JPH04234983A - Dextrin dextranase and its production - Google Patents

Dextrin dextranase and its production

Info

Publication number
JPH04234983A
JPH04234983A JP6959091A JP6959091A JPH04234983A JP H04234983 A JPH04234983 A JP H04234983A JP 6959091 A JP6959091 A JP 6959091A JP 6959091 A JP6959091 A JP 6959091A JP H04234983 A JPH04234983 A JP H04234983A
Authority
JP
Japan
Prior art keywords
ddase
dextrin dextranase
enzyme
organic solvent
dextranase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6959091A
Other languages
Japanese (ja)
Other versions
JPH066057B2 (en
Inventor
Kazuya Yamamoto
一也 山本
Kenji Yoshikawa
憲司 芳川
Shigetaka Okada
岡田 茂孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ezaki Glico Co Ltd
Original Assignee
Ezaki Glico Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ezaki Glico Co Ltd filed Critical Ezaki Glico Co Ltd
Priority to JP6959091A priority Critical patent/JPH066057B2/en
Publication of JPH04234983A publication Critical patent/JPH04234983A/en
Publication of JPH066057B2 publication Critical patent/JPH066057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE:To produce an enzyme dextrin dextranase used in producing dextran utilized in the medical, biochemical fields, etc., from inexpensive raw materials. CONSTITUTION:Dextrin dextranase is obtained by culturing a microorganism, belonging to the genus Gluconobacter and capable of producing the dextrin dextranase, extracting the dextrin dextranase from the microbial cells with an organic solvent and further collecting the aforementioned dextrin dextranase. Furthermore, a method for producing the dextrin dextranase is provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、医療あるいは生化学な
どの分野で利用されているデキストラン(α1,6グル
カン)を、マルトオリゴ糖,澱粉及びその分解物より生
成する能力を有するデキストリンデキストラナーゼ(以
下、DDaseという。)及びその生産方法に関するも
のである。
[Industrial Application Field] The present invention is directed to a dextrin dextranase that has the ability to produce dextran (α1,6 glucan) from maltooligosaccharides, starch, and their decomposition products, which is used in fields such as medicine and biochemistry. (hereinafter referred to as DDase) and its production method.

【0002】0002

【従来の技術】DDaseについては約40年前に報告
(Hehre,E.J.&  Hamilton,D.
M.(1951):Journal  of  Bio
logical  Chemistry,55,161
  174.)が行われているが、それ以降全く研究が
されていない。同報告による精製手法とは、菌体を除去
しないままの状態の菌体培養液に適量の硫酸アンモニウ
ムを加えることによって生じる沈澱を集めた後、これを
適量の蒸留水に溶かし、溶けない細胞などを除去するこ
とによって酵素を取得する方法である。また、現在にお
ける菌体内酵素を精製する通常の方法は、細胞破壊によ
り無細胞抽出液を調製した後、有機溶媒を含まない緩衝
液を用いる各種クロマトグラフィーによる。
[Prior Art] DDase was reported about 40 years ago (Hehre, E.J. & Hamilton, D.
M. (1951): Journal of Bio
Logical Chemistry, 55, 161
174. ), but no research has been conducted since then. The purification method described in the same report involves adding an appropriate amount of ammonium sulfate to the bacterial culture solution without removing the bacterial cells, collecting the precipitate, and then dissolving this in an appropriate amount of distilled water to remove undissolved cells. This is a method of obtaining enzymes by removing them. Furthermore, the current common method for purifying intracellular enzymes is to prepare a cell-free extract by disrupting the cells, followed by various types of chromatography using a buffer solution that does not contain an organic solvent.

【0003】0003

【発明が解決しようとする課題】発明者は、前述の報告
に基ずき実験によりDDaseの生産と精製を行ったと
ころ、同精製方法では菌体中に存在する酵素量のわずか
数%の粗製酵素が得られただけで、従来の技術を使用し
てはこれ以上の精製はできなかった。また、細胞破壊に
よる精製では、超音波を用いた通常の菌体破壊処理によ
ってもなおDDaseは菌体内にとどまったままであっ
た。この時得られるDDaseを含む液を常法通り有機
溶媒を含まない緩衝液を用いた各種クロマトグラフィー
によって精製することを試みたが、ほとんど吸着せず精
製はできなかった。
[Problems to be Solved by the Invention] The inventor conducted experiments to produce and purify DDase based on the above-mentioned report, and found that the purification method produced only a few percent of the amount of crude enzyme present in the bacterial cells. Only the enzyme was obtained and no further purification was possible using conventional techniques. Furthermore, in purification by cell destruction, DDase remained within the cells even after normal cell destruction treatment using ultrasound. Attempts were made to purify the DDase-containing solution obtained at this time by various chromatography methods using a buffer solution that does not contain an organic solvent, but almost no adsorption occurred and purification was not possible.

