JPH042341A - Implant member and manufacture thereof - Google Patents

Implant member and manufacture thereof

Info

Publication number
JPH042341A
JPH042341A JP2105714A JP10571490A JPH042341A JP H042341 A JPH042341 A JP H042341A JP 2105714 A JP2105714 A JP 2105714A JP 10571490 A JP10571490 A JP 10571490A JP H042341 A JPH042341 A JP H042341A
Authority
JP
Japan
Prior art keywords
slurry liquid
bone
active material
biologically active
artificial bone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2105714A
Other languages
Japanese (ja)
Other versions
JPH072172B2 (en
Inventor
Takao Kawai
隆夫 川井
Shinji Shibata
柴田 進次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2105714A priority Critical patent/JPH072172B2/en
Publication of JPH042341A publication Critical patent/JPH042341A/en
Publication of JPH072172B2 publication Critical patent/JPH072172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

PURPOSE:To achieve a remarkable anchoring effect by forming a biologically active material layer on a deep inner surface of a recess in a base material surface using a slurry liquid in which a powder of a biologically active material is scattered. CONSTITUTION:When an artificial bone A which has a surface layer formed having protrusions 4a and recesses 4b measuring about 100-400mum is immersed into a slurry liquid 12 in which a biologically active material such as apatite, bioglass, beta-bone tri-calcium phosphate lime, 'ceravital' (phonetic) or the like is crushed into fine powder to be scattered in a medium, the liquid is attached entirely to a surface layer 2 by a surface tension. Then, air is sent against the artificial bone A to blow off the slurry liquid 12 on the side of external surfaces of the protrusions of the surface layer 2 and then, the medium of the slurry liquid is evaporated dry by adding heat or heating. Thereafter, the bone is heated up to a high temperature exceeding 900 deg.C to bake the biologically active material attached in the recess 4b and a biologically active material layer 3 is formed. This facilitates the infiltration of a new biological tissue deep into the recesses 4b thereby enabling the fastening of the artificial bone firmly on an organic bone.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は人工骨や人工歯根等に代表される生体用インプ
ラント部材及びその製造方法に関し、詳細には生体組織
と強固に接合することのできるインプラント部材及びそ
の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to living body implant members, such as artificial bones and artificial tooth roots, and methods for manufacturing the same, and more specifically, to implant members that can be firmly bonded to living tissue. The present invention relates to an implant member and a method for manufacturing the same.

[従来の技術] 損傷又は欠損した骨、関節、歯根等の修復に際して人工
骨2人工間節2人工歯根等の生体用インプラント部材を
使用することがある。
[Prior Art] When repairing damaged or missing bones, joints, tooth roots, etc., biological implant members such as an artificial bone 2, an artificial intersection, and 2 artificial tooth roots are sometimes used.

該インプラント部材は強度的に優れ、且つ生体との適合
性に優れていることの他、術後に成長する新たな生体骨
組織(以下生体新組織と言うことがある)がインプラン
ト部材に対して強い一体性を示す様に構成されているこ
とも重要な要件の一つである。そのための1つの手段と
してインプラント部材表面を粗面化して凹凸を形成し、
そこに形成された凹部内に生体新組織を侵入・成長せし
めてアンカー効果を発揮させ、抜出しに対する強度を高
めることが挙げられる。
The implant member has excellent strength and compatibility with the living body, and the new living bone tissue (hereinafter sometimes referred to as new living tissue) that grows after surgery has a high resistance to the implant member. Another important requirement is that it be structured in a way that shows strong unity. One way to achieve this is to roughen the surface of the implant member to form irregularities.
One way to do this is to allow new biological tissue to invade and grow within the recess formed there to exert an anchor effect and increase the strength against extraction.

インプラント部材の表面を粗面化する方法としては、イ
ンプラント部材の基材表面に微細な粉粒体や線条体等を
溶射又は加圧溶着する方法、或はメツシュやワイヤを貼
着する方法、又は基材表面をショツトブラスト加工して
粗面化する方法等がある。
Methods for roughening the surface of the implant member include thermal spraying or pressure welding of fine particles or filaments on the base material surface of the implant member, or pasting a mesh or wire. Alternatively, there is a method of roughening the surface of the base material by shot blasting.

インプラント部材の基材としては機械的強度の高いステ
ンレス鋼やチタン合金等の金属材料が使用されることが
多く、前記粉粒体や線条体についても基材と同種の金属
材料を使用している。しかしながら金属材料は生体組織
との親和性が低く、インプラント部材の表面を粗面化し
て機械的なアンカー効果を期待するだけでは十分な固着
性を確保することが困難であフた。そこで別の手段とし
て生体組織に対し親和性の高いアパタイトやバイオガラ
ス等の生体活性材料を、インプラント部材の最外層に溶
射したり、或は粉体塗装を施した後に焼成する等の方法
により添設することが行なわれている。
Metal materials such as stainless steel and titanium alloy with high mechanical strength are often used as the base material of implant components, and the same type of metal material as the base material is used for the powder particles and filament bodies. There is. However, metal materials have low affinity with living tissue, and it is difficult to ensure sufficient adhesion simply by roughening the surface of the implant member and expecting a mechanical anchoring effect. Therefore, as an alternative method, bioactive materials such as apatite and bioglass, which have a high affinity for living tissues, can be added by thermal spraying on the outermost layer of the implant component, or by applying powder coating and then firing. It is being set up.

[発明が解決しようとする課題] 第4図はインプラント部材の一部断面拡大図であり、基
材1に微細な金属粉粒体を溶射や拡散接合して凹凸を有
する表面層2を形成し、さらにヒドロキシアパタイト等
のリン酸カルシウム系化合物や生体活性ガラス等に代表
される生体活性材料層3を、前記表面層2の外面全域に
わたって前記の様な焼成方法によって添設している。
[Problems to be Solved by the Invention] FIG. 4 is an enlarged partial cross-sectional view of an implant member, in which a surface layer 2 having irregularities is formed by spraying or diffusion bonding fine metal powder onto a base material 1. Furthermore, a bioactive material layer 3 typified by a calcium phosphate compound such as hydroxyapatite, bioactive glass, etc. is applied over the entire outer surface of the surface layer 2 by the firing method described above.

ところがこの様な方法で形成される場合においては、生
体活性材料層3が表面層2の凹部4bをかなり埋める様
に形成されてしまうので、せっかくの凹凸部が滑らかに
平均化されることとなり、生体新組織の侵入によるアン
カー効果が期待できなくなり、残存生体骨との接合性が
低くなってしまう。
However, when formed by such a method, the bioactive material layer 3 is formed so as to considerably fill the recesses 4b of the surface layer 2, so that the irregularities are smoothed out. The anchoring effect due to the invasion of new living tissue cannot be expected, and the bondability with the remaining living bone becomes low.

尚上記344図では生体活性材料層3が表面層の凹部4
bの内奥部まで入り込む様に示しているが、実際問題と
しては内奥部には十分届かず、凸部4aを中心とする表
面部のみに生体活性材料がコーティングされる場合が多
く、従って仮に生体新組織が凹部4bの内奥まで侵入す
ることがあっても、生体骨との化学的接合が不十分とな
り、結局接合力を飛躍的に向上させることはできなかつ
た。
In the above figure 344, the bioactive material layer 3 is located in the recess 4 of the surface layer.
Although it is shown as if it penetrates deep into the inner part of b, in reality, it does not reach the inner part sufficiently, and in many cases, the bioactive material is coated only on the surface area centered on the convex part 4a. Even if the new biological tissue were to penetrate deep into the recess 4b, chemical bonding with the biological bone would be insufficient, and in the end, the bonding force could not be dramatically improved.

そこで本発明者らは、表面層の凹凸部を平滑化すること
なく、しかも表面層凹部の内奥まで生体新組織を侵入さ
せて強固な化学的結合を形成すると共に強力なアンカー
効果を発揮することができる桜なインプラント部材を提
供することを第1の目的とし、さらにこの様なインプラ
ント部材を簡単に製造することのできる方法を開発する
ことを第2の目的とし、種々研究を重ねて本発明を完成
した。
Therefore, the present inventors have developed a new biological tissue that can penetrate deep into the recesses of the surface layer without smoothing the uneven parts of the surface layer, thereby forming strong chemical bonds and exerting a strong anchoring effect. The first objective is to provide a sophisticated implant component that can be manufactured with ease, and the second objective is to develop a method that can easily manufacture such an implant component. Completed the invention.

[課題を解決するための手段] 上記目的を達成した本発明のインプラント部材は基材表
面に形成された徴細凹凸の凹部内奥表面に生体活性材料
層を形成してなる点に要旨を有し、さらに本発明の製造
方法は、徴細凹凸を形成したインプラント部材の表面に
、生体活性材料の粉末を分散させたスラリー液を塗布し
た後、該インプラント部材の凸部に付着している前記ス
ラリー液を除去し、さらに乾燥して生体活性材料を焼成
する工程を含むことを要旨とするものである。
[Means for Solving the Problems] The implant member of the present invention that achieves the above object has a gist in that a bioactive material layer is formed on the inner surface of the recesses of the fine irregularities formed on the surface of the base material. Furthermore, in the manufacturing method of the present invention, after applying a slurry liquid in which powder of a bioactive material is dispersed to the surface of an implant member having fine irregularities formed therein, The gist of the method is to include the steps of removing the slurry liquid, further drying, and firing the bioactive material.

[作用及び実施例コ 金属製人工骨Aに生体活性材料層を形成する方法の一例
を第1図及び第2図によって以下詳述する。人工骨Aは
第2図(a)〜(C)の左下りハツチング部2として示
す様に基材1の表面に同種の金属粉体を溶射や拡散接合
し、100〜400μm程度の凹凸部4a、4bを有す
る表面層が形成されている。ここまでは従来から行なわ
れている方法が全て採用され得る。第1図(a)は密閉
容器10内のスラリー液12中に人工骨Aを浸漬した状
態を示す説明図であり、該密閉容器12には真空ポンプ
13及び不活性ガス供給源14が接続される。前記スラ
リー液12はアパタイト、バイオガラス、β−燐酸三石
灰、セラビタール又は結晶化ガラス等の生体活性材料を
数μm以下〜数100μmの微粉末に粉砕し、水又はア
ルコール等の媒体中に分散したものであり、スラリー濃
度は10%以下とすることが望ましい。
[Function and Examples] An example of a method for forming a bioactive material layer on a metal artificial bone A will be described in detail below with reference to FIGS. 1 and 2. The artificial bone A is made by thermally spraying or diffusion bonding the same type of metal powder onto the surface of the base material 1, as shown as the downward left hatching part 2 in FIGS. , 4b is formed. Up to this point, all conventional methods can be employed. FIG. 1(a) is an explanatory diagram showing a state in which an artificial bone A is immersed in a slurry liquid 12 in a closed container 10, and a vacuum pump 13 and an inert gas supply source 14 are connected to the closed container 12. Ru. The slurry liquid 12 is made by pulverizing a bioactive material such as apatite, bioglass, β-tricalcium phosphate, ceravital, or crystallized glass into a fine powder of several micrometers or less to several hundred micrometers, and dispersing it in a medium such as water or alcohol. Therefore, it is desirable that the slurry concentration is 10% or less.

まず人工骨Aは昇降アーム11に懸吊した状態でスラリ
ー液12の上部空間位置(破線A゛で示す)に保持し、
真空ポンプ13を駆動して上部空間を真空にして人工骨
Aを真空環境に晒す。こうして凹部4b内の空気を脱気
すれば、スラリー液12中に浸漬させたときに、該凹部
4b内に空気溜りが残留するのが防止される。そして昇
降アーム11を下降させて人工骨Aをスラリー液12中
に浸漬する。次いでガスタンクより空気やN2ガス等を
スラリー液12の上部空間に導入して加圧することが好
ま・しく、これによって表面層凹部4bの内奥まで確実
にスラリー液を押し込むことができる。必要に応じ振動
や衝撃を加えて残留気泡の放出を図ることもある。
First, the artificial bone A is held in a space above the slurry liquid 12 (indicated by the broken line A') while suspended from the lifting arm 11.
The vacuum pump 13 is driven to evacuate the upper space and expose the artificial bone A to a vacuum environment. By degassing the air in the recess 4b in this manner, air pockets are prevented from remaining in the recess 4b when immersed in the slurry liquid 12. Then, the lifting arm 11 is lowered to immerse the artificial bone A into the slurry liquid 12. Next, it is preferable to introduce air, N2 gas, or the like from a gas tank into the space above the slurry liquid 12 to pressurize it, thereby making it possible to reliably push the slurry liquid deep into the surface layer recess 4b. If necessary, vibration or shock may be applied to release residual air bubbles.

スラリー液12の浸漬を完了した人工骨Aは前記密閉容
器10より取出す。このときのスラリー液12の付着状
態は第2図(a)に示す様になっており、スラリー液1
2は表面張力によって隣接凸部4a同士を連続して覆い
、表面層2の全面にわたって付着されている。
The artificial bone A that has been immersed in the slurry liquid 12 is taken out from the sealed container 10. At this time, the adhering state of the slurry liquid 12 is as shown in FIG. 2(a).
2 continuously covers the adjacent convex portions 4a by surface tension and is adhered over the entire surface of the surface layer 2.

次いで第1図(b)に示す様に、浸漬の終った人工骨A
に向けてブロワ−15によって空気を吹き付け、第2図
(b)に示す如く表面層2の凸部外表面側に付着してい
るスラリー液12を吹き飛ばし、凹部4b内のみにスラ
リー液12が残留する程度(凸部4aの頂面がn8した
該凹部4aかスラリー液12に被覆されない程度)とす
る。そしてこの人工骨Aを加温ないし加熱することによ
り、スラリー液の媒体を蒸発させて乾燥する。その後9
00℃以上の高温に加熱することによって凹部4b内に
付着した生体活性材料を焼成して生体活性材料層3を形
成する。こうして第2図(C)に示す様に生体活性材料
層3は表面層2における凹部4bの内奥表面のみに形成
されることとなり、生体新組織が凹部4bの内奥に侵入
し易くなり、生体骨と人工骨を強固に固着できる様にな
フた。なお40μm以下の微小部には生体新組織の侵入
が行なわれないとされているので、生体活性材料層3に
よって埋められても、接合性に大きな影響を及ぼすこと
はない。
Next, as shown in FIG. 1(b), the artificial bone A that has been soaked is
Air is blown by the blower 15 toward the surface of the surface layer 2, and the slurry liquid 12 adhering to the outer surface of the convex portion of the surface layer 2 is blown away as shown in FIG. (so that the top surface of the convex portion 4a is not covered by the slurry liquid 12). Then, by warming or heating this artificial bone A, the medium of the slurry liquid is evaporated and dried. After that 9
By heating to a high temperature of 00° C. or higher, the bioactive material adhering to the recess 4b is fired to form the bioactive material layer 3. In this way, as shown in FIG. 2(C), the bioactive material layer 3 is formed only on the inner surface of the recess 4b in the surface layer 2, making it easier for new biological tissues to invade the inner depth of the recess 4b. The lid allows for a strong bond between living bone and artificial bone. It should be noted that since it is said that biological new tissues do not invade microscopic areas of 40 μm or less, even if they are filled with the bioactive material layer 3, the bondability will not be significantly affected.

(実施例1) 10μm以下の結晶化ガラス粉末を10%のスラリー液
とし、第1図(a) 、 (b)  に示す工程を経て
、Ti製人工骨の表面凹部にスラリー液を付着させた。
(Example 1) Crystallized glass powder of 10 μm or less was made into a 10% slurry liquid, and the slurry liquid was adhered to the surface concavities of a Ti artificial bone through the steps shown in Fig. 1 (a) and (b). .

なお真空引きは10 ””Torrで行ない、不活性ガ
スの加圧は5 Kg/cm2で行なった。そして取出し
た人工骨を110℃で乾燥した後、1050℃で熱処理
をして第2図(c) に示す様な人工骨を得た。
Incidentally, evacuation was performed at 10'' Torr, and pressurization of inert gas was performed at 5 Kg/cm2. The extracted artificial bone was dried at 110°C and then heat treated at 1050°C to obtain the artificial bone as shown in Fig. 2(c).

(実施例2) 予め結晶化処理した結晶化ガラスとこの原ガラス粉末を
1=1の割合で混合したものを分散してスラリー液とし
、実施例1と同条件で人工骨表面にこのスラリー液を付
着・乾燥させた後、900℃で熱処理して凹部に結晶化
ガラス層を形成した人工骨を得た。
(Example 2) A mixture of pre-crystallized glass ceramics and this raw glass powder at a ratio of 1=1 is dispersed to form a slurry liquid, and this slurry liquid is applied to the surface of an artificial bone under the same conditions as Example 1. After adhering and drying, the artificial bone was heat-treated at 900°C to form a crystallized glass layer in the concave portions.

(実施例3) 予め1000℃以上で熱処理したヒドロキシアパタイト
微粉末を非水溶性溶媒に分散させ、熱処理後のコーティ
ング層中のSio2含有率が40%以下となる様にSi
アルコキシド(例えばエチルシリケート)及び酢酸を添
加し、さらに水を加えてゾル−ゲルスラリーとした。こ
れを人工骨に含浸させ、第1図(b)の工程を経て乾燥
・熱処理して生体活性材料層を第2図(C)の如く形成
した。
(Example 3) Fine hydroxyapatite powder that has been heat-treated at 1000°C or higher is dispersed in a water-insoluble solvent, and Si
An alkoxide (eg, ethyl silicate) and acetic acid were added, followed by water to form a sol-gel slurry. This was impregnated into an artificial bone, followed by drying and heat treatment through the steps shown in FIG. 1(b) to form a bioactive material layer as shown in FIG. 2(C).

上記実施例1.2.3によって製造された人工骨を成人
の膝関節部に埋め込み、所定期間経過毎に引抜き試験を
行ない、第3図の実線(イ)に示す結果を得た。なお(
ロ)〜(へ)に示す比較例は次の表面形状のものである
The artificial bone manufactured according to Example 1.2.3 above was implanted into the knee joint of an adult, and a pullout test was conducted at predetermined intervals, and the results shown in the solid line (A) in FIG. 3 were obtained. In addition(
The comparative examples shown in (b) to (f) have the following surface shapes.

(ロ)徴細凹凸を有する不均整な表面層2を形成し、該
表面層の全面を覆いつくす様に結晶化ガラス層を形成し
たもの。
(b) An asymmetric surface layer 2 having fine irregularities is formed, and a crystallized glass layer is formed so as to completely cover the entire surface layer.

(A)上記と同様に不均整な表面層2を形成するが、生
体活性材料層を形成しないもの。
(A) Forming an asymmetrical surface layer 2 in the same manner as above, but not forming a bioactive material layer.

(:)基材1にビーズ状の粒子を添着しただけのもの。(:) Only bead-shaped particles are attached to the base material 1.

(ホ)平らな基材表面に結晶化ガラスを均一にコーティ
ングしたもの。
(e) A flat base material surface coated uniformly with crystallized glass.

(へ)平な基材だけのもの(アルミナ製)。(f) Only a flat base material (made of alumina).

第3図より明らかな様に本発明実施例の人工骨は比較例
に示した従来品と比較して引抜き強度が向上しており、
(イ)は(八)より10にg/cm”以上高い値を示し
た。
As is clear from FIG. 3, the artificial bone of the example of the present invention has improved pull-out strength compared to the conventional product shown in the comparative example.
(A) showed a value higher than (8) by more than 10 g/cm''.

表面層2に生体活性材料をコーティングする方法として
は、上記の例に限定されず、アルコキシドを用いるゾル
−ゲル方法により、結晶化ガラスやNaを主体とする生
体活性ガラス又はヒドロキシアパタイト等を表面層2の
凹部4bに付着させる方法でありても良い。
The method for coating the surface layer 2 with a bioactive material is not limited to the above example, but a sol-gel method using an alkoxide can be used to coat the surface layer with crystallized glass, bioactive glass mainly composed of Na, hydroxyapatite, etc. A method of attaching it to the recess 4b of No. 2 may also be used.

他方表面層2上のスラリー液12を取り除いて第2図の
(a)の状態より第2図(b)に示す状態へ変化させる
方法としては、上記した空気吹き付は法に替えて、ブラ
シや布等によってこすり取る方法であフても良い。
On the other hand, as a method for removing the slurry liquid 12 on the surface layer 2 and changing the state from the state shown in FIG. 2(a) to the state shown in FIG. 2(b), instead of the air blowing method described above, a brush It may also be removed by rubbing it off with a cloth or the like.

[発明の効果] 本発明のインプラント部材は以上の様に構成されている
ので、生体新組織と化学的に強固に接合されると共にア
ンカー効果も発揮されるので、長期にわたって安定した
人工骨として利用することができる様になった。また本
発明によって上記インプラント部材が簡単に製造できる
様になフた。
[Effects of the Invention] Since the implant member of the present invention is configured as described above, it is chemically firmly bonded to the new biological tissue and also exhibits an anchoring effect, so it can be used as a stable artificial bone over a long period of time. Now I can do it. Furthermore, the present invention allows the implant member to be manufactured easily.

図面0簡嘱な簀Drawing 0 simple cage

【図面の簡単な説明】[Brief explanation of drawings]

第1図(δ) 、 fb)は本発明方法の工程例を示す
説明図、第2図(a)〜(c)は本発明方法によって製
造される人工骨の工程毎の断面形状を示す拡大説明図、
第3図は本発明実施例と比較例の引抜き強度の相違を示
すグラフ、第4図は従来の人工骨の2・・・表面層  
   3・・・生体活性材料層4a・・・凸部    
 4b−・・凹部10・・・密封容器   11・・・
昇降アーム12・・・スラリー液  13・・・真空ポ
ンプ14・・・不活性ガス供給源 15・・・ブロワ−
FIG. 1 (δ), fb) is an explanatory diagram showing an example of the process of the method of the present invention, and FIGS. 2 (a) to (c) are enlarged views showing the cross-sectional shape of the artificial bone manufactured by the method of the present invention at each step. Explanatory diagram,
Figure 3 is a graph showing the difference in pull-out strength between the example of the present invention and the comparative example, and Figure 4 is a graph showing the 2... surface layer of the conventional artificial bone.
3... Bioactive material layer 4a... Convex portion
4b--Recessed portion 10... Sealed container 11...
Lifting arm 12...Slurry liquid 13...Vacuum pump 14...Inert gas supply source 15...Blower

Claims (2)

【特許請求の範囲】[Claims] (1)基材の表面上に生体組織との親和性の高い生体活
性材料を添着させてなるインプラント部材であって、基
材表面に形成された徴細凹凸の凹部内奥表面に生体活性
材料層を形成してなることを特徴とするインプラント部
材。
(1) An implant member in which a bioactive material having high affinity with living tissue is adhered to the surface of a base material, wherein the bioactive material is attached to the inner surface of a concave part with fine irregularities formed on the surface of the base material. An implant member characterized by forming layers.
(2)請求項(1)に記載のインプラント部材を製造す
るに当たり、徴細凹凸を形成したインプラント部材の表
面に、生体活性材料の粉末を分散させたスラリー液を塗
布した後、該インプラント部材の凸部に付着している前
記スラリー液を除去し、さらに乾燥して生体活性材料を
焼成する工程を含むことを特徴とするインプラント部材
の製造方法。
(2) In manufacturing the implant member according to claim (1), after applying a slurry liquid in which bioactive material powder is dispersed to the surface of the implant member on which fine irregularities are formed, the implant member is A method for manufacturing an implant member, comprising the steps of removing the slurry liquid adhering to the convex portions, drying the slurry liquid, and firing the bioactive material.
JP2105714A 1990-04-20 1990-04-20 Implant member and manufacturing method thereof Expired - Fee Related JPH072172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2105714A JPH072172B2 (en) 1990-04-20 1990-04-20 Implant member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2105714A JPH072172B2 (en) 1990-04-20 1990-04-20 Implant member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH042341A true JPH042341A (en) 1992-01-07
JPH072172B2 JPH072172B2 (en) 1995-01-18

Family

ID=14415004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2105714A Expired - Fee Related JPH072172B2 (en) 1990-04-20 1990-04-20 Implant member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH072172B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069532A1 (en) * 2005-12-12 2007-06-21 Nakashima Propeller Co., Ltd. Bone-compatible implant and method of producing the same
WO2020250911A1 (en) * 2019-06-12 2020-12-17 日本特殊陶業株式会社 Biocompatible member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069532A1 (en) * 2005-12-12 2007-06-21 Nakashima Propeller Co., Ltd. Bone-compatible implant and method of producing the same
JP2007159685A (en) * 2005-12-12 2007-06-28 Okayama Univ Bone seeking implant and its manufacturing method
US8257445B2 (en) 2005-12-12 2012-09-04 Nakashima Medical Co., Ltd. Bone-compatible implant and method of producing the same
WO2020250911A1 (en) * 2019-06-12 2020-12-17 日本特殊陶業株式会社 Biocompatible member

Also Published As

Publication number Publication date
JPH072172B2 (en) 1995-01-18

Similar Documents

Publication Publication Date Title
EP1575636B1 (en) Biodegradable biocompatible implant
JP4723188B2 (en) Porous biocompatible implant material and method for producing the same
US4892544A (en) Methods for forming hollow, porous-surfaced elastomeric bodies
US4547390A (en) Process of making implantable prosthesis material of modified polymeric acrylic (PMMA) beads coated with PHEMA and barium sulfate
KR101463386B1 (en) Method for manufacturing coating layer for surface treatment of implant, coating layer for surface treatment of implant manufactured thereby, and implant including the same
US8383187B2 (en) Rough porous constructs
US7527804B2 (en) Method for improvement of soft tissue attachment and implants making use of said method
JP2007536038A (en) Biocompatible bone implant composition and method for repairing bone defects
JPH08299429A (en) Method for surface treatment of titanium implant and bio-compatible titanium implant
JPH11276510A (en) Surface modifying bone prothesis member and method for manufacturing the same
US7722735B2 (en) Microstructure applique and method for making same
JP4635177B2 (en) Biocompatible implant material and method for producing the same
JPH042341A (en) Implant member and manufacture thereof
JP2005531339A (en) Tissue-engineered orthopedic scaffold
CN109701085A (en) A kind of porous titanium framework strontium doping hydroxyapatite bioactive coating preparation method of 3D printing
JP3517198B2 (en) Biological components
JPH072171B2 (en) Method for manufacturing implant member
Hong et al. Fabrication of hollow hydroxyapatite spherical granules for hard tissue regeneration and alternative method for drug release test
JPH06197947A (en) Composite organic implant and manufacture thereof
JPH02203853A (en) Manufacture of implant member
JP2013022036A (en) Implant material for living body and method of manufacturing the same
Talreja et al. Sol-Gel-Fabricated Bioceramics for Clinical Application
Kim et al. Bone Formation Effect of the RGD-bioconjugated Mussel Adhesive Proteins Composite Hydroxypropyl Methylcellulose Hydrogel Based Nano Hydroxyapatite and Collagen Membrane in Rabbits
JPH04168282A (en) Method for forming calcium phosphate coating layer
You et al. The aging effect on the surface characteristics of biodegradable calcium phosphate. Coated layer on Ti-alloy by spin coating

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080118

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees