JPH04233187A - Ceramic heater and its manufacture - Google Patents

Ceramic heater and its manufacture

Info

Publication number
JPH04233187A
JPH04233187A JP40897690A JP40897690A JPH04233187A JP H04233187 A JPH04233187 A JP H04233187A JP 40897690 A JP40897690 A JP 40897690A JP 40897690 A JP40897690 A JP 40897690A JP H04233187 A JPH04233187 A JP H04233187A
Authority
JP
Japan
Prior art keywords
heating element
ceramic
ceramics
sialon
heating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40897690A
Other languages
Japanese (ja)
Inventor
Tomokazu Yamaguchi
朋一 山口
Yuji Fujinaka
藤中 祐司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP40897690A priority Critical patent/JPH04233187A/en
Publication of JPH04233187A publication Critical patent/JPH04233187A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

PURPOSE:To improve durability and acid resistance by so constituting it as to provide a ceramic heating body, which contains a specified amount or more of zirconium nitride inside specified ceramics. CONSTITUTION:A ceramic heating body 2, which contains zirconium nitride by 10% or more inside with BETA-thyaron ceramics 1 as a matrix built in. Hereby, the differences of shrinkage factor and thermal expansion coefficient during sintering between the heating body 2 and the matrix 1 are small, so it is hard to cause wire breaking of the heating body, and also since the acid resistance of the matrix is strong, acid resistance becomes high. Furthermore, the coupling between the heating body and the matrix becomes firm and the durability can be elevated.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ディーゼルエンジンの
予熱プラグやファンヒータの点火プラグなどに用いられ
るセラミックヒータおよびその製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic heater used as a preheating plug for a diesel engine or a spark plug for a fan heater, and a method for manufacturing the same.

【0002】0002

【従来の技術】近年、セラミックヒータは急速始動性と
高耐熱性を有することから、上記のような点火プラグな
どに広く応用されるようになって来た。従来のこの種の
ヒータは、窒化ケイ素セラミックスやサイアロンセラミ
ックスの焼結体中に、タングステンやモリブデンなどの
高融点金属からなる発熱体を埋設したものであった。ま
た、これらのヒータの製造方法は、窒化ケイ素セラミッ
クスやサイアロンセラミックスの成形体中にタングステ
ンやモリブデンなどの高融点金属の発熱体を付与した後
、焼成して得るものであった。
2. Description of the Related Art In recent years, ceramic heaters have been widely used in spark plugs such as those mentioned above because of their rapid startability and high heat resistance. Conventional heaters of this type have a heating element made of a high melting point metal such as tungsten or molybdenum embedded in a sintered body of silicon nitride ceramics or sialon ceramics. In addition, the method for manufacturing these heaters involves adding a heating element of a high melting point metal such as tungsten or molybdenum to a molded body of silicon nitride ceramics or sialon ceramics, and then firing the molded body.

【0003】0003

【発明が解決しようとする課題】このような従来のセラ
ミックヒータは、発熱体に金属を用いているため、焼結
時の母体のセラミックスと発熱体の収縮率が異なるため
、デラミネーションを起こしやすく、また強度も弱かっ
た。また、母体のセラミックスと発熱体の熱膨張係数が
著しく異なるため、動作を繰り返すうちに断線を起こし
やすく、耐久性に課題があった。
[Problems to be Solved by the Invention] Since such conventional ceramic heaters use metal for the heating element, the contraction rate of the heating element is different from that of the base ceramic during sintering, so delamination is likely to occur. , and the strength was also weak. Additionally, because the thermal expansion coefficients of the base ceramic and the heating element are significantly different, wires are likely to break during repeated operations, posing a problem with durability.

【0004】本発明はこれらの課題を解決し、高い耐久
性を持ち、生産性にすぐれたセラミックヒータを得るこ
とを目的とするものである。
The object of the present invention is to solve these problems and provide a ceramic heater that has high durability and excellent productivity.

【0005】[0005]

【課題を解決するための手段】本発明はこれらの課題を
解決するために、サイアロンセラミックスの内部に窒化
ジルコニウムを10wt%以上含むセラミックスの発熱
体を有するセラミックヒータを提案するものである。ま
た、サイアロンセラミックスの成形体の上に焼成後に発
熱体となる窒化アルミニウムと酸化ジルコニウムの混合
物を付与した後、その上にサイアロンセラミックスの成
形体を重ね、その後焼成することを特徴とするセラミッ
クヒータの製造方法を提案するものである。
SUMMARY OF THE INVENTION In order to solve these problems, the present invention proposes a ceramic heater having a ceramic heating element containing 10 wt % or more of zirconium nitride inside Sialon ceramics. Furthermore, a ceramic heater is provided in which a mixture of aluminum nitride and zirconium oxide, which becomes a heating element after firing, is applied to a molded body of Sialon ceramics, and then a molded body of Sialon ceramics is layered on top of the mixture, and then fired. This paper proposes a manufacturing method.

【0006】[0006]

【作用】この構成によれば、発熱体がセラミックスであ
るため、母体のセラミックスとの焼結時の収縮率に大き
な差がなく、また熱膨張係数が近いため、繰り返し動作
させても断線を起こしにくいものとなる。また、窒化ジ
ルコニウムを含む発熱体を耐酸化性の強いサイアロンセ
ラミックス中に存在させることにより、耐酸化性が向上
することとなる。さらに、本発明の製造方法によれば、
窒化アルミニウムと酸化ジルコニウムの反応によってな
される発熱体の形成が母体のサイアロンセラミックスの
焼結と同時になされるため、発熱体と母体のサイアロン
セラミックスとの結合が堅固となり、耐久性の高いセラ
ミックヒータを得ることができることとなる。
[Operation] According to this configuration, since the heating element is made of ceramics, there is no large difference in shrinkage rate during sintering with the ceramic matrix, and the thermal expansion coefficients are similar, so even if the heating element is operated repeatedly, it will not break. It becomes difficult. Further, by providing a heating element containing zirconium nitride in sialon ceramics having strong oxidation resistance, oxidation resistance is improved. Furthermore, according to the manufacturing method of the present invention,
Since the heating element is formed by the reaction between aluminum nitride and zirconium oxide and is simultaneously sintered with the sialon ceramic matrix, the bond between the heating element and the sialon ceramic matrix becomes strong, resulting in a highly durable ceramic heater. This means that you can do it.

【0007】[0007]

【実施例】以下、本発明の一実施例について説明する。 まず、β−サイアロン(Si4Al2O2N6)粉末に
酸化イットリウム粉末を5wt%添加した混合物に結合
剤としてポリビニルブチラール、可塑剤としてジブチル
フタレート、溶媒としてイソプロピルアルコールを加え
、ボールミルでよく混練した。こうして得られたスラリ
ーをドクターブレート法で厚み0.2mmに成形した。 次いでこの成形体を所定枚数積層した後、裁断し、10
×50×2mmの成形体を得た。この成形体上に、窒化
アルミニウムと酸化ジルコニウムをモル比で3:1に混
合した混合粉に、結合剤としてポリビニルブチラール、
可塑剤としてジブチルフタレート、溶媒としてイソプロ
ピルアルコールを加え、ボールミルでよく混練しペース
ト状としたものを所定の発熱体の形状となるように印刷
した。このペーストが乾燥した後、前者と同様に作製し
たβ−サイアロンの形成体を重ね積層した。これを窒素
雰囲気中で2000℃、2時間の焼成を行い、焼結させ
た。
[Embodiment] An embodiment of the present invention will be described below. First, polyvinyl butyral as a binder, dibutyl phthalate as a plasticizer, and isopropyl alcohol as a solvent were added to a mixture of β-Sialon (Si4Al2O2N6) powder and yttrium oxide powder added in an amount of 5 wt%, and the mixture was thoroughly kneaded in a ball mill. The slurry thus obtained was molded to a thickness of 0.2 mm using a doctor plate method. Next, after laminating a predetermined number of sheets of this molded body, it is cut into 10
A molded body of x50 x 2 mm was obtained. On this molded body, a mixed powder of aluminum nitride and zirconium oxide in a molar ratio of 3:1 was added, and polyvinyl butyral was added as a binder.
Dibutyl phthalate was added as a plasticizer and isopropyl alcohol was added as a solvent, and the mixture was thoroughly kneaded in a ball mill to form a paste, which was then printed in the shape of a predetermined heating element. After this paste was dried, a β-sialon formed body produced in the same manner as the former was stacked. This was sintered at 2000° C. for 2 hours in a nitrogen atmosphere.

【0008】このようにして得られた焼結体の構造は図
1に示す通り、β−サイアロンセラミックス1の母体と
発熱体2で構成されていた。上記発熱体2、すなわち焼
成前に窒化アルミニウムと酸化ジルコニウムの混合物で
あった部分は、X線回折分析の効果、窒化ジルコニウム
とアルミニウムの酸窒化物の複合焼結体となっていた。 そして、上記のようにして得られた焼結体の両端部に蒸
着により0.1μmTi−1.0μmMn−1.0μm
Cuの電極を形成し、環元雰囲気中800℃でアニール
した後、1μmのNiメッキを施し電極3を形成した。
The structure of the sintered body thus obtained was composed of a matrix of β-sialon ceramics 1 and a heating element 2, as shown in FIG. The heating element 2, that is, the portion that was a mixture of aluminum nitride and zirconium oxide before firing, was found to be a composite sintered body of zirconium nitride and aluminum oxynitride according to the effect of X-ray diffraction analysis. Then, 0.1μmTi-1.0μmMn-1.0μm was deposited on both ends of the sintered body obtained as described above.
A Cu electrode was formed, annealed at 800° C. in a ring atmosphere, and then 1 μm Ni plating was applied to form the electrode 3.

【0009】このヒータを12Vの直流電源に接続して
通電したところ、図2に示すような昇温カーブを示した
。図2に示すように本発明のヒータによれば、熱伝導性
の良いβ−サイアロンセラミックスを母体に使用してい
るため、900℃まで約3秒前後での急速加熱が可能で
あり、またヒータ温度が1100℃で一定になっており
、ヒータ温度の電流制御が可能なことを示している。
When this heater was connected to a 12V DC power source and energized, it showed a temperature rise curve as shown in FIG. As shown in Fig. 2, the heater of the present invention uses β-sialon ceramics with good thermal conductivity as the base material, so it can rapidly heat up to 900°C in about 3 seconds. The temperature is constant at 1100° C., indicating that current control of the heater temperature is possible.

【0010】また、このヒータを空気中で連続通電した
場合のヒータ中央部での温度変化を図3に示した。図3
によれば、通電開始より1000時間を経てもほとんど
劣化していないことがわかる。さらに、通常窒化ジルコ
ニウムは酸化された場合、酸化ジルコニウムとなり、こ
の時に約27%の体積膨張を伴うため、ヒータの破壊が
起こるが、本発明では図3に示すようにヒータの劣化な
どは認められず、発熱体中の窒化ジルコニウムは完全に
保護されていた。
FIG. 3 shows the temperature change at the center of the heater when the heater is continuously energized in air. Figure 3
According to the above, it can be seen that there is almost no deterioration even after 1000 hours have passed since the start of energization. Furthermore, when zirconium nitride is oxidized, it becomes zirconium oxide, which causes a volume expansion of about 27%, which causes destruction of the heater, but in the present invention, as shown in Figure 3, no deterioration of the heater is observed. First, the zirconium nitride in the heating element was completely protected.

【0011】次に、下記の(表1)に従来のセラミック
ヒータとの比較を示す。ここでの測定結果は、試料数1
0個で見た。
Next, Table 1 below shows a comparison with a conventional ceramic heater. The measurement results here are for the number of samples: 1
I saw it with 0 pieces.

【0012】0012

【表1】[Table 1]

【0013】上記(表1)中での試料No.1は、発熱
体にタングステンを用いた以外は本発明と同じ構成とし
た従来例であり、また試料No.4は後述するように比
較例である。また、(表1)中の曲げ強度はスパン30
mmの3点曲げ法で測定した。さらに、1000サイク
ル後の良品数は通電10分、非通電10分を1サイクル
として、1000サイクル後の良品数の割合を示したも
のである。この(表1)からわかるように、従来のタン
グステンを発熱体に用いたものでは、発熱体と母体のβ
−サイアロンセラミックスとの結合性が悪いために曲げ
強度が弱く、本発明のもの(試料No.2,3)では発
熱体と母体のβ−サイアロンセラミックスとの結合性が
良いため、強い曲げ強度を示している。
Sample No. in the above (Table 1). Sample No. 1 is a conventional example having the same structure as the present invention except that tungsten was used for the heating element. 4 is a comparative example as described later. In addition, the bending strength in (Table 1) is span 30
It was measured by the three-point bending method. Furthermore, the number of non-defective products after 1000 cycles is the ratio of the number of non-defective products after 1000 cycles, where one cycle is 10 minutes of energization and 10 minutes of no current. As can be seen from this (Table 1), in conventional tungsten heating elements, the β
- The bending strength is low due to poor bonding with the SiAlON ceramics, whereas the products of the present invention (Samples No. 2 and 3) have high bending strength because the bonding between the heating element and the base β-SiAlON ceramics is good. It shows.

【0014】また、従来のタングステンを発熱体に用い
たものでは、発熱体と母体のβ−サイアロンセラミック
スとの熱膨張係数が著しく異なるため、1000サイク
ルの寿命試験後には不良品(断線)が発生するが、本発
明のものでは両者の熱膨張係数に差がないために不良品
(断線)は発生せず、耐久性にすぐれていることがわか
る。さらに、(表1)よりわかるように発熱体中の窒化
ジルコニウム(ZrN)の量が10wt%より少なくな
ると、試料No.4に示すように発熱体の導電性が失わ
れる。これは発熱体中の導電物質が窒化ジルコニウムの
みであるためである。また、窒化アルミニウムと酸化ジ
ルコニウムはモル比で3:1で反応するため、窒化アル
ミニウムと酸化ジルコニウムをモル比で3:1に配合し
た場合に発熱体中の窒化ジルコニウムの量が最も多くな
る。
[0014] In addition, in conventional products using tungsten for the heating element, the coefficient of thermal expansion between the heating element and the matrix β-SiAlON ceramics is significantly different, resulting in defective products (broken wires) after 1000 cycles of life test. However, in the case of the present invention, since there is no difference in the coefficient of thermal expansion between the two, no defective products (broken wires) occur, and it can be seen that the product has excellent durability. Furthermore, as can be seen from Table 1, when the amount of zirconium nitride (ZrN) in the heating element becomes less than 10 wt%, Sample No. 4, the conductivity of the heating element is lost. This is because the only conductive material in the heating element is zirconium nitride. Further, since aluminum nitride and zirconium oxide react at a molar ratio of 3:1, when aluminum nitride and zirconium oxide are blended at a molar ratio of 3:1, the amount of zirconium nitride in the heating element is maximized.

【0015】なお、上記実施例ではサイアロンセラミッ
クスとして、β−サイアロンに酸化イットリウムを5w
t%添加したものを用いたが、これは他の組成のサイア
ロンを用いたり、他の焼結助剤を添加したり、また加え
ないものを用いても本発明の有効性に変わりがないこと
は言うまでもない。
In the above example, 5w of yttrium oxide was added to β-sialon as the sialon ceramic.
Although sialon with t% added was used, the effectiveness of the present invention remains unchanged even if Sialon of other composition, with or without addition of other sintering aids is used. Needless to say.

【0016】また、窒化ジルコニウムを10wt%以上
含むセラミックスとしては、上記実施例で示した窒化ア
ルミニウム以外に、窒化ケイ素などのセラミックスを用
いても良いものである。そして、セラミックスに含まれ
る窒化ジルコニウムの上限としては、焼結性を考慮して
その量が決定され、窒化アルミニウムの場合は50wt
%程度となる。なお、窒化アルミニウムと酸化ジルコニ
ウムの混合物は、窒化アルミニウムの含まれる量によっ
て、焼成後に窒化ジルコニウムとアルミニウムの酸化物
または酸窒化物となる。
Furthermore, as the ceramic containing 10 wt % or more of zirconium nitride, other than the aluminum nitride shown in the above embodiment, a ceramic such as silicon nitride may be used. The upper limit of zirconium nitride contained in ceramics is determined by considering sinterability, and in the case of aluminum nitride, it is 50wt.
It will be about %. Note that the mixture of aluminum nitride and zirconium oxide becomes an oxide or oxynitride of zirconium nitride and aluminum after firing, depending on the amount of aluminum nitride contained.

【0017】[0017]

【発明の効果】以上のように本発明によれば、サイアロ
ンセラミックスの内部に窒化ジルコニウムを10重量%
以上含むセラミックスの発熱体を有する構成にすること
により、発熱体がセラミックスであるため、母体のサイ
アロンセラミックスと発熱体との間に焼結時の収縮率の
差が小さいため、発熱体と母体のサイアロンセラミック
スとの結合性が良く、強度が強いものとなる。また、発
熱体と母体のサイアロンセラミックスの熱膨張係数の差
が小さいため、動作を繰り返しても断線は起こさず、耐
久性が著しく向上することになる。さらに、耐酸化性の
弱い窒化ジルコニウムを含む発熱体を耐酸化性の強いサ
イアロンセラミックス中に存在させることにより、発熱
体が保護され、耐酸化性の強いセラミックヒータが得ら
れることとなる。一方、サイアロンセラミックスの成形
体の上に窒化アルミニウムと酸化ジルコニウムの混合物
を付与した後、その上にサイアロンセラミックスの成形
体を重ね、その後焼結させることにより、発熱体の形成
が焼成時に窒化アルミニウムと酸化ジルコニウムの反応
によって窒化ジルコニウムとアルミニウムの酸化物また
は酸窒化物が生成することによってなされるため、難焼
結性の窒化ジルコニウムを含むセラミックスを容易に得
ることができ、母体のサイアロンセラミックスとの結合
も堅固となるため、耐久性が著しく向上するものとなる
As described above, according to the present invention, 10% by weight of zirconium nitride is contained inside Sialon ceramics.
Since the heating element is made of ceramic, the difference in shrinkage rate during sintering between the sialon ceramic base and the heating element is small. It has good bonding properties with Sialon ceramics and has strong strength. In addition, since the difference in thermal expansion coefficient between the heating element and the base Sialon ceramic is small, the wire does not break even after repeated operations, resulting in significantly improved durability. Furthermore, by making the heating element containing zirconium nitride, which has weak oxidation resistance, exist in the sialon ceramic, which has strong oxidation resistance, the heating element is protected, and a ceramic heater with strong oxidation resistance can be obtained. On the other hand, by applying a mixture of aluminum nitride and zirconium oxide onto a molded body of Sialon ceramics, stacking the molded body of Sialon ceramics on top of it, and then sintering it, the formation of the heating element is prevented from forming with aluminum nitride during firing. This is done by generating an oxide or oxynitride of zirconium nitride and aluminum through the reaction of zirconium oxide, so ceramics containing zirconium nitride, which is difficult to sinter, can be easily obtained, and bonding with the base sialon ceramics is possible. It also becomes more solid, resulting in significantly improved durability.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例によるセラミックヒータの断
面図
FIG. 1 is a sectional view of a ceramic heater according to an embodiment of the present invention.

【図2】本発明のセラミックヒータによる通電特性を示
す図
[Fig. 2] A diagram showing the current conduction characteristics of the ceramic heater of the present invention.

【図3】本発明のセラミックヒータによる連続通電特性
を示す図
[Fig. 3] Diagram showing continuous energization characteristics of the ceramic heater of the present invention

【符号の説明】[Explanation of symbols]

1  β−サイアロンセラミックス 2  発熱体 3  電極 1 β-sialon ceramics 2 Heating element 3 Electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】サイアロンセラミックスの内部に室化ジル
コニウムを10wt%以上含むセラミックスの発熱体を
有するセラミックヒータ。
1. A ceramic heater comprising a ceramic heating element containing 10 wt % or more of zirconium chloride inside a sialon ceramic.
【請求項2】サイアロンセラミックスの成形体の上に焼
成後に発熱体となる酸化ジルコニウムと室化アルミニウ
ムの混合物を付与した後、その上にサイアロンセラミッ
クスの成形体を重ね、その後焼成することを特徴とする
セラミックヒータの製造方法。
2. A mixture of zirconium oxide and aluminum chamber oxide, which will become a heating element after firing, is applied to the molded body of Sialon ceramics, and then the molded body of Sialon ceramics is placed on top of the mixture, and then fired. A method of manufacturing a ceramic heater.
JP40897690A 1990-12-28 1990-12-28 Ceramic heater and its manufacture Pending JPH04233187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40897690A JPH04233187A (en) 1990-12-28 1990-12-28 Ceramic heater and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40897690A JPH04233187A (en) 1990-12-28 1990-12-28 Ceramic heater and its manufacture

Publications (1)

Publication Number Publication Date
JPH04233187A true JPH04233187A (en) 1992-08-21

Family

ID=18518366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40897690A Pending JPH04233187A (en) 1990-12-28 1990-12-28 Ceramic heater and its manufacture

Country Status (1)

Country Link
JP (1) JPH04233187A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140132A (en) * 1992-10-28 1994-05-20 Shin Etsu Chem Co Ltd Layered ceramic heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140132A (en) * 1992-10-28 1994-05-20 Shin Etsu Chem Co Ltd Layered ceramic heater

Similar Documents

Publication Publication Date Title
JP4080002B2 (en) Sensor element and manufacturing method thereof
JPH09137945A (en) Ceramic heater, ceramic glow plug and manufacture thereof
JP2012049330A (en) Thermistor element
US7282669B2 (en) Ceramic heater and method for manufacturing the same
JPH082962A (en) Sintering ceramics for highly stable thermistor and its preparation
JPH0445953B2 (en)
JPH04233187A (en) Ceramic heater and its manufacture
JPH04329289A (en) Ceramic heater
JPH1025162A (en) Ceramic sintered material
JP3716045B2 (en) Ceramic heater
JPH04233186A (en) Ceramic heater and its manufacture
JP2632347B2 (en) Ceramic heater
JPH07122456A (en) Manufacture of multilayered ceramic capacitor
JP2534847B2 (en) Ceramic Heater
JPH06183860A (en) Multifunctional material
JP3874581B2 (en) Ceramic heater and glow plug using the same
JPH04329290A (en) Ceramic heater and its manufacture
JPH08255678A (en) Quick temperature rise heating element and its manufacture
JPS6259858B2 (en)
JP3425097B2 (en) Resistance element
JP4474517B2 (en) Manufacturing method of oxide thermoelectric generator
JP3366546B2 (en) Ceramic heater
JPH07106055A (en) Quick temperature raising heating element and manufacture thereof
JPH09157001A (en) Composite ceramic, separator containing the ceramic and solid-electrolyte fuel cell using the separator
JPH0547508A (en) Laminated semiconductor porcelain and manufacture thereof