【0004】0004

【課題を解決するための手段】本グルコノバクター属に
属するデキストリンデキストラナーゼ生産菌とは、グル
コノバクターオキシダンスATCC11894株(Gl
uconobacter  oxydans  Ame
rican  TypeCulture  Colle
ction  strain  No.11894),
グルコノバクターオキシダンスATCC11895株(
Gluconobacter  oxydans  A
merican  Type  Culture  C
ollection  strain  No.118
95)又はグルコノバクターに属するその他のDDas
e生産菌をいう。その培養は、常法によればよい。
[Means for solving the problem] The dextrin dextranase-producing bacteria belonging to the genus Gluconobacter is Gluconobacter oxidans ATCC 11894 strain (Gl
uconobacter oxydans Ame
rican TypeCulture Colle
ction strain No. 11894),
Gluconobacter oxydans ATCC11895 strain (
Gluconobacter oxydans A
merican Type Culture C
Collection strain No. 118
95) or other DDas belonging to Gluconobacter
e-producing bacteria. The culture may be carried out by a conventional method.

【0005】本発明において有機溶媒とは、n−ブタノ
ール,エチレングリコール,エタノール,プロパノール
,ジエチレングリコール等のアルコール類やアセトン等
をいう。特に菌体から酵素を抽出する際にはn−ブタノ
ール,クロロホルム等の水に溶けにくいあるいは水にほ
とんど溶けない、つまり極性の低い有機溶媒が好適に用
いられる。この極性の低い有機溶媒とはヘキサンを0,
水を9とした分類(以下、有機溶媒の極性という。)に
より表すと5より低いものをいう。またクロマトグラフ
ィーに吸着した酵素を溶出する際には、たとえばエチレ
ングリコールのように有機溶媒の極性が5以上のものが
好適に用いられる。有機溶媒を用いて採取するには次の
とおりに行う。培養後採取した菌体をそのままあるいは
細胞破壊した後、緩衝液に懸濁する。緩衝液には酢酸緩
衝液などDDaseが安定に存在できるPHの水溶液を
用いることが望ましい。この懸濁液にたとえばn−ブタ
ノールなどの極性の低い有機溶媒を同容量程度加え分散
させる。分散は手で軽く振とうする程度で容易に行うこ
とができる。この分散液を適時放置した後、遠心分離す
ると有機溶媒を主とする層,水を主とする層及び菌体あ
るいは菌体破砕沈澱物に分かれる。このうち水を主とす
る層を集め、透析した後、疎水クロマトグラフィーに供
し、吸着したタンパク質を、たとえばエチレングリコー
ル等の水で容易に溶かすことのできるアルコール類など
を含む緩衝液で溶出した後、これを濃縮し、同じく緩衝
液で平衡化したゲルろ過カラムに供し回収する。
[0005] In the present invention, the organic solvent refers to alcohols such as n-butanol, ethylene glycol, ethanol, propanol, diethylene glycol, and acetone. In particular, when extracting enzymes from bacterial cells, organic solvents such as n-butanol and chloroform that are poorly or almost insoluble in water, that is, have low polarity, are preferably used. This organic solvent with low polarity is hexane,
When expressed in a classification with water being 9 (hereinafter referred to as organic solvent polarity), it refers to something lower than 5. Furthermore, when eluting the adsorbed enzyme during chromatography, an organic solvent having a polarity of 5 or more, such as ethylene glycol, is preferably used. To collect using an organic solvent, proceed as follows. The bacterial cells collected after culturing are suspended in a buffer solution either as is or after the cells have been disrupted. As the buffer, it is desirable to use an aqueous solution such as acetic acid buffer with a pH that allows DDase to exist stably. About the same volume of a less polar organic solvent such as n-butanol is added to this suspension and dispersed. Dispersion can be easily accomplished by shaking lightly by hand. After this dispersion is left to stand for a suitable period of time, it is centrifuged and separated into a layer mainly containing an organic solvent, a layer mainly containing water, and bacterial cells or a precipitate of crushed bacterial cells. After collecting and dialyzing the water-based layer, it is subjected to hydrophobic chromatography, and the adsorbed proteins are eluted with a buffer containing alcohols that can be easily dissolved in water, such as ethylene glycol. , this is concentrated, subjected to a gel filtration column equilibrated with the same buffer solution, and recovered.

【0006】本発明のDDaseは以下の特徴を有する
。 1)作用 本酵素はアミロースなどを含めて重合度3以上のマルト
オリゴ糖に作用し、それら基質の非還元末端側のグルコ
ース残基を転移することによってデキストランを生産す
る。この作用は、反応に用いた物質がマルトースなどの
重合度が2つとなるマルトオリゴ糖となるまで進行する
。このDDaseの作用はマルトオリゴ糖の還元末端に
位置するグルコースが水素添加などの修飾を受けていて
も同様である。 2)最適PH及び安定PH DDaseの最適作用PHは4.0〜4.5であり、各
種PH下で30分置いた時にPHは2.5〜6.0で安
定であった。 3)最適温度及び安定温度 DDaseの最適作用温度は37〜45℃であり各種温
度下で30分置いた時に温度は45℃以下で安定であっ
た。また、本酵素は55℃まで活性を示した。 4)分子量 電気泳動によるDDaseの分子量は約30万であった
。5)力価測定法 酵素反応基質には還元低加水分解澱粉を用い、常法によ
り測定した。力価は1分間に1μmolのグルコース単
位がデキストランとなる時の酵素量を1Uとした。
The DDase of the present invention has the following characteristics. 1) Action This enzyme acts on maltooligosaccharides with a degree of polymerization of 3 or higher, including amylose, and produces dextran by transferring glucose residues on the non-reducing terminal side of these substrates. This action progresses until the substance used in the reaction becomes a maltooligosaccharide such as maltose, which has a degree of polymerization of two. This action of DDase is the same even if the glucose located at the reducing end of the maltooligosaccharide has been modified such as hydrogenation. 2) Optimum pH and Stable PH The optimal pH for DDase's action was 4.0 to 4.5, and the pH was stable at 2.5 to 6.0 when left for 30 minutes under various pH conditions. 3) Optimal temperature and stable temperature The optimal operating temperature of DDase was 37 to 45°C, and the temperature was stable at 45°C or lower when left at various temperatures for 30 minutes. Moreover, this enzyme showed activity up to 55°C. 4) Molecular weight The molecular weight of DDase by electrophoresis was approximately 300,000. 5) Titer measurement method The titer was measured by a conventional method using reduced low hydrolyzed starch as the enzyme reaction substrate. The titer was defined as 1 U, which is the amount of enzyme required to convert 1 μmol of glucose units into dextran in 1 minute.

【0007】[0007]

【作用】DDaseには有機溶媒に対する親和性が強く
且つ菌の細胞膜の近辺に存在するという特異性がある。 また有機溶媒は細胞膜の成分である脂質を溶かすことが
できる。したがって細胞を破壊しなくても有機溶媒によ
り直接作用させることにより、DDaseが抽出できる
。一般的に、酵素は有機触媒の存在下ですみやかに活性
を失うが、DDaseは有機溶媒下で失活しない。
[Operation] DDase has the specificity of having a strong affinity for organic solvents and being present near the cell membrane of bacteria. Organic solvents can also dissolve lipids, which are components of cell membranes. Therefore, DDase can be extracted by directly acting on an organic solvent without destroying cells. Generally, enzymes quickly lose their activity in the presence of an organic catalyst, but DDase does not become inactive in an organic solvent.

【0008】[0008]

【実施例】(実施例1) 0.5%酵母エキス,0.3%ポリペプトン,0.5%
グルコース,1%エタノールを含む培地4リットルを殺
菌後、グルコノバクターオキシダンスATCC1189
4株を接種し、30℃で16時間振とう培養した。得ら
れた菌体を10mM酢酸緩衝液に懸濁し、等容積のn−
ブタノールを加えてよく混和した後、遠心分離すること
によって水層画分にDDase活性を得た。この時の酵
素活性は0.54U/mリットルであった。次にこの時
得られたDDase画分を透析してn−ブタノールを除
去した後、40%エチレングリコールを用いてフェニル
トヨパール,トヨパールHW−65Sクロマトグラフィ
ーを行い、DDaseを精製した。得られた精製酵素は
ゲル電気泳動によって単一のバンドを示し、この時の酵
素回収率は49.7%であった。
[Example] (Example 1) 0.5% yeast extract, 0.3% polypeptone, 0.5%
After sterilizing 4 liters of medium containing glucose and 1% ethanol, Gluconobacter oxydans ATCC1189
Four strains were inoculated and cultured with shaking at 30°C for 16 hours. The obtained bacterial cells were suspended in 10mM acetate buffer, and an equal volume of n-
After adding butanol and mixing well, DDase activity was obtained in the aqueous layer fraction by centrifugation. The enzyme activity at this time was 0.54 U/ml. Next, the DDase fraction obtained at this time was dialyzed to remove n-butanol, and then phenylToyopearl, Toyopearl HW-65S chromatography was performed using 40% ethylene glycol to purify DDase. The obtained purified enzyme showed a single band by gel electrophoresis, and the enzyme recovery rate at this time was 49.7%.

【0009】(実施例2) 0.5%酵母エキス,0.3%ポリペプトン,0.5%
グルコース,2%グリセリンを含む培地1リッ卜ルを殺
菌後、グルコノバクターオキシダンスATCC1189
4株を接種し、30℃で16時間振とう培養した。培養
後、遠心分離により得た菌体2.0gを25mリットル
,10mM酢酸緩衝液に懸濁し、等容積のn−ブタノー
ルを加えてよく混和した後、遠心分離することによって
水層画分にDDase活性を得た。この時の酵素活性は
0.39U/mリットルであった。次にこの時得られた
DDase画分を透析してn−ブタノールを除去した後
、40%エチレングリコールを用いてフェニルトヨパー
ル,トヨパールHW−65Sクロマトグラフィーを行い
、DDaseを精製した。得られた精製酵素はゲル電気
泳動によって単一のバンドを示した。その酵素活性から
算出された酵素回収率は21.8%であった。
(Example 2) 0.5% yeast extract, 0.3% polypeptone, 0.5%
After sterilizing 1 liter of medium containing glucose and 2% glycerin, Gluconobacter oxydans ATCC1189
Four strains were inoculated and cultured with shaking at 30°C for 16 hours. After culturing, 2.0 g of bacterial cells obtained by centrifugation were suspended in 25 ml of 10 mM acetate buffer, an equal volume of n-butanol was added, and the mixture was thoroughly mixed. DDase was added to the aqueous fraction by centrifugation. Obtained activity. The enzyme activity at this time was 0.39 U/ml. Next, the DDase fraction obtained at this time was dialyzed to remove n-butanol, and then phenylToyopearl, Toyopearl HW-65S chromatography was performed using 40% ethylene glycol to purify DDase. The obtained purified enzyme showed a single band by gel electrophoresis. The enzyme recovery rate calculated from the enzyme activity was 21.8%.

【0010】(実施例3) 0.5%酵母エキス,0.3%ポリペプトン,0.2%
グルコース,1%グリセリンを含む培地2リッ卜ルを殺
菌後、グルコノバクターオキシダンスATCC1189
5株を接種し、30℃で40時間振とう培養した。培養
後、遠心分離により得た菌体3.9gを45mリットル
,10mM酢酸緩衝液に懸濁し、等容積のn−ブタノー
ルを加えてよく混和した後、遠心分離することによって
水層画分にDDase活性を得た。この時の酵素活性は
0.24U/mリットルであった。次にこの時得られた
DDase画分を透析してn−ブタノールを除去した後
、40%n−プロパノールを用いてフェニルトヨパール
,トヨパールHW−65Sクロマトグラフィーを行い、
DDaseを精製した。得られた精製酵素はゲル電気泳
動によって単一のバンドを示た。その酵素活性から算出
された酵素回収率は23.4%であった。
(Example 3) 0.5% yeast extract, 0.3% polypeptone, 0.2%
After sterilizing 2 liters of medium containing glucose and 1% glycerin, Gluconobacter oxydans ATCC1189
Five strains were inoculated and cultured with shaking at 30°C for 40 hours. After culturing, 3.9 g of bacterial cells obtained by centrifugation were suspended in 45 ml of 10 mM acetate buffer, an equal volume of n-butanol was added, and the mixture was thoroughly mixed. DDase was added to the aqueous fraction by centrifugation. Obtained activity. The enzyme activity at this time was 0.24 U/ml. Next, the DDase fraction obtained at this time was dialyzed to remove n-butanol, and then subjected to phenylToyopearl and Toyopearl HW-65S chromatography using 40% n-propanol.
DDase was purified. The obtained purified enzyme showed a single band by gel electrophoresis. The enzyme recovery rate calculated from the enzyme activity was 23.4%.

