JPH04234986A - Microbial adsorbent and its production - Google Patents

Microbial adsorbent and its production

Info

Publication number
JPH04234986A
JPH04234986A JP171191A JP171191A JPH04234986A JP H04234986 A JPH04234986 A JP H04234986A JP 171191 A JP171191 A JP 171191A JP 171191 A JP171191 A JP 171191A JP H04234986 A JPH04234986 A JP H04234986A
Authority
JP
Japan
Prior art keywords
microbial
hydrophilic porous
adsorbent
base material
porous fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP171191A
Other languages
Japanese (ja)
Inventor
Nariaki Kawabata
川端 成彬
Akinori Minami
彰則 南
Tadahira Yo
余 忠衡
Mika Hazama
間 美香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP171191A priority Critical patent/JPH04234986A/en
Publication of JPH04234986A publication Critical patent/JPH04234986A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To obtain the subject adsorbent having high microbial adsorption efficiency without any clogging by impregnating a hydrophilic porous fiber substrate with a solution containing 4-vinylpyridine and a cross-linking divinyl monomer in a solvent, removing the solvent, copolymerizing the monomers and subsequently carrying out quaternizing treatment. CONSTITUTION:4-Vinylpyridine, a cross-linking divinyl monomer (e.g. divinylbenzene) and a radical polymerization initiator (e.g. azobisisobutyronitrile) are dissolved in a solvent (e.g. ethanol) and a hydrophilic porous fiber substrate (e.g. rayon fiber) is then impregnated with the resultant solution in the solvent, which is then evaporated at ambient temperature to apply the aforementioned monomers to the constituent fiber surfaces of the hydrophilic porous fiber substrate. The obtained fiber substrate is subsequently allowed to stand in a thermostatic chamber at 80 deg.C temperature for 5hr to carry out copolymerization. The formed copolymer is then subjected to quaternizing treatment with a halide (e.g. benzyl bromide) to afford the objective microbial adsorbent in which a water-insoluble or sparingly water-soluble vinylic copolymer having functional groups expressed by the formula (R is benzyl, etc.; X is halogen) and further a cross-linked structure sticks.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えばバイオリアクタ
ーやバイオセンサーにおける微生物の保持担体として使
用される微生物吸着材及びその製造方法に関する。更に
詳細には、優れた微生物吸着能を有するビニル系共重合
体が表面に付着しており、微生物吸着能を飛躍的に向上
させた微生物吸着材及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microbial adsorbent used as a carrier for holding microorganisms in, for example, a bioreactor or a biosensor, and a method for producing the same. More specifically, the present invention relates to a microbial adsorbent that has a vinyl copolymer with excellent microbial adsorption ability attached to its surface and has dramatically improved microbial adsorption ability, and a method for producing the same.

【0002】0002

【従来の技術】従来、例えばバイオリアクターやバイオ
センサーなどの微生物の保持担体としての微生物吸着材
としては、ビニルピリジンと架橋性ジビニルモノマーと
からなり、ハロゲン化物により4級化されたビニル系共
重合体よりなるものが提案されている。
[Prior Art] Conventionally, microbial adsorbents used as microbial holding carriers in bioreactors, biosensors, etc. have been made of vinyl pyridine and crosslinkable divinyl monomers, and have been quaternized with halides. A method consisting of a combination has been proposed.

【0003】このビニル系共重合体は、高い効率でしか
も生きた状態で微生物を捕らえることができ、その上水
に不溶であることから環境を汚染することが無く非常に
優れたものとして用いられていた。
[0003] This vinyl copolymer can capture microorganisms in a living state with high efficiency, and is insoluble in water, so it does not pollute the environment and is used as an excellent product. was.

【0004】しかしながら、このビニル系共重合体は、
水だけでなく通常の有機溶媒にも不溶であるため、固体
としてしか取り扱うことが出来ず加工が困難であり、こ
のビニル系共重合体自体をビーズ形状などの微生物吸着
材として使用していた。このため、単位重量当りの表面
積が小さくなり、ビーズ内部の共重合体は微生物の吸着
に寄与せず吸着効率が悪いという問題があった。
However, this vinyl copolymer has
Since it is insoluble not only in water but also in ordinary organic solvents, it can only be handled as a solid and is difficult to process, so the vinyl copolymer itself has been used as a microbial adsorbent in the form of beads. As a result, the surface area per unit weight becomes small, and the copolymer inside the beads does not contribute to adsorption of microorganisms, resulting in poor adsorption efficiency.

【0005】この様な不具合を解消すべく開発された微
生物吸着材として、特開平1−207141号公報に記
載のものがある。
[0005] As a microorganism adsorbent developed to eliminate such problems, there is one described in JP-A-1-207141.

【0006】これは、ビニルピリジンと架橋性ジビニル
モノマーとからなり、ハロゲン化物により4級化された
ビニル系共重合体で、粉粒状基材の表面を被覆してなる
ものであり、前記ビニル系共重合体の単位重量当りの表
面積を大きくして、微生物の吸着効率を高めたものであ
る。
This is a vinyl copolymer made of vinyl pyridine and a crosslinkable divinyl monomer, which is quaternized with a halide and coated on the surface of a granular base material. The surface area per unit weight of the copolymer is increased to improve the adsorption efficiency of microorganisms.

【0007】ところが、この微生物吸着材をバイオリア
クターやバイオセンサーに用いた場合、該微生物吸着材
に吸着した微生物が各微生物吸着材間にわたって繁殖し
、このため、目詰りを生じ基質の流路が限定されるとい
う不具合を生じていた。
However, when this microbial adsorbent is used in a bioreactor or a biosensor, the microorganisms adsorbed to the microbial adsorbent propagate between each microbial adsorbent, resulting in clogging and blocking of the substrate flow path. The problem was that it was limited.

【0008】[0008]

【発明が解決しようとする課題】本発明は、このような
事情に鑑みなされたものであり、微生物の吸着効率が高
められており、かつ微生物の繁殖に伴って目詰りを生じ
ることがない微生物吸着材及びその製造方法を提供する
ことを目的とするものである。
[Problems to be Solved by the Invention] The present invention has been made in view of the above circumstances, and provides a microorganism that has enhanced adsorption efficiency for microorganisms and does not cause clogging due to the proliferation of microorganisms. The object of the present invention is to provide an adsorbent and a method for producing the same.

【0009】[0009]

【課題を解決するための手段及び作用】上記目的を達成
するため、請求項1記載の発明は、「
[Means and operations for solving the problem] In order to achieve the above object, the invention according to claim 1 provides the following:

【0010】0010

【化2】[Case 2]

【0011】(ただし、式中Rはベンジル基、C4〜C
16のアルキル基又はペンタフルオロフェニルメチル基
、Xはハロゲン原子)で表される官能基を有し、かつ架
橋性ジビニルモノマーを架橋剤とする架橋構造を有する
水不溶性または水難溶性のビニル系共重合体が、親水性
多孔質繊維基材の構成繊維表面に付着していることを特
徴とする微生物吸着材」をその要旨とした。
(However, in the formula, R is a benzyl group, C4-C
A water-insoluble or poorly water-soluble vinyl copolymer having a functional group represented by an alkyl group or a pentafluorophenylmethyl group (X is a halogen atom) and having a crosslinked structure using a crosslinkable divinyl monomer as a crosslinking agent. The gist of the invention is "a microbial adsorbent characterized in that the coalescence is attached to the surface of the constituent fibers of a hydrophilic porous fiber base material."

【0012】また、請求項2記載の発明は、「4−ビニ
ルピリジンと架橋性ジビニルモノマーとを含む溶剤溶液
を親水性多孔質繊維基材に含浸し、この後、溶剤を除去
し4−ビニルピリジンと架橋性ジビニルモノマーとを共
重合して得られたビニル系共重合体をハロゲン化物によ
り4級化処理することを特徴とする微生物吸着材の製造
方法」をその要旨とした。
[0012] In addition, the invention according to claim 2 provides that ``a hydrophilic porous fiber base material is impregnated with a solvent solution containing 4-vinylpyridine and a crosslinkable divinyl monomer, and then the solvent is removed and the 4-vinyl pyridine is The gist of this paper is ``a method for producing a microbial adsorbent, which comprises quaternizing a vinyl copolymer obtained by copolymerizing pyridine and a crosslinkable divinyl monomer with a halide.''

【0013】本発明における親水性多孔質繊維基材とし
ては、レーヨン、コットン、ガラス繊維などの親水性繊
維を含む不織布、織物、編物等の種々の形態のものを用
途に合わせて選択的に使用することが出来る。特に3次
元構造からなる親水性不織布を用いた場合、表面積が大
きく圧力損失が低いという点で好ましい。また、親水性
不織布はその構成繊維表面にビニル系共重合体を薄く均
一に付着させることが出来るので、ビニル系共重合体の
単位重量当りの表面積を従来のビーズ状のもの或いはビ
ニル系共重合体で粉粒状基材の表面を被覆したものに比
べて飛躍的に大きくすることが出来るという利点も有し
ている。尚、親水性多孔質繊維基材には、前記親水性繊
維以外にポリエチレン、ポリプロピレンなどの基材の形
状を保持するための構成繊維が含まれており、これら形
状保持繊維と前記親水性繊維との配合比は、該微生物吸
着材の用途、ビニル系共重合体の付着量等を考慮して適
宜決定する。また、親水性多孔質繊維基材としては、親
水性繊維が含まれているものに限らず、ポリプロピレン
、ポリエチレンなどの疎水性繊維よりなる基材を用い、
この基材の繊維表面への親水性樹脂のコーティング、ス
ルホン化処理、フッ素化処理、紫外線または放射線照射
、コロナ放電処理、プラズマ処理など親水化処理を施し
たものも用いることが出来る。このように構成された親
水性多孔質繊維基材の繊維表面にビニル系共重合体が付
着されているのである。
[0013] As the hydrophilic porous fiber base material in the present invention, various forms such as nonwoven fabrics, woven fabrics, and knitted fabrics containing hydrophilic fibers such as rayon, cotton, and glass fibers can be selectively used depending on the purpose. You can. In particular, it is preferable to use a hydrophilic nonwoven fabric having a three-dimensional structure because it has a large surface area and low pressure loss. In addition, since hydrophilic nonwoven fabrics can have vinyl copolymers thinly and uniformly adhered to the surface of their constituent fibers, the surface area per unit weight of vinyl copolymers can be reduced compared to conventional beads or vinyl copolymers. It also has the advantage that it can be made much larger by combining it than by coating the surface of a powder base material. In addition, the hydrophilic porous fiber base material contains constituent fibers such as polyethylene and polypropylene for retaining the shape of the base material in addition to the above-mentioned hydrophilic fibers, and these shape-retaining fibers and the above-mentioned hydrophilic fibers The blending ratio of is appropriately determined in consideration of the use of the microbial adsorbent, the amount of vinyl copolymer attached, etc. In addition, the hydrophilic porous fiber base material is not limited to those containing hydrophilic fibers, but also base materials made of hydrophobic fibers such as polypropylene and polyethylene,
The fiber surface of this base material may be subjected to a hydrophilic treatment such as coating with a hydrophilic resin, sulfonation treatment, fluorination treatment, ultraviolet ray or radiation irradiation, corona discharge treatment, or plasma treatment. The vinyl copolymer is attached to the fiber surface of the hydrophilic porous fiber base material constructed in this way.

【0014】本発明におけるビニル系共重合体は、4−
ビニルピリジンと架橋性ジビニルモノマーとを共重合さ
せ、ハロゲン化物によって4級化させたものである。こ
のビニル系共重合体において用いられる架橋性ジビニル
モノマーとしては、ジビニルベンゼン、ジビニルトルエ
ン、ジビニルナフタレン等の芳香族ジビニル化合物、ジ
アクリル酸エチレングリコールエステル、ジメタクリル
酸エチレングリコールエステル等の脂肪族ジビニル化合
物等を挙げるとができる。この架橋性ジビニルモノマー
は単独で或いは2種以上組み合わせて用いることができ
る。
The vinyl copolymer in the present invention has 4-
Vinyl pyridine and a crosslinkable divinyl monomer are copolymerized and quaternized with a halide. Examples of crosslinkable divinyl monomers used in this vinyl copolymer include aromatic divinyl compounds such as divinylbenzene, divinyltoluene, and divinylnaphthalene, and aliphatic divinyl compounds such as ethylene glycol diacrylate and ethylene glycol dimethacrylate. It is possible to list the following. These crosslinkable divinyl monomers can be used alone or in combination of two or more.

【0015】この架橋性ジビニルモノマー及び4−ビニ
ルピリジンは、前記親水性多孔質繊維基材に対して溶液
の形態で付与される。つまり、架橋性ジビニルモノマー
及び4−ビニルピリジンをアルコール類、エステル類、
フェノール類、エーテル類などの有機溶剤中に添加して
溶液とし、この溶液に前記親水性多孔質繊維基材を漬け
て含浸させることにより、或いは同基材表面にコーティ
ングすることにより、所定量の架橋性ジビニルモノマー
及び4−ビニルピリジンをモノマーの状態で基材の構成
繊維表面に付与するのである。次いで有機溶剤の一部又
は全部を除去し、架橋性ジビニルモノマー及び4−ビニ
ルピリジンを親水性多孔質繊維基材の構成繊維表面に付
着させるのである。尚、親水性多孔質繊維基材の繊維表
面に付着される架橋性ジビニルモノマーの割合は、付着
されるモノマー全量に対して20モル%以下であること
が望ましく、これを超えると微生物の吸着力は低下する
。また、親水性多孔質繊維基材に対するビニル系共重合
体の付着量としては特に限定されないが、ビニル系共重
合体の付着量が該微生物吸着材に対し0.01〜20w
t%の範囲ものが微生物吸着力が高く、かつ経済的であ
る。また、各モノマーを含む溶液には過酸化ベンゾイル
やアゾビスイソブチロニトリルなどの慣用のラジカル開
始剤が添加されている。更には各モノマーを含む溶液に
は、スチレン、メチルメタクリレートなどの反応性ビニ
ルモノマーが加えられていてもよい。
The crosslinkable divinyl monomer and 4-vinylpyridine are applied to the hydrophilic porous fiber base material in the form of a solution. In other words, the crosslinkable divinyl monomer and 4-vinylpyridine can be combined with alcohols, esters,
By adding it to an organic solvent such as phenol or ether to form a solution, and soaking the hydrophilic porous fiber base material in this solution to impregnate it, or by coating it on the surface of the base material, a predetermined amount of it can be obtained. The crosslinkable divinyl monomer and 4-vinylpyridine are applied in the form of monomers to the surface of the constituent fibers of the base material. Next, part or all of the organic solvent is removed, and the crosslinkable divinyl monomer and 4-vinylpyridine are attached to the surface of the constituent fibers of the hydrophilic porous fiber base material. The proportion of the crosslinkable divinyl monomer attached to the fiber surface of the hydrophilic porous fiber base material is preferably 20 mol% or less based on the total amount of monomer attached. decreases. The amount of vinyl copolymer attached to the hydrophilic porous fiber base material is not particularly limited, but the amount of vinyl copolymer attached to the microorganism adsorbent is 0.01 to 20 w.
t% range has high microbial adsorption ability and is economical. Further, a commonly used radical initiator such as benzoyl peroxide or azobisisobutyronitrile is added to the solution containing each monomer. Furthermore, a reactive vinyl monomer such as styrene or methyl methacrylate may be added to the solution containing each monomer.

【0016】こうして親水性多孔質繊維基材の構成繊維
表面にモノマーの状態で付着した架橋性ジビニルモノマ
ー及び4−ビニルピリジンは加熱下で共重合される。重
合温度は常圧又は加圧下、40〜140℃で行われる。 得られた共重合体は、ハロゲン化アルキル、ハロゲン化
ベンジル、ハロゲン化ペンタフルオロフェニルメチルな
どのハロゲン化物と反応させることによりピリジンを4
級化し、本発明の架橋構造を有するビニル系共重合体が
得られる。以下にジビニルベンゼンを架橋剤とした場合
のビニル系共重合体の構造式を示す。
The crosslinkable divinyl monomer and 4-vinylpyridine thus attached in the form of monomers to the surface of the constituent fibers of the hydrophilic porous fiber base material are copolymerized under heating. The polymerization temperature is 40 to 140°C under normal pressure or increased pressure. The obtained copolymer is prepared by reacting pyridine with a halide such as alkyl halide, benzyl halide, or pentafluorophenylmethyl halide.
The vinyl copolymer having a crosslinked structure of the present invention is obtained. The structural formula of a vinyl copolymer when divinylbenzene is used as a crosslinking agent is shown below.

【0017】[0017]

【化3】[Chemical formula 3]

【0018】このビニル系共重合体中の[0018] In this vinyl copolymer,

【化4】[C4]

【0019】で表される官能基が主体となって微生物を
活性状態を保持したままで、吸着する働きをしているも
のと考えられる。この官能基は正に帯電しており、一般
に微生物の細胞表面は負に帯電していることから、静電
気的な相互作用が一つの重要な因子であると推定される
。尚、ハロゲン化物の使用量は共重合体中の4−ビニル
ピリジン単位の含有量に応じて適宜決定される。
It is thought that the functional group represented by the following functions to adsorb microorganisms while keeping them in an active state. Since this functional group is positively charged and the cell surface of microorganisms is generally negatively charged, it is presumed that electrostatic interaction is one important factor. The amount of the halide to be used is appropriately determined depending on the content of 4-vinylpyridine units in the copolymer.

【0020】4級化されて成るビニル系共重合体は、水
及び有機溶媒に対して実質的に不溶又は難溶であり、従
来例で示したビニル系共重合体とは同様な性質を示すも
のとなる。加えて本発明のビニル系共重合体にあっては
、親水性多孔質繊維基材の構成繊維表面にモノマーの状
態で付着され基材上で共重合されていることから、ビニ
ル系共重合体の単位重量当りの表面積は増大し、その微
生物吸着効率は飛躍的に向上したものとなる。
The quaternized vinyl copolymer is substantially insoluble or poorly soluble in water and organic solvents, and exhibits properties similar to those of the vinyl copolymer shown in the conventional example. Become something. In addition, the vinyl copolymer of the present invention is attached as a monomer to the surface of the constituent fibers of the hydrophilic porous fiber base material and copolymerized on the base material. The surface area per unit weight of is increased, and its microbial adsorption efficiency is dramatically improved.

【0021】また、前述したように本発明の親水性多孔
質繊維基材は、親水性繊維を含有しているか、若しくは
親水化処理が行われている。また、本発明のビニル系共
重合体は、アルコール類などの有機溶剤に4−ビニルピ
リジンと架橋性ジビニルモノマーとが溶かされた溶液の
形態で親水性多孔質繊維基材の構成繊維表面に付与され
基材上で共重合されるようになっている。このため、親
水性多孔質繊維基材と4−ビニルピリジンと架橋性ジビ
ニルモノマーを含む溶液との親和性はよく、溶液は基材
のすみずみまで行き渡ることになる。また、親水性多孔
質繊維基材に付与された4−ビニルピリジン及び架橋性
ジビニルモノマーが有機溶剤の乾燥に伴って基材表面部
分へ移動する、換言すれば付与されたモノマーが乾燥の
方向に移動するといった所謂モノマーのマイグレーショ
ン現象が防止されることにもなる。さらに親水性多孔質
繊維基材とビニル系共重合体を構成するビニルピリジン
単位との親和性もよく、ビニル系共重合体の基材への付
着強度も向上することになる。
Furthermore, as described above, the hydrophilic porous fiber base material of the present invention contains hydrophilic fibers or has been subjected to a hydrophilic treatment. Furthermore, the vinyl copolymer of the present invention is applied to the surface of the constituent fibers of the hydrophilic porous fiber base material in the form of a solution in which 4-vinylpyridine and a crosslinkable divinyl monomer are dissolved in an organic solvent such as an alcohol. and copolymerized on the substrate. Therefore, the affinity between the hydrophilic porous fiber base material and the solution containing 4-vinylpyridine and the crosslinkable divinyl monomer is good, and the solution will spread to every corner of the base material. In addition, the 4-vinylpyridine and crosslinkable divinyl monomer applied to the hydrophilic porous fiber base material move to the surface of the base material as the organic solvent dries.In other words, the applied monomer moves in the direction of drying. This also prevents the so-called monomer migration phenomenon. Furthermore, the affinity between the hydrophilic porous fiber base material and the vinyl pyridine units constituting the vinyl copolymer is good, and the adhesion strength of the vinyl copolymer to the base material is also improved.

【0022】尚、本発明の微生物吸着材によって、吸着
する対象となる微生物とは、細菌、かび類、藻類、ウイ
ルス等をいう。
[0022] The microorganisms to be adsorbed by the microorganism adsorbent of the present invention include bacteria, fungi, algae, viruses, and the like.

【0023】尚、本発明者らの実験により、本発明のビ
ニル系共重合体において、その特徴である微生物吸着能
を十分に発現するためには、水分が必要であることが明
かとなった。このため、本発明の微生物吸着材を気層中
で用いる場合には、ビニル系共重合体と共に、塩化カル
シウム、塩化マグネシウムなどのアルカリ土類金属塩や
塩化リチウム、メタケイ酸カリウム、硫酸チタニウムな
どの潮解性物質、ポリビニルアルコ−ル、ポリアクリル
酸塩、ビニルピロリドンなどの水溶性高分子、シリカゲ
ル、ゼオライト、コラ−ゲン、五酸化ニリン、酸化マグ
ネシウム、エチレングリコール等の保湿剤を親水性多孔
質繊維基材の構成繊維表面に付着させるのである。これ
により、当該微生物吸着材は、水系の場合と同じく優れ
た微生物吸着能を発現するようになる。
[0023] Through experiments conducted by the present inventors, it has become clear that the vinyl copolymer of the present invention requires moisture in order to fully exhibit its characteristic microbial adsorption ability. . Therefore, when the microbial adsorbent of the present invention is used in an air layer, it is necessary to use alkaline earth metal salts such as calcium chloride, magnesium chloride, lithium chloride, potassium metasilicate, titanium sulfate, etc. together with the vinyl copolymer. Hydrophilic porous fibers contain deliquescent substances, water-soluble polymers such as polyvinyl alcohol, polyacrylates, vinyl pyrrolidone, and humectants such as silica gel, zeolite, collagen, diphosphorous pentoxide, magnesium oxide, and ethylene glycol. It is attached to the surface of the constituent fibers of the base material. As a result, the microbial adsorbent exhibits excellent microbial adsorption ability as in the case of a water-based adsorbent.

【0024】尚、本発明の微生物吸着材を微生物の除去
目的だけに用いる場合には、本発明のビニル系共重合体
と共に、殺菌剤を親水性多孔質繊維基材の構成繊維表面
に付着するようにしたならば、微生物吸着能とともに殺
菌性能をも備えた微生物吸着材を得ることができる。こ
の殺菌剤としては、例えば抗生物質のポリミキシン、第
4アンモニウム塩などの陽性界面活性剤、アルキルアミ
ノエチルグリシンなどの両性界面活性剤、クロルヘキシ
ジン、ポリヘキサメチレンピグアニジンなどのピグアナ
イド、ウンデシレン酸などの高級脂肪酸、金属及び金属
イオン、フェノ−ル類などが使用できる。
[0024] When the microbial adsorbent of the present invention is used only for the purpose of removing microorganisms, a bactericidal agent is attached to the surface of the constituent fibers of the hydrophilic porous fiber base together with the vinyl copolymer of the present invention. By doing so, it is possible to obtain a microbial adsorbent that has not only microbial adsorption ability but also sterilization performance. These disinfectants include, for example, antibiotic polymyxins, positive surfactants such as quaternary ammonium salts, amphoteric surfactants such as alkylaminoethylglycine, piganides such as chlorhexidine and polyhexamethylene piguanidine, and high-grade surfactants such as undecylenic acid. Fatty acids, metals and metal ions, phenols, etc. can be used.

【0025】尚、とくに殺菌剤に水不溶性であることが
望まれる場合には、ゼオライトを殺菌性を有する金属イ
オンで置換した抗菌性ゼオライト、ポリビニル、ポリア
クリレート、ポリエステルなどのポリマー鎖にピグアナ
イドまたは第4アンモニウム塩を固定化したポリマー型
固定化殺菌剤、、3−(トリメトキシシリル)−プロピ
ルトリメチルオクタデシルアンモニウムクロライドなど
のシリコーン型固定化殺菌剤などが好適に使用できる。
In particular, when it is desired that the disinfectant be water-insoluble, use antibacterial zeolite in which zeolite is substituted with a metal ion having bactericidal properties, or piganide or nitride added to the polymer chain of polyvinyl, polyacrylate, polyester, etc. Polymer-type immobilized bactericides with immobilized tetraammonium salts, silicone-type immobilized bactericides such as 3-(trimethoxysilyl)-propyltrimethyloctadecyl ammonium chloride, and the like can be suitably used.

【0026】[0026]

【実施例】実施例1 4−ビニルピリジンとジビニルベンゼンとアゾビスイソ
ブチロニトリルとをモル比で99:1:1の割合で含む
エタノール溶液を調整する。一方、レーヨン繊維(繊度
1.5デニール)からなる繊維ウェブを水流絡合処理し
て、目付90g/m2 の親水性不織布を作製する。こ
の親水性不織布を前記エタノール溶液中に浸漬した後、
室温でエタノールを蒸発させて、親水性不織布の構成繊
維表面に4−ビニルピリジンとジビニルベンゼンとを付
着させる。なお、付着量は親水性不織布の重量に対して
2重量%となるように調整する。次いで、80℃の温度
で5時間、恒温器中に静置して、親水性不織布上で前記
4−ビニルピリジンとジビニルベンゼンとを共重合させ
る。この後、共重合体の付着した親水性不織布を反応容
器に入れ、同容器内に臭化ベンジルとエタノールを加え
て80℃で6時間反応させて4級化処理し、臭化ベンジ
ルにより4級化されたピリジニウム基を有し、かつ架橋
構造を有するビニル系共重合体が構成繊維表面に付着し
た微生物吸着材を得た。
EXAMPLES Example 1 An ethanol solution containing 4-vinylpyridine, divinylbenzene and azobisisobutyronitrile in a molar ratio of 99:1:1 is prepared. On the other hand, a fibrous web made of rayon fibers (fineness: 1.5 denier) is hydroentangled to produce a hydrophilic nonwoven fabric having a basis weight of 90 g/m2. After immersing this hydrophilic nonwoven fabric in the ethanol solution,
Ethanol is evaporated at room temperature to adhere 4-vinylpyridine and divinylbenzene to the surface of the constituent fibers of the hydrophilic nonwoven fabric. Note that the amount of adhesion is adjusted to be 2% by weight based on the weight of the hydrophilic nonwoven fabric. Next, the 4-vinylpyridine and divinylbenzene are copolymerized on the hydrophilic nonwoven fabric by leaving it in a thermostat at a temperature of 80° C. for 5 hours. After this, the hydrophilic nonwoven fabric with the copolymer attached was placed in a reaction container, and benzyl bromide and ethanol were added to the same container and reacted at 80°C for 6 hours to perform quaternization treatment. A microbial adsorbent was obtained in which a vinyl copolymer having a pyridinium group and a crosslinked structure was attached to the surface of the constituent fibers.

【0027】得られた微生物吸着材を35cm×6cm
に裁断して渦巻状に加工したものを大腸菌を2.2×1
07 個/mlの割合で含む200mlの0.85重量
%滅菌生理食塩水中に浸漬し、マグネティックスターラ
ーで攪拌して、大腸菌を微生物吸着材に吸着させ、一定
時間毎に液中に残存する生菌数を寒天平板混釈法を用い
て測定し、除菌率を求めて表1に示した。
[0027] The obtained microorganism adsorbent was
Cut into spiral shapes and add E. coli to 2.2 x 1
E. coli is immersed in 200 ml of 0.85% by weight sterile physiological saline containing 0.07 cells/ml and stirred with a magnetic stirrer to adsorb E. coli onto the microbial adsorbent, and the remaining viable bacteria in the solution are removed at regular intervals. The number was measured using the agar plate pouring method, and the eradication rate was determined and shown in Table 1.

【0028】実施例2〜4 使用するエタノール溶液に含まれる4−ビニルピリジン
とジビニルベンゼンととのモル比を95:5(実施例2
)、90:10(実施例3)、85:15(実施例4)
に変えたこと以外は、実施例1と同様にして微生物吸着
材を得た。
Examples 2 to 4 The molar ratio of 4-vinylpyridine and divinylbenzene contained in the ethanol solution used was 95:5 (Example 2
), 90:10 (Example 3), 85:15 (Example 4)
A microbial adsorbent was obtained in the same manner as in Example 1, except that the following was changed.

【0029】得られた微生物吸着材を用いて、実施例1
と同様にして実験を行い、一定時間毎に液中に残存する
生菌数を測定し、除菌率を求めて表1及び表2に示した
。表1及び表2から明らかなように、4−ビニルピリジ
ンの割合が多いほど微生物の吸着力が高いことがわかる
Using the obtained microbial adsorbent, Example 1
An experiment was conducted in the same manner as above, and the number of viable bacteria remaining in the liquid was measured at regular intervals, and the eradication rate was determined and shown in Tables 1 and 2. As is clear from Tables 1 and 2, the higher the proportion of 4-vinylpyridine, the higher the ability to adsorb microorganisms.

【0030】[0030]

【表1】[Table 1]

【0031】[0031]

【表2】[Table 2]

【0032】比較例1 実施例1で使用した親水性不織布のみを用いて、実施例
1と同様にして実験を行い、一定時間毎に液中に残存す
る生菌数を測定し、除菌率を求めて表3に示した。
Comparative Example 1 An experiment was conducted in the same manner as in Example 1 using only the hydrophilic nonwoven fabric used in Example 1, and the number of viable bacteria remaining in the solution was measured at regular intervals to determine the sterilization rate. The results are shown in Table 3.

【0033】比較例2 使用する不織布をメルトブロー法により製造された平均
繊維型2μmのポリプロピレン繊維からなる目付85g
/m2 、厚み0.9mmの疎水性不織布に変えたこと
以外は実施例1と同様にして微生物吸着材を得た。
Comparative Example 2 The nonwoven fabric used was made of polypropylene fibers with an average fiber type of 2 μm produced by the melt-blowing method, and had a basis weight of 85 g.
A microbial adsorbent was obtained in the same manner as in Example 1 except that a hydrophobic nonwoven fabric having a thickness of 0.9 mm and a thickness of 0.9 mm was used.

【0034】得られた微生物吸着材を用いて、実施例1
と同様にして実験を行い、一定時間毎に液中に残存する
生菌数を測定し、除菌率を求めて表4に示した。この微
生物吸着材は実施例1で用いた不織布より繊維径が細く
、表面積の大きな不織布を用いているにも拘らず、実施
例1よりも微生物の吸着力が大きく劣っていた。これは
、上記メルトブロー法により製造された不織布が疎水性
であるため、ビニル系共重合体が繊維表面に均一に付着
できていないからだと考えられる。
[0034] Using the obtained microbial adsorbent, Example 1
An experiment was conducted in the same manner as above, and the number of viable bacteria remaining in the liquid was measured at regular intervals, and the sterilization rate was determined and shown in Table 4. Although this microorganism adsorbent used a nonwoven fabric with a smaller fiber diameter and a larger surface area than the nonwoven fabric used in Example 1, its ability to adsorb microorganisms was significantly inferior to that of Example 1. This is thought to be because the nonwoven fabric produced by the above melt blowing method is hydrophobic, and therefore the vinyl copolymer cannot be uniformly adhered to the fiber surface.

【0035】比較例3 橋かけポリビニルピリジニウムハライドからなる不溶性
高分子のビーズ2gを微生物吸着材として、大腸菌を2
.2×107 個/mlの割合で含む200mlの0.
85重量%滅菌生理食塩水中に入れ、マグネティックス
ターラーで攪拌して、大腸菌を微生物吸着材に吸着させ
、一定時間毎に液中に残存する生菌数を寒天平板混釈法
を用いて測定し、除菌率を求めて表4に示した。
Comparative Example 3 Using 2 g of insoluble polymer beads made of cross-linked polyvinylpyridinium halide as a microorganism adsorbent, 2 g of Escherichia coli were collected.
.. 200 ml containing 0.0.
It is placed in 85% by weight sterile physiological saline and stirred with a magnetic stirrer to adsorb E. coli to the microbial adsorbent, and the number of viable bacteria remaining in the solution is measured at regular intervals using the agar plate pouring method. The eradication rate was calculated and shown in Table 4.

【0036】[0036]

【表3】[Table 3]

【0037】[0037]

【表4】[Table 4]

【0038】実施例5 実施例1の微生物吸着材を35cm×6cmに裁断して
渦巻状に加工したものを、スタフィロコッカス・アウレ
ウスを1.5×107 個/mlの割合で含む200m
lの0.85重量%滅菌生理食塩水中に浸漬し、マグネ
ティックスターラーで攪拌して、大腸菌を微生物吸着材
に吸着させ、一定時間毎に液中に残存する生菌数を寒天
平板混釈法を用いて測定し、除菌率を求めて表5に示し
た。
Example 5 The microbial adsorbent of Example 1 was cut into 35 cm x 6 cm and processed into a spiral shape, and a 200 m sample containing Staphylococcus aureus at a rate of 1.5 x 107 cells/ml was prepared.
E. coli was immersed in 0.85% by weight of sterile physiological saline and stirred with a magnetic stirrer to adsorb E. coli to the microbial adsorbent, and the number of viable bacteria remaining in the solution was measured at regular intervals using the agar plate pour method. The sterilization rate was determined and shown in Table 5.

【0039】実施例6 実施例1の微生物吸着材を35cm×6cmに裁断して
渦巻状に加工したものを、シュードモナス・エルギノー
ザを1.1×107 個/mlの割合で含む200ml
の0.85重量%滅菌生理食塩水中に浸漬し、マグネテ
ィックスターラーで攪拌して、大腸菌を微生物吸着材に
吸着させ、一定時間毎に液中に残存する生菌数を寒天平
板混釈法を用いて測定し、除菌率を求めて表5に示した
。 表5から明らかなように、本発明の微生物吸着材は菌の
種類が異なっても良好な吸着力を示すことがわかる。
Example 6 The microbial adsorbent of Example 1 was cut to 35 cm x 6 cm and processed into a spiral shape, and 200 ml containing Pseudomonas aeruginosa at a ratio of 1.1 x 107 cells/ml was prepared.
The sample was immersed in 0.85% by weight sterile physiological saline and stirred with a magnetic stirrer to adsorb E. coli to the microbial adsorbent, and the number of viable bacteria remaining in the solution was measured at regular intervals using the agar plate pouring method. The sterilization rate was determined and shown in Table 5. As is clear from Table 5, it can be seen that the microbial adsorbent of the present invention exhibits good adsorption power even when the types of bacteria are different.

【0040】[0040]

【表5】[Table 5]

【0041】実施例7 極細ガラス繊維からなる、目付75g/m2 、厚み0
.35mmの親水性のガラス繊維ろ紙(東洋濾紙株式会
社製、GF−75)を用いたこと以外は実施例1と同様
にして微生物吸着材を得た。得られた微生物吸着材をカ
ラムに充填した後、T−4バクテリアファージを懸濁さ
せた液をカラムに通液したところ、大部分のT−4バク
テリアファージを捕集することができた。なお、上記ガ
ラス繊維ろ紙のみを用いて同様の実験を行ったところ、
T−4バクテリアファージはほとんど捕集できなかった
Example 7 Made of ultra-fine glass fiber, area weight 75 g/m2, thickness 0
.. A microbial adsorbent was obtained in the same manner as in Example 1, except that a 35 mm hydrophilic glass fiber filter paper (GF-75, manufactured by Toyo Roshi Co., Ltd.) was used. After filling a column with the obtained microbial adsorbent, a liquid in which T-4 bacterial phages were suspended was passed through the column, and most of the T-4 bacterial phages could be collected. In addition, when a similar experiment was conducted using only the above glass fiber filter paper,
Almost no T-4 bacterial phage could be collected.

【発明の効果】上記構成を備えたことにより、請求項1
記載の微生物吸着材にあっては、優れた微生物吸着能を
有するビニル系共重合体が、親水性多孔質繊維基材の構
成繊維表面に付着していることから、従来例で示したビ
ニル系共重合体よりなる微生物吸着材に比べて、ビニル
系共重合体の単位重量当りの表面積は飛躍的に増大し、
極めて高い微生物吸着効率が確保されることになる。ま
た、請求項1記載の微生物吸着材にあっては、ビニル系
共重合体が親水性多孔質繊維基材の構成繊維表面に付着
されていることから、微生物の繁殖に伴って目詰りを生
じ基質の流路が限定されることもない。
[Effect of the invention] By having the above configuration, claim 1
In the microbial adsorbent described above, the vinyl copolymer having excellent microbial adsorption ability is attached to the surface of the constituent fibers of the hydrophilic porous fiber base material. Compared to microbial adsorbents made of copolymers, the surface area per unit weight of vinyl copolymers is dramatically increased.
Extremely high microbial adsorption efficiency will be ensured. In addition, in the microbial adsorbent according to claim 1, since the vinyl copolymer is attached to the surface of the constituent fibers of the hydrophilic porous fiber base material, clogging occurs due to the proliferation of microorganisms. The flow path of the substrate is not limited.

【0042】また、請求項1記載の微生物吸着材にあっ
ては、親水性多孔質繊維基材が用いられていることから
、ビニル系共重合体を構成するビニルピリジン単位との
親和性がよく、ビニル系共重合体の付着強度が高くなり
、該ビニル系共重合体の脱落に起因する微生物吸着能の
低下を抑制することが出来る。
Furthermore, since the microbial adsorbent according to claim 1 uses a hydrophilic porous fiber base material, it has good affinity with the vinyl pyridine units constituting the vinyl copolymer. , the adhesion strength of the vinyl copolymer is increased, and a decrease in the microbial adsorption ability due to shedding of the vinyl copolymer can be suppressed.

【0043】請求項2記載の微生物吸着材の製造方法に
よれば、ビニル系共重合体がアルコール類などの有機溶
剤に4−ビニルピリジンと架橋性ジビニルモノマーとが
溶かされた溶液の形態で親水性多孔質繊維基材の構成繊
維表面に付与され基材上で共重合されるようになってい
る。このため、ビーズ状のビニル系共重合体よりなる従
来の微生物吸着材に比べて、ビニル系共重合体の単位重
量当りの表面積を増大させることができ、微生物吸着効
率の飛躍的な向上を計ることが出来る。
According to the method for producing a microbial adsorbent according to claim 2, the vinyl copolymer is hydrophilic in the form of a solution in which 4-vinylpyridine and a crosslinkable divinyl monomer are dissolved in an organic solvent such as alcohol. It is applied to the surface of the constituent fibers of the porous fiber base material and copolymerized on the base material. Therefore, compared to conventional microbial adsorbents made of bead-shaped vinyl copolymers, the surface area per unit weight of vinyl copolymers can be increased, dramatically improving microbial adsorption efficiency. I can do it.

【0044】また、請求項2記載の微生物吸着材の製造
方法によれば、親水性を有する多孔質繊維基材をアルコ
ール類等の有機溶剤に溶かした溶液に含浸させるように
したため、ビニル系共重合体を基材のすみずみまで行き
渡らせることができる。また、当該親水性多孔質繊維基
材に付与された4−ビニルピリジン及び架橋性ジビニル
モノマーが有機溶剤の乾燥に伴って基材表面部分へモノ
マーのマイグレーション現象を防止することができる。
Further, according to the method for producing a microbial adsorbent according to claim 2, since the hydrophilic porous fiber base material is impregnated with a solution dissolved in an organic solvent such as alcohol, vinyl-based The polymer can be spread throughout the substrate. Further, the 4-vinylpyridine and crosslinkable divinyl monomer applied to the hydrophilic porous fiber base material can prevent the migration of monomers to the surface portion of the base material as the organic solvent dries.

Claims (1)

【特許請求の範囲】 【請求項の1】 【化1】 (ただし、式中Rはベンジル基、C4〜C16のアルキ
ル基又はペンタフルオロフェニルメチル基、Xはハロゲ
ン原子)で表される官能基を有し、かつ架橋性ジビニル
モノマーを架橋剤とする架橋構造を有する水不溶性また
は水難溶性のビニル系共重合体が、親水性多孔質繊維基
材の構成繊維表面に付着していることを特徴とする微生
物吸着材。 【請求項の2】  4−ビニルピリジンと架橋性ジビニ
ルモノマーとを含む溶剤溶液を親水性多孔質繊維基材に
含浸し、この後溶剤を除去し4−ビニルピリジンと架橋
性ジビニルモノマーとを共重合して得られたビニル系共
重合体をハロゲン化物により4級化処理することを特徴
とする微生物吸着材の製造方法。
[Scope of Claims] [Claim 1] [Formula 1] (wherein, R is a benzyl group, a C4-C16 alkyl group, or a pentafluorophenylmethyl group, and X is a halogen atom). A water-insoluble or poorly water-soluble vinyl copolymer having a crosslinked structure using a crosslinkable divinyl monomer as a crosslinking agent is attached to the surface of the constituent fibers of the hydrophilic porous fiber base material. Microbial adsorbent. Claim 2: A hydrophilic porous fiber base material is impregnated with a solvent solution containing 4-vinylpyridine and a crosslinkable divinyl monomer, and then the solvent is removed to combine the 4-vinylpyridine and the crosslinkable divinyl monomer. A method for producing a microbial adsorbent, which comprises quaternizing a vinyl copolymer obtained by polymerization with a halide.
JP171191A 1991-01-10 1991-01-10 Microbial adsorbent and its production Pending JPH04234986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP171191A JPH04234986A (en) 1991-01-10 1991-01-10 Microbial adsorbent and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP171191A JPH04234986A (en) 1991-01-10 1991-01-10 Microbial adsorbent and its production

Publications (1)

Publication Number Publication Date
JPH04234986A true JPH04234986A (en) 1992-08-24

Family

ID=11509140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP171191A Pending JPH04234986A (en) 1991-01-10 1991-01-10 Microbial adsorbent and its production

Country Status (1)

Country Link
JP (1) JPH04234986A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10555889B2 (en) 2015-07-01 2020-02-11 3M Innovative Properties Company Compositions for spore removal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10555889B2 (en) 2015-07-01 2020-02-11 3M Innovative Properties Company Compositions for spore removal

Similar Documents

Publication Publication Date Title
EP0663409B1 (en) Antimicrobial polymer, contact lens, and contact lens care products
CA1271893A (en) Method for imparting antimicrobial activity from acrylics
CA2620203C (en) Method of attaching an antimicrobial cationic polyelectrolyte to the surface of a substrate
Xin et al. Antibacterial performance of polypropylene nonwoven fabric wound dressing surfaces containing passive and active components
Shekh et al. Electrospun nanofibers of poly (NPEMA-co.-CMPMA): used as heavy metal ion remover and water sanitizer
US5185415A (en) Adsorptive resin for microorganisms
JPH04234986A (en) Microbial adsorbent and its production
JP3118604B2 (en) Microbial adsorption resin
JP2814266B2 (en) Microbial adsorbent and method for producing the same
US20160199235A1 (en) Water-absorbent material with adjustable desalination function
JP3185109B2 (en) Microbial adsorption membrane
JPH049304A (en) Microorganism removing agent
JP4522707B2 (en) Microbial scavenger
Punyani et al. Synthesis, characterization, and antimicrobial properties of novel quaternary amine methacrylate copolymers
JPH048290A (en) Microorganism adsorbent
JP2019065442A (en) Fiber treatment agent
JPH0717808A (en) Antimicrobial high polymer and its production and antimicrobial material using antimicrobial high polymer and its production
JP2988687B2 (en) Nonwoven fabric for microbial adsorption
USRE34740E (en) Adsorptive resin for microorganisms
JPH03287508A (en) Anti-bacterial composition using alumina as matrix
JPH0411945A (en) Microbe adsorbent for gas phase
JPH03174419A (en) Micro-adsorptive resin
JP2936142B2 (en) Cartridge filter and manufacturing method thereof
Tashiro Removal of bacteria from water by systems based on insoluble polystyrene–polyethyelnimine
JPH0568464U (en) Work wiper