in order to shorten the molding cycle, attempts have been made to use biaxially oriented polystyrene resin sheets to which internal plasticizers have been added, but no significant improvement effect has been observed. In addition, attempts have been made to use biaxially oriented styrenic resin sheets blended with rubber-like elastic materials, such as styrene-butadiene block copolymers, to increase strength. No improvement effect was observed. Moreover, transparency also deteriorates. Also, sheets,
If the remaining portion of the molded product is reused, there is a problem in that the rubber-like elastic body gels, deteriorating the appearance of the sheet surface.

【0004】従来のスチレン系樹脂では、ポリスチレン
が有している高い耐熱性のため、成形サイクル短縮の改
善は殆どなされておらず、強度、透明性、成形サイクル
のバランスは市場で要求されているレベルに達していな
い状況である。食品収納容器、包装材として、硬質塩化
ビニルシート(PVCシート)が多用されている。PV
Cシートは成形性、強度、透明性、コストのバランスが
優れた樹脂シートであるが、最近の環境問題等から、P
VC樹脂シートに替わる樹脂シートが求められている。 現在PVC樹脂シートに替わるものとして、ポリプロピ
レン樹脂シート、アモルファスポリエステル樹脂シート
、スチレン−ブタジエン共重合体シートが検討されてい
るが、成形性、強度、透明性、コストのバランスを満足
するものがないのが現状である。
[0004] With conventional styrene-based resins, due to the high heat resistance of polystyrene, little improvement has been made in shortening the molding cycle, and the market demands a balance between strength, transparency, and molding cycle. The situation is that the level has not been reached. Rigid vinyl chloride sheets (PVC sheets) are often used as food storage containers and packaging materials. PV
C sheet is a resin sheet with an excellent balance of moldability, strength, transparency, and cost, but due to recent environmental issues, P sheet
There is a demand for a resin sheet that can replace VC resin sheets. Currently, polypropylene resin sheets, amorphous polyester resin sheets, and styrene-butadiene copolymer sheets are being considered as alternatives to PVC resin sheets, but none of them satisfy the balance of moldability, strength, transparency, and cost. is the current situation.

【0005】[0005]

【課題を解決する為の手段】本発明者らはかかる現状を
鑑み、スチレン系単量体とアクリル酸エステル(メタク
リル酸エステル)単量体、メチルメタクリレートからな
るスチレン系樹脂より、真空成形、圧空成形時の成形サ
イクルを短縮させると共に強靱性を高めた透明性の優れ
た二軸延伸スチレン系樹脂シートを開発すべく鋭意検討
し本発明に到達した。
[Means for Solving the Problems] In view of the current situation, the present inventors have developed a styrene resin consisting of a styrene monomer, an acrylic acid ester (methacrylic acid ester) monomer, and methyl methacrylate. We have conducted intensive studies to develop a biaxially oriented styrenic resin sheet with excellent transparency that shortens the molding cycle during molding, has increased toughness, and finally arrived at the present invention.

【0006】すなわち、本発明は、下記一般式(A),
That is, the present invention provides the following general formula (A),

【0007】[0007]

【化4】[C4]

【0008】下記一般式(B),[0008] The following general formula (B),

【0009】[0009]

【化5】[C5]

【0010】下記一般式(C),[0010] The following general formula (C),

【0011】[0011]

【化6】[C6]

【0012】で示される構成単位からなり、構成単位(
A),(B),(C)の割合が (A):40〜89  重量% (B):0.5〜20重量% (C):10〜55  重量% (但し、(A)+(B)+(C)=100重量%)から
なるスチレン系樹脂によって形成されていることを特徴
とする強度の優れた二軸延伸スチレン系樹脂シートを提
供するものである。さらに、二軸延伸スチレン系樹脂シ
ートの配向緩和応力が1〜15Kg/cm2 であるこ
とを特徴とする特許請求の範囲第一項記載の二軸延伸ス
チレン系樹脂シートを提供するものである。
It consists of the structural unit shown as
The ratio of A), (B), and (C) is (A): 40 to 89% by weight (B): 0.5 to 20% by weight (C): 10 to 55% by weight (However, (A) + ( The present invention provides a biaxially oriented styrenic resin sheet with excellent strength, characterized in that it is formed of a styrene resin consisting of (B) + (C) = 100% by weight). Furthermore, the present invention provides a biaxially oriented styrenic resin sheet according to claim 1, characterized in that the orientation relaxation stress of the biaxially oriented styrenic resin sheet is 1 to 15 kg/cm<2>.

【0013】以下本発明を詳細に説明する。構成単位(
B)の量は0.5〜20重量%である。より好ましくは
2〜15重量%の範囲である。0.5重量%未満の場合
は、耐熱性の低下が小さく低温での成形が困難になる。 20重量%を越える場合は、耐熱性の低下が大きく、シ
ートから成形した製品の実用温度が低くなり使用範囲が
大きく制約されるので好ましくない。構成単位(C)の
量は10〜55重量%である。より好ましくは20〜4
5重量%である。10重量%未満の場合は、二軸延伸樹
脂シートの強度向上が小さく、55重量%を越える場合
は、強度向上の割合が小さくなる。又、スチレン樹脂の
コストアップを招き好ましくない。
The present invention will be explained in detail below. Constituent unit (
The amount of B) is between 0.5 and 20% by weight. More preferably, it is in the range of 2 to 15% by weight. When the amount is less than 0.5% by weight, the heat resistance decreases so much that molding at low temperatures becomes difficult. If it exceeds 20% by weight, it is not preferable because the heat resistance will be greatly reduced and the practical temperature of the product molded from the sheet will be low, greatly restricting the range of use. The amount of structural unit (C) is 10-55% by weight. More preferably 20-4
It is 5% by weight. If it is less than 10% by weight, the strength improvement of the biaxially stretched resin sheet will be small, and if it exceeds 55% by weight, the rate of strength improvement will be small. Moreover, this is not preferable because it increases the cost of the styrene resin.

【0014】本発明のスチレン系重合体の重合度は特に
限定されるものではないが、成形品の形状、使用目的等
を考慮して、25℃における10重量%トルエン溶液の
粘度で20センチポイズ〜80センチポイズの領域で、
より好ましくは25センチポイズ〜70センチポイズの
領域で設定される。10重量%トルエン溶液の粘度が2
0センチポイズ未満であると、強度の優れた二軸延伸ス
チレン系樹脂シートが得られにくく、又、粘度が80セ
ンチポイズを越える場合には、スチレン系樹脂の押出加
工性等が極端に低下し実用的ではない。
The degree of polymerization of the styrenic polymer of the present invention is not particularly limited, but the viscosity of a 10% by weight toluene solution at 25° C. is 20 centipoise to 20 centipoise, taking into account the shape of the molded product, the purpose of use, etc. In the region of 80 centipoise,
More preferably, it is set in the range of 25 centipoise to 70 centipoise. The viscosity of a 10% by weight toluene solution is 2
If the viscosity is less than 0 centipoise, it will be difficult to obtain a biaxially oriented styrenic resin sheet with excellent strength, and if the viscosity exceeds 80 centipoise, the extrusion processability of the styrenic resin will be extremely degraded, making it impractical. isn't it.

【0015】本発明において、構成単位(A)としては
、例えば次に示す構造のものが挙げられる。
In the present invention, the structural unit (A) includes, for example, those having the following structure.

【0016】[0016]

【化7】[C7]

【0017】構成単位(B)としては、例えば次に示す
構造のものが挙げられる。
Examples of the structural unit (B) include those having the following structure.

【0018】[0018]

【化8】[Chemical formula 8]

【0019】本発明の二軸延伸スチレン系樹脂発泡体を
得るためのスチレン系樹脂を製造するには、スチレン系
樹脂の製造で公知の方法、例えば、塊状重合法、溶液重
合法が用いられる。また、この時、スチレン系樹脂の製
造で常用されている重合開始剤を用いることも可能であ
る。また、共重合体の製法で多用されている完全混合型
反応機を用いて組成均一なスチレン系樹脂でも、あるい
は、管型反応機、あるいは完全混合型反応機と管型反応
機の組み合わせの重合装置を用いて組成不均一なスチレ
ン系樹脂でもよい。但し、使用範囲を大きく制約するよ
うな不透明性、あるいは押出、成形等で相分離を起こす
ような組成不均一なスチレン系樹脂は好ましくない。こ
の時は、やはりスチレン系樹脂の製造で常用されている
原材料を追添加する方法等を用いて使用可能な透明性を
維持し、相分離を起こさない程度の組成不均一さに制御
することが必要である。
To produce the styrenic resin for obtaining the biaxially oriented styrenic resin foam of the present invention, methods known for producing styrenic resins, such as bulk polymerization and solution polymerization, are used. Moreover, at this time, it is also possible to use a polymerization initiator commonly used in the production of styrene resins. In addition, it is possible to polymerize styrenic resins with a uniform composition using a complete mixing reactor, which is often used in the copolymer manufacturing method, or a tubular reactor, or a combination of a complete mixing reactor and a tubular reactor. A styrenic resin having a non-uniform composition may be produced using a device. However, styrenic resins that are opaque, which greatly restricts the range of use, or have non-uniform compositions that cause phase separation during extrusion, molding, etc., are not preferred. In this case, it is possible to maintain usable transparency by adding additional raw materials, which is commonly used in the production of styrenic resins, and to control the composition to a level that does not cause phase separation. is necessary.

【0020】本発明の基材であるスチレン系樹脂を得る
ために用いられるスチレン系単量体としては、スチレン
が好適に用いられる。アクリル酸エステル(メタクリル
酸エステル)単量体としては、ブチルアクリレート、ブ
チルメタクリレート等が使用出来る。これら単量体単独
、又は混合して使用することも出来る。本発明に係わる
二軸延伸スチレン系樹脂シートを作成するには、押出機
によってスチレン系樹脂をシート状に押出した後、一般
に知られたテンター方式、インフレーション方式等を採
用して延伸し、延伸倍率は2〜5倍にするのが好ましい
。本発明に係わる二軸延伸スチレン系樹脂シートはAS
TM  D−1504に準拠して測定した配向緩和応力
が1〜15Kg/cm2 、より好ましくは2〜10K
g/cm2 の範囲となる様に二軸延伸されているもの
が好ましい。配向緩和応力が上記範囲を越えると一般の
成形機では成形が不可能で、型再現性の悪い成形品しか
得られない。又、上記範囲未満ではシートの強度が弱く
トリミング時の現象が生じ好ましくない。
Styrene is preferably used as the styrenic monomer used to obtain the styrenic resin which is the base material of the present invention. As the acrylic ester (methacrylic ester) monomer, butyl acrylate, butyl methacrylate, etc. can be used. These monomers can be used alone or in combination. In order to create the biaxially oriented styrenic resin sheet according to the present invention, after extruding the styrene resin into a sheet using an extruder, the sheet is stretched using a generally known tenter method, inflation method, etc., and the stretching ratio is It is preferable to increase the amount by 2 to 5 times. The biaxially oriented styrenic resin sheet according to the present invention is AS
Orientation relaxation stress measured in accordance with TM D-1504 is 1 to 15 Kg/cm2, more preferably 2 to 10 K
It is preferable that the film be biaxially stretched so as to have a molecular weight within the range of g/cm2. If the orientation relaxation stress exceeds the above range, molding cannot be performed using a general molding machine, and only molded products with poor mold reproducibility can be obtained. Moreover, if it is less than the above range, the strength of the sheet will be weak and a phenomenon during trimming will occur, which is not preferable.

【0021】本発明に係わる二軸延伸スチレン系樹脂シ
ートは成形性が良好で、ストレート法、ドレーブ法によ
って真空成形、又は熱板圧空成形(接触加熱圧空成形)
もしくはストレート法、ドレープ法、プラグアシスト法
による間接加熱圧空成形によって軽量容器、蓋等を成形
する際に成形サイクルを短縮することが出来る。本発明
に係わる二軸延伸スチレン系樹脂シートはシートの強度
が強く、トリミング時に成形品の抜き割れが生じない。 又、構成単位(B)の量を増やすことにより、二軸延伸
スチレン系樹脂シートのガラス転移温度が低下するので
、硬質塩ビシートと同等の成形条件で成形することも可
能である。
The biaxially oriented styrenic resin sheet according to the present invention has good moldability, and can be vacuum formed by a straight method or drave method, or hot plate pressure forming (contact heating pressure forming).
Alternatively, the molding cycle can be shortened when molding lightweight containers, lids, etc. by indirect heating and pressure molding using the straight method, drape method, or plug assist method. The biaxially oriented styrenic resin sheet according to the present invention has high sheet strength, and no punching cracks occur in the molded product during trimming. Furthermore, by increasing the amount of the structural unit (B), the glass transition temperature of the biaxially oriented styrenic resin sheet is lowered, so that it is also possible to mold it under the same molding conditions as for a hard PVC sheet.

【0022】二軸延伸スチレン系樹脂シートを得るに当
たり、可塑剤、滑剤、帯電防止剤、顔料、難燃剤等を混
合使用してもよい。又、得られた二軸延伸スチレン系樹
脂シート表面又はシート成形品の表面に帯電防止剤、シ
リコーン、抗菌剤等を塗布してもよい。本発明で意図す
る二軸延伸スチレン系樹脂シートの機能を損なわない範
囲で、本発明で使用する特定のスチレン系樹脂に他のス
チレン系樹脂を混合して使用することも可能である。な
お、本発明では重合度の尺度である10重量%トルエン
溶液の粘度はオストワルドキャノンフェンスケ粘度管5
0を用いて25℃の恒温槽で測定する。
[0022] In obtaining the biaxially oriented styrenic resin sheet, plasticizers, lubricants, antistatic agents, pigments, flame retardants, etc. may be used in combination. Further, an antistatic agent, silicone, antibacterial agent, etc. may be applied to the surface of the obtained biaxially oriented styrenic resin sheet or sheet molded product. It is also possible to mix and use the specific styrenic resin used in the present invention with other styrenic resins within a range that does not impair the function of the biaxially oriented styrenic resin sheet intended in the present invention. In addition, in the present invention, the viscosity of a 10% by weight toluene solution, which is a measure of the degree of polymerization, is determined using the Ostwald-Cannon-Fenske viscosity tube 5.
0 in a constant temperature bath at 25°C.

【0023】構成単位(A),(B),(C)の割合は
以下の方法で求める。二軸延伸スチレン系樹脂シートを
メチルエチルケトンに溶解後、メタノールを加え、スチ
レン系樹脂を析出させる。このように前処理されたスチ
レン系樹脂を用いて、日本分光(株)JNM−GX27
0  FT−NMRを用いて 1Hを以下に記す条件で
測定する。
The proportions of structural units (A), (B), and (C) are determined by the following method. After dissolving the biaxially stretched styrene resin sheet in methyl ethyl ketone, methanol is added to precipitate the styrenic resin. Using the styrene resin pretreated in this way, JASCO Corporation JNM-GX27
0 FT-NMR is used to measure 1H under the conditions described below.

【0024】( 1Hの測定) パルス幅=8.4μs データーポイント=16384 繰り返し時間=7.559秒 ADコンバーター=16ビット 積算回数=1,000 サンプル濃度=10wt% 溶媒=1,1,2,2−テトラクロロエタン−(d2)
サンプル管=5mm 測定温度=120℃ 構成単位(A)のフェニル基の水素に由来するピークが
6.2〜7.4ppmに現れる。構成単位(B)の水素
に由来するピークが3.4〜3.8ppmに現れる。 又、構成単位(B),(C)のメチル基に由来するピー
クが0.2〜1.1ppmに現れる。ピーク分離操作を
おこなってピーク面積比より構成単位(A)、構成単位
(B)、構成単位(C)の重量%を求める。
(1H measurement) Pulse width = 8.4 μs Data points = 16384 Repetition time = 7.559 seconds AD converter = 16 bits Number of integration = 1,000 Sample concentration = 10 wt% Solvent = 1, 1, 2, 2 -tetrachloroethane-(d2)
Sample tube = 5 mm Measurement temperature = 120°C A peak derived from the hydrogen of the phenyl group of the structural unit (A) appears at 6.2 to 7.4 ppm. A peak derived from hydrogen in the structural unit (B) appears at 3.4 to 3.8 ppm. Moreover, a peak derived from the methyl groups of the structural units (B) and (C) appears at 0.2 to 1.1 ppm. A peak separation operation is performed to determine the weight percent of the structural unit (A), structural unit (B), and structural unit (C) from the peak area ratio.

【0025】次に、実施例により本発明をさらに詳細に
説明するが、本発明はこれらの実施例によってなんら限
定されるものではない。
Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way.

【0026】[0026]

【実施例】実施例における物性試験法を以下に記す。 メルトフローレート(MFR):ISO  R1133
に準ずる。 ビカット軟化点(VICAT):ASTM  D152
5に準ずる。 一撃衝撃強度:東洋精機製作所の『落錘型グラフィック
インパクトテスター』を用いて、高さ20cmより質量
6.5kgのミサイルを自然落下させて破壊の最大苛重
を求める。
[Example] The physical property test method in the example is described below. Melt flow rate (MFR): ISO R1133
According to. Vicat Softening Point (VICAT): ASTM D152
According to 5. Single-hit impact strength: Using Toyo Seiki Seisakusho's "Drop Weight Graphic Impact Tester," a missile with a mass of 6.5 kg is allowed to fall naturally from a height of 20 cm, and the maximum severity of destruction is determined.

【0027】透明性:ASTM  D1003に準じて
測定する。 (スチレン系重合体−1)ブチルアクリレート1重量部
、スチレン66重量部、メチルメタクリレート33重量
部、エチルベンゼン2.98重量部、1,1−ビス(t
−ブチルパーオキシ)シクロヘキサン0.02重量部よ
りなる原料溶液を5L完全混合型反応機に連続的に供給
し重合温度120℃で重合する。反応機での平均滞留時
間は5時間である。反応機を出た重合溶液は押出機に導
かれ、ベントより未反応モノマー、重合溶媒を回収し、
ペレット化する。 (スチレン系重合体−2)ブチルアクリレート2重量部
、スチレン64重量部、メチルメタクリレート34重量
部である以外、スチレン系重合体−1と同様に操作して
スチレン系重合体を得る。 (スチレン系重合体−3)ブチルアクリレート4.5重
量部、スチレン62重量部、メチルメタクリレート33
.5重量部である以外、スチレン系重合体−1と同様に
操作しスチレン系重合体を得る。 (スチレン系重合体−4)ブチルアクリレート9.5重
量部、スチレン57重量部、メチルメタクリレート33
.5重量部である以外、スチレン系重合体−1と同様に
操作しスチレン系重合体を得る。 (スチレン系重合体−5)ブチルアクリレート13重量
部、スチレン53重量部、メチルメタクリレート34重
量部である以外、スチレン系重合体−1と同様に操作し
スチレン系重合体を得る。 (スチレン系重合体−6)ブチルアクリレート15.5
重量部、スチレン50.5重量部、メチルメタクリレー
ト34重量部である以外、スチレン系重合体−1と同様
に操作しスチレン系重合体を得る。 (スチレン系重合体−7)ブチルアクリレート8重量部
、スチレン73.5重量部、メチルメタクリレート18
.5重量部である以外、スチレン系重合体−1と同様に
操作しスチレン系重合体を得る。 (スチレン系重合体−8)ブチルアクリレート9.5重
量部、スチレン51重量部、メチルメタクリレート39
.5重量部である以外、スチレン系重合体−1と同様に
操作しスチレン系重合体を得る。 (スチレン系重合体−9)スチレン100重量部である
以外、スチレン系重合体−1と同様に操作しスチレン系
重合体を得る。 (スチレン系重合体−10)ブチルアクリレート7.5
重量部、スチレン85.5重量部、メチルメタクリレー
ト7重量部である以外、スチレン系重合体−1と同様に
操作しスチレン系重合体を得る。 (スチレン系重合体−11)スチレン67重量部、メチ
ルメタクリレート33重量部である以外、スチレン系重
合体−1と同様に操作しスチレン系重合体を得る。
Transparency: Measured according to ASTM D1003. (Styrenic polymer-1) 1 part by weight of butyl acrylate, 66 parts by weight of styrene, 33 parts by weight of methyl methacrylate, 2.98 parts by weight of ethylbenzene, 1,1-bis(t
A raw material solution consisting of 0.02 parts by weight of -butylperoxy)cyclohexane was continuously supplied to a 5 L complete mixing reactor and polymerized at a polymerization temperature of 120°C. The average residence time in the reactor is 5 hours. The polymerization solution exiting the reactor is led to an extruder, where unreacted monomers and polymerization solvent are recovered from a vent.
Pelletize. (Styrenic Polymer-2) A styrenic polymer is obtained in the same manner as in Styrenic Polymer-1 except that 2 parts by weight of butyl acrylate, 64 parts by weight of styrene, and 34 parts by weight of methyl methacrylate are used. (Styrenic polymer-3) 4.5 parts by weight of butyl acrylate, 62 parts by weight of styrene, 33 parts by weight of methyl methacrylate
.. A styrenic polymer is obtained by the same operation as for styrenic polymer-1 except that the amount is 5 parts by weight. (Styrenic polymer-4) 9.5 parts by weight of butyl acrylate, 57 parts by weight of styrene, 33 parts by weight of methyl methacrylate
.. A styrenic polymer is obtained by the same operation as for styrenic polymer-1 except that the amount is 5 parts by weight. (Styrenic Polymer-5) A styrenic polymer is obtained in the same manner as in Styrenic Polymer-1 except that 13 parts by weight of butyl acrylate, 53 parts by weight of styrene, and 34 parts by weight of methyl methacrylate are used. (Styrenic polymer-6) Butyl acrylate 15.5
A styrenic polymer is obtained in the same manner as in styrenic polymer-1 except that the parts by weight are 50.5 parts by weight of styrene and 34 parts by weight of methyl methacrylate. (Styrenic polymer-7) 8 parts by weight of butyl acrylate, 73.5 parts by weight of styrene, 18 parts by weight of methyl methacrylate
.. A styrenic polymer is obtained by the same operation as for styrenic polymer-1 except that the amount is 5 parts by weight. (Styrenic polymer-8) 9.5 parts by weight of butyl acrylate, 51 parts by weight of styrene, 39 parts by weight of methyl methacrylate
.. A styrenic polymer is obtained by the same operation as for styrenic polymer-1 except that the amount is 5 parts by weight. (Styrenic Polymer-9) A styrenic polymer is obtained in the same manner as in Styrenic Polymer-1 except that styrene is used in an amount of 100 parts by weight. (Styrenic polymer-10) Butyl acrylate 7.5
A styrenic polymer is obtained in the same manner as in Styrenic Polymer-1 except that the parts by weight are 85.5 parts by weight of styrene and 7 parts by weight of methyl methacrylate. (Styrenic Polymer-11) A styrenic polymer is obtained in the same manner as in Styrenic Polymer-1 except that 67 parts by weight of styrene and 33 parts by weight of methyl methacrylate are used.

【0028】スチレン系重合体の物性測定結果を表1に
示す。
Table 1 shows the results of measuring the physical properties of the styrene polymer.

【0029】[0029]

【実施例−1〜8、比較例−1〜3】スチレン系樹脂を
50mmφ押出機で押出し、厚み0.75mmのシート
を作成した。二軸延伸装置を用いて縦10cm、横10
cmに裁断したシートを縦方向、横方向共に3倍でAS
TM  D−1504に準拠して測定した配向緩和応力
が8〜9Kg/cm2 になるように120℃〜130
℃の温度で延伸し、厚み150μの二軸延伸スチレン系
樹脂シートを得た。
[Examples 1 to 8, Comparative Examples 1 to 3] Styrenic resin was extruded using a 50 mmφ extruder to prepare sheets with a thickness of 0.75 mm. 10 cm long and 10 cm wide using a biaxial stretching device
AS of 3 times the sheet cut into cm in both the vertical and horizontal directions
120°C to 130°C so that the orientation relaxation stress measured in accordance with TM D-1504 is 8 to 9Kg/cm2.
A biaxially stretched styrene resin sheet having a thickness of 150 μm was obtained by stretching at a temperature of °C.

【0030】得られたスチレン系樹脂シートを熱板圧空
成形機を用いて熱成形を行った。加熱圧力1.0Kg/
cm2 でシートを加熱し、成形圧力2.5Kg/cm
2 、成形時間2.0秒、金型温度60℃の条件下で成
形し、熱板温度115℃、130℃で金型(フードパッ
ク)のヒンジ3R金型通り再現できる加熱時間を求めた
。又、二軸延伸シートの透明性(HAZE)は全て4.
0〜4.2%であった。このシートの得一撃衝撃強度も
求めた。結果を表2に示す。
The obtained styrene resin sheet was thermoformed using a hot plate air pressure molding machine. Heating pressure 1.0Kg/
cm2 and molding pressure 2.5Kg/cm.
2. Molding was performed under the conditions of a molding time of 2.0 seconds and a mold temperature of 60°C, and a heating time that could be reproduced as the hinge 3R mold of the mold (food pack) was determined at a hot plate temperature of 115°C and 130°C. In addition, the transparency (HAZE) of all biaxially stretched sheets is 4.
It was 0 to 4.2%. The single impact impact strength of this sheet was also determined. The results are shown in Table 2.

【0031】[0031]

【表1】[Table 1]

【0032】[0032]

【表2】[Table 2]

【0033】[0033]

【発明の効果】本発明の二軸延伸スチレン系樹脂シート
は従来の二軸延伸スチレン系樹脂シートより低温で成形
できる。又、二軸延伸スチレン系樹脂シートの強度は著
しく向上している。本発明の二軸延伸スチレン系樹脂シ
ートは従来の二軸延伸スチレン系樹脂シートより、成形
性、強度バランスが著しく優れ、従来の二軸延伸スチレ
ン系樹脂シートが有していた優れた透明性を維持してい
る。
Effects of the Invention The biaxially oriented styrenic resin sheet of the present invention can be molded at a lower temperature than conventional biaxially oriented styrenic resin sheets. Furthermore, the strength of the biaxially oriented styrene resin sheet has been significantly improved. The biaxially oriented styrenic resin sheet of the present invention has significantly better formability and strength balance than conventional biaxially oriented styrenic resin sheets, and has excellent transparency that conventional biaxially oriented styrenic resin sheets had. Maintained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】下記一般式(A), 【化1】 下記一般式(B), 【化2】 下記一般式(C), 【化3】 で示される構成単位からなり、構成単位(A),(B)
,(C)の割合が (A):40〜89  重量% (B):0.5〜20重量% (C):10〜55  重量% (但し、(A)+(B)+(C)=100重量%)から
なるスチレン系樹脂によって形成されていることを特徴
とする強度の優れた二軸延伸スチレン系樹脂シート。
[Claim 1] Consisting of a structural unit represented by the following general formula (A), [Chemical formula 1] the following general formula (B), [Chemical formula 2] the following general formula (C), [Chemical formula 3], the structural unit (A ), (B)
, (C) is (A): 40-89% by weight (B): 0.5-20% by weight (C): 10-55% by weight (However, (A) + (B) + (C) A biaxially oriented styrenic resin sheet with excellent strength, characterized in that it is formed of a styrene resin consisting of 100% by weight).
【請求項2】  当該、二軸延伸スチレン系樹脂シート
の配向緩和応力が1〜15Kg/cm2 であることを
特徴とする特許請求の範囲第一項記載の二軸延伸スチレ
ン系樹脂シート。
2. The biaxially oriented styrenic resin sheet according to claim 1, wherein the orientation relaxation stress of the biaxially oriented styrenic resin sheet is 1 to 15 kg/cm 2 .
JP447191A 1991-01-18 1991-01-18 High-strength biaxially orientated styrenic resin sheet Withdrawn JPH04236240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP447191A JPH04236240A (en) 1991-01-18 1991-01-18 High-strength biaxially orientated styrenic resin sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP447191A JPH04236240A (en) 1991-01-18 1991-01-18 High-strength biaxially orientated styrenic resin sheet

Publications (1)

Publication Number Publication Date
JPH04236240A true JPH04236240A (en) 1992-08-25

Family

ID=11585041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP447191A Withdrawn JPH04236240A (en) 1991-01-18 1991-01-18 High-strength biaxially orientated styrenic resin sheet

Country Status (1)

Country Link
JP (1) JPH04236240A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9850052B2 (en) 2009-05-12 2017-12-26 Asahi Kasei Chemicals Corporation Press-through pack package

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9850052B2 (en) 2009-05-12 2017-12-26 Asahi Kasei Chemicals Corporation Press-through pack package

Similar Documents

Publication Publication Date Title
KR940005740A (en) Polyolefin resin composition and its manufacturing method, and molded article manufactured from the composition
JP3112607B2 (en) Block copolymer and heat shrinkable film thereof
JP5754933B2 (en) Hydroxyl group-containing aromatic vinyl polymer, process for producing the same, and polystyrene resin foamable particles, pre-expanded particles, and foam-molded product comprising the same
JP6302629B2 (en) Styrene- (meth) acrylic acid copolymer composition
JPH04236240A (en) High-strength biaxially orientated styrenic resin sheet
JPH11228783A (en) Block copolymer composition and heat-shrinkable film therefrom
JP4582765B2 (en) Polystyrene-based biaxially stretched sheet and method for producing the same
JP3662025B2 (en) Styrenic resin sheet and molded body
JPH04253736A (en) New styrene resin sheet
JPH04220437A (en) Biaxially oriented styrenic resin sheet
JP2654501B2 (en) New styrenic resin
JP2001114954A (en) Propylene resin composition, propylene resin composition for stretching blow molding, stretching blow molded container, and method for manufacturing stretching blow molded container
JP2002201324A (en) Resin composition, heat-shrinkable film and heat- shrinkable multilayer film
JP4689793B2 (en) Rubber-modified styrenic resin composition
JPH0452129A (en) Polystyrene heat-shrinkable film
JP2019210437A (en) Styrene-based copolymer and its compact, sheet
JPH04236239A (en) Styrenic resin sheet having excellent strength and transparency
WO2000014157A1 (en) Monovinylidene aromatic resins
JPH05245928A (en) Block copolymeric uniaxially oriented film, sheet or tube
JP3498232B2 (en) AS resin-based biaxially stretched sheet and thermoformed product
JP2000026676A (en) Resin composition
JPH04351649A (en) Styrene resin excellent in strength and transparency
JP2003001766A (en) Heat-shrinkable multilayered film
JPH04220440A (en) Styrene resin foam excellent in strength and moldability in secondary foaming
JPH04224848A (en) High-strength transparent styrene resin

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514