【0011】[0011]

【効果】本発明によりDDaseが採取できた。また細
胞破壊を行わない容易な方法で且つ高い回収率でDDa
seが精製できた。DDaseを精製することによって
、例えばマルトオリゴ糖等からデキストランを生産する
際に従来法によって得られている粗製酵素中に含まれて
いるDDase以外の酵素やその他の成分による影響等
を受けることがなくなる。また目的のデキストラン中に
不純物の混入が少なく、その精製は極めて容易になる。 特に生成物であるデキストランは高分子物質であるので
、混入している異物の除去は困難であることから、精製
酵素を使用した方が良い。
[Effect] DDase could be collected according to the present invention. In addition, DDa can be easily extracted without cell destruction and with a high recovery rate.
se was purified. By purifying DDase, it is no longer affected by enzymes other than DDase or other components contained in crude enzymes obtained by conventional methods when producing dextran from maltooligosaccharides, etc., for example. Moreover, there are few impurities mixed into the target dextran, and its purification becomes extremely easy. In particular, since the product dextran is a high-molecular substance, it is difficult to remove contaminated foreign substances, so it is better to use purified enzymes.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  グルコノバクター属に属するデキスト
リンデキストラナーゼ生産菌を培養し、これから有機溶
媒を用いて採取したものであることを特徴とするデキス
トリンデキストラナーゼ。
1. Dextrin dextranase, which is obtained by culturing a dextrin dextranase-producing bacterium belonging to the genus Gluconobacter and collecting the same using an organic solvent.
【請求項2】  グルコノバクター属に属するデキスト
リンデキストラナーゼ生産菌を培養し、これから有機溶
媒を用いて採取することを特徴とするデキストリンデキ
ストラナーゼの生産方法。
2. A method for producing dextrin dextranase, which comprises culturing a dextrin dextranase producing bacterium belonging to the genus Gluconobacter and collecting the dextrin dextranase using an organic solvent.
JP6959091A 1991-01-10 1991-01-10 Dextrin dextranase and method for producing the same Expired - Fee Related JPH066057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6959091A JPH066057B2 (en) 1991-01-10 1991-01-10 Dextrin dextranase and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6959091A JPH066057B2 (en) 1991-01-10 1991-01-10 Dextrin dextranase and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04234983A true JPH04234983A (en) 1992-08-24
JPH066057B2 JPH066057B2 (en) 1994-01-26

Family

ID=13407195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6959091A Expired - Fee Related JPH066057B2 (en) 1991-01-10 1991-01-10 Dextrin dextranase and method for producing the same

Country Status (1)

Country Link
JP (1) JPH066057B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181452A (en) * 2005-12-06 2007-07-19 Hokkaido Univ Dextran-producing enzyme gene, dextran-producing enzyme and method for producing the same, and method for producing dextran

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181452A (en) * 2005-12-06 2007-07-19 Hokkaido Univ Dextran-producing enzyme gene, dextran-producing enzyme and method for producing the same, and method for producing dextran

Also Published As

Publication number Publication date
JPH066057B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
JPS5953038B2 (en) Manufacturing method of cyclodextrin
EP3730623A1 (en) Small-molecule hyaluronic acid or salt thereof, and preparation method therefor
JPH068322B2 (en) Pectin manufacturing method
JPH04234983A (en) Dextrin dextranase and its production
JP4391114B2 (en) Enzyme mass production
US11926853B2 (en) Botulinum toxin producing method
CN108315375B (en) Production method of oxidized nicotinamide adenine dinucleotide phosphate
US2677643A (en) Method of purifying labile enzymes contaminated with hemolysin-omicron
JP3607789B2 (en) α-1,3-Multi-branched dextran hydrolase, process for producing the same, and process for producing cyclic isomaltoligosaccharide
JP2594322B2 (en) Purification method of hyaluronic acid
JP3026322B2 (en) Method for producing trehalose
JP2002065292A (en) Method for manufacturing polysaccharide
JP3399595B2 (en) Method for producing ε-poly-L-lysine
JPH06125774A (en) Levansaccharase enzyme, its preparation, microorganism for producing said enzyme and composition containing said microorganism
JP3599640B2 (en) Method for depolymerizing chitosan
JPH101496A (en) Purification of avermectin
JP2623509B2 (en) Method for producing branched maltooligosaccharides
JPH04211369A (en) Halophilic alkali amylase and production thereof
JP3594650B2 (en) Dextran production method
JPH0265789A (en) Production of agar oligosaccharide
JPH062071B2 (en) Saccharide manufacturing method
JP2548553B2 (en) Method for producing glutaminase
JPH04108395A (en) Production of galactosamino-oligosaccharide
JPH07284397A (en) Production of laminaritriose
JP3026312B2 (en) Production method of chitin degradation products

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees