JPH0423290Y2 - - Google Patents

Info

Publication number
JPH0423290Y2
JPH0423290Y2 JP15063886U JP15063886U JPH0423290Y2 JP H0423290 Y2 JPH0423290 Y2 JP H0423290Y2 JP 15063886 U JP15063886 U JP 15063886U JP 15063886 U JP15063886 U JP 15063886U JP H0423290 Y2 JPH0423290 Y2 JP H0423290Y2
Authority
JP
Japan
Prior art keywords
wall
groove
magnet device
utility
model registration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15063886U
Other languages
Japanese (ja)
Other versions
JPS6357704U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15063886U priority Critical patent/JPH0423290Y2/ja
Publication of JPS6357704U publication Critical patent/JPS6357704U/ja
Application granted granted Critical
Publication of JPH0423290Y2 publication Critical patent/JPH0423290Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【考案の詳細な説明】 この考案は磁石装置に関し、特に、低温槽に収
容された電磁石巻線を有する超伝導磁石装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a magnet device, and more particularly to a superconducting magnet device having an electromagnetic winding housed in a cryostat.

従来、0.5テスラ以上の強い強度の磁界を発生
する電磁石においては、低温槽の液体ヘリウム容
器内に配置したアルミニウム巻型上に電磁石巻線
を取り付けていた。液体ヘリウム容器は普通、放
射熱シールドと、液体窒素容器と、外側真空ジヤ
ケツトとで囲み、磁石への熱流をできるだけ小さ
くしている。
Conventionally, in an electromagnet that generates a strong magnetic field of 0.5 Tesla or more, the electromagnet winding was attached to an aluminum former placed in a liquid helium container of a cryostat. The liquid helium container is usually surrounded by a radiant heat shield, a liquid nitrogen container, and an outer vacuum jacket to minimize heat flow to the magnet.

しかし、このようなものは、その構成材が比較
的高価であるという欠点を有する。
However, such have the disadvantage that the materials of their construction are relatively expensive.

この考案の磁石装置は、円筒状内壁と、円筒状
外壁と、これら内外壁を相互接続する両端壁とで
形成された少なくとも1個の液体冷媒容器を有
し、外壁に対向する内壁内面に少なくとも1個の
電気コイル設置溝を設け、この溝を、硬化樹脂で
結合した繊維材に形成し、溝内に電磁石巻線を配
設する。
The magnet device of this invention has at least one liquid refrigerant container formed of a cylindrical inner wall, a cylindrical outer wall, and both end walls interconnecting these inner and outer walls, and has at least one liquid refrigerant container on the inner surface of the inner wall opposite to the outer wall. An electric coil installation groove is provided, the groove is formed in a fibrous material bonded with a cured resin, and an electromagnet winding is disposed within the groove.

この考案によれば、ガラス繊維のような繊維を
硬化樹脂で結合した材料にコイル溝を形成してい
るので、上記従来のものよりも、製造時の溝決め
がはるかに正確に行なえ、さらに、別体の巻型が
不要となり大幅なコストダウンを達成できる。
According to this invention, since the coil grooves are formed in a material made by bonding fibers such as glass fibers with a cured resin, the grooves can be determined much more accurately during manufacturing than the above-mentioned conventional method. A separate winding form is not required, and a significant cost reduction can be achieved.

その上、コイル溝の直径を従来の巻型の直径よ
り小さくできるので、電気導体の量を大幅に低減
できる。
Moreover, since the diameter of the coil groove can be made smaller than the diameter of conventional formers, the amount of electrical conductor can be significantly reduced.

また、繊維材を捲回繊維複合材とすれば、使用
時に巻線に作用する大きな力に抗することができ
る。発生磁界が強い磁石装置においては、冷却媒
体容器の内壁内面に、溝形成材と係着する少なく
とも1個の補強壁を設ける。この補強壁は、ステ
ンレス鋼のような強固な金属製のものとするとよ
い。
Furthermore, if the fiber material is a wound fiber composite material, it can withstand large forces acting on the winding wire during use. In a magnet device that generates a strong magnetic field, at least one reinforcing wall that engages with the groove forming material is provided on the inner surface of the inner wall of the cooling medium container. This reinforcing wall is preferably made of a strong metal such as stainless steel.

この考案の磁石装置を製造するには、円筒状内
壁の半径方向外側面に樹脂結合性繊維材のブロツ
クを少なくとも1個設け、この繊維材ブロツクを
硬化してブロツクを内壁に固着させ、硬化したブ
ロツクを機械加工して少なくとも1個の電気コイ
ル設置溝を形成し、この溝内に電気コイルの巻線
を配設し、内壁を円筒状外壁と両端壁とに接続し
て液体冷却媒体容器を形成する。
To manufacture the magnet device of this invention, at least one block of resin-bonded fibrous material is provided on the radially outer surface of the cylindrical inner wall, and the fibrous material block is cured to fix the block to the inner wall. The block is machined to form at least one electrical coil mounting groove, the windings of the electrical coil are disposed within the groove, and the inner wall is connected to the cylindrical outer wall and the end walls to form a liquid coolant container. Form.

上記とは別に、この考案では、円筒状内壁の半
径方向外側面に、モールド成型による少なくとも
1個の電気コイル設置溝をもつ樹脂結合性繊維材
のブロツクを少なくとも1個設け、この繊維材ブ
ロツクを硬化してブロツクを内壁に固着させ、溝
内に電気コイルの巻線を配設し、内壁を円筒状外
壁と両端壁とに接続して液体媒体容器を形成する
ことによつて磁石装置を製造する。
Apart from the above, in this invention, at least one block of resin-bonded fibrous material having at least one electric coil installation groove formed by molding is provided on the radially outer surface of the cylindrical inner wall, and the fibrous material block is A magnetic device is manufactured by hardening and fixing the block to the inner wall, placing the windings of the electrical coil in the groove, and connecting the inner wall to the cylindrical outer wall and the end walls to form a liquid medium container. do.

以下、実施例を用いてこの考案を詳細に説明す
る。
This invention will be explained in detail below using examples.

核磁気共鳴装置用の典型的な磁石装置は、一連
の同心状シールドと、一連の同心状液体冷媒容器
とを具備した低温槽を有する。内側容器は、円筒
状内壁と、円筒状外壁と、一対の環状端壁とによ
つて形成された液体ヘリウム容器をなしている。
第1図は液体ヘリウム容器の一部を示しており、
円筒状内壁1と円筒状外壁(図示せず)とを接続
する一対の環状端壁2は、一端のものだけが図示
されている。それぞれの壁はステンレス鋼製であ
る。
A typical magnet system for a nuclear magnetic resonance apparatus has a cryostat with a series of concentric shields and a series of concentric liquid coolant vessels. The inner container is a liquid helium container formed by a cylindrical inner wall, a cylindrical outer wall, and a pair of annular end walls.
Figure 1 shows a part of the liquid helium container.
Only one end of a pair of annular end walls 2 connecting the cylindrical inner wall 1 and the cylindrical outer wall (not shown) is shown. Each wall is made of stainless steel.

内壁1の内面3には、多数のステンレスリング
が形成されているが、そのうちの6個がリング
4,5,6,7,8,9として第1図に図示して
ある。また、部分的に示した液体ヘリウム容器
は、面10に関して対称的になつている。リング
4〜9は、例えば溶接によつて内壁1へ固着され
る。
A large number of stainless steel rings are formed on the inner surface 3 of the inner wall 1, six of which are shown in FIG. 1 as rings 4, 5, 6, 7, 8, and 9. Also, the partially shown liquid helium container is symmetrical with respect to plane 10. The rings 4-9 are fixed to the inner wall 1, for example by welding.

各ステンレスリング対4,5;6,7;8,9
においては、ガラス繊維を粗よりしたものを間隙
に充填する。このガラス繊維材に樹脂を混ぜ樹脂
硬化することによつて、内面3に固着した対のス
テンレスリング間に上記材料の固形ブロツクを形
成する。内面3を予かじめ清浄にしておけば、固
着効率が増す。しかして、固形ブロツクを機械加
工して、硬化材のU字形部14,15,16をも
つ溝11,12,13をそれぞれ形成する。精密
な機械加工を行なえるから、接近した位置に複数
の溝を形成できる。
Each stainless steel ring pair 4, 5; 6, 7; 8, 9
In this case, the gaps are filled with coarsely twisted glass fibers. By mixing resin with this glass fiber material and curing the resin, a solid block of the above material is formed between the pair of stainless steel rings fixed to the inner surface 3. If the inner surface 3 is cleaned in advance, the fixing efficiency will be increased. The solid block is then machined to form grooves 11, 12, 13 with U-shaped sections 14, 15, 16 of hardening material, respectively. Because precision machining can be performed, multiple grooves can be formed in close proximity.

第1図からわかるように、ステンレスリング4
〜9は対応のU字形部14〜16を補強する機能
を有する。
As you can see from Figure 1, stainless steel ring 4
-9 have the function of reinforcing the corresponding U-shaped parts 14-16.

上記とは別に、ガラス繊維複合材をそれぞれの
リング対4,5;6,7;8,9に配設モールド
して溝を形成してもよい。複合材は、先の例同様
に硬化させて第1図と同様な溝を形成する。
Alternatively, the grooves may be formed by molding a glass fiber composite material into the respective ring pairs 4, 5; 6, 7; 8, 9. The composite material is cured as in the previous example to form a groove similar to that shown in FIG.

ステンレスリングの数を大幅に少なくしたもの
を第2図に示す。液体ヘリウム容器の内壁1の内
面の軸方向一端部に、ガラス・エポキシ樹脂複合
材を硬化し機械加工して作つた被覆18をもつ1
個のステンレス鋼リング17を設けて一方の軸方
向外側溝19を形成する。内壁1の図示しない軸
方向他端部にも同様な軸方向外側溝を形成し、内
壁1の中央部には、ガラス・エポキシ樹脂複合材
を硬化し機械加工した部材27を設け、そこに一
対の溝20,21を形成する。磁石装置の中央部
に配置された電磁石巻線へ使用時に作用する力に
対して、ガラス・エポキシ樹脂の部材27は対抗
できるので、この部材にはステンレスリングの補
強を施こしてない。しかし、磁石の端部巻線の移
動を抑えるような補強材は必要である。
Figure 2 shows a model with a significantly reduced number of stainless steel rings. 1 having a coating 18 made by hardening and machining a glass-epoxy resin composite material on one end in the axial direction of the inner surface of the inner wall 1 of the liquid helium container;
stainless steel rings 17 are provided to form one axially outer groove 19. A similar axial outer groove is formed at the other axial end (not shown) of the inner wall 1, and a member 27 made of hardened and machined glass-epoxy resin composite material is provided at the center of the inner wall 1, and a pair of grooves 20 and 21 are formed. The glass-epoxy resin member 27 is not reinforced with a stainless steel ring because it can resist the forces that act during use on the electromagnet winding located in the center of the magnet device. However, reinforcement is required to prevent movement of the end windings of the magnet.

大型の装置に対しては、複合材被覆溝に替えて
樹脂注入モールド繊維材のものを使用すれば、さ
らに価格を低減できる。
For larger devices, the cost can be further reduced by replacing the composite coated grooves with resin-injected molded fibers.

第3図は、捲回繊維複合材25,26を機械加
工したものを内壁1へ固着し、そこにコイル用溝
22,23,24を形成したものを示す。このよ
うなものでも、ステンレスリング補強を不要化で
きる。ガラスを55%体積含む捲回繊維チユーブを
捲回繊維材とした場合、その機械的特性は、
UTSが1100MPa、圧縮強さが400MPa、Etが
55GPa、密度が2.0g/cm3とするとよい。
FIG. 3 shows a machined wound fiber composite material 25, 26 which is fixed to the inner wall 1 and coil grooves 22, 23, 24 formed therein. Even with such a structure, reinforcement of the stainless steel ring can be made unnecessary. When a wound fiber tube containing 55% glass by volume is used as a wound fiber material, its mechanical properties are as follows:
UTS is 1100MPa, compressive strength is 400MPa, Et is
It is preferable to set the pressure to 55 GPa and the density to 2.0 g/cm 3 .

補強材を必要とするか否かは、発生磁界の強さ
および冷却媒体容器内の液体冷却媒体の体積に応
じて決まる。第3図は例えば1テスラまでの磁界
のものに使用され、第2図は例えば1テスラ以上
の磁界強度のものに使用される。
The need for reinforcement depends on the strength of the generated magnetic field and the volume of liquid coolant in the coolant container. FIG. 3 is used, for example, for magnetic fields up to 1 Tesla, and FIG. 2 is used, for example, for magnetic field strengths of 1 Tesla or more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は、この考案の異なる実施例を
示す要部断面図である。 1……円筒状内壁、2……端壁、3……内壁内
面、11,12,13,19,20,21,2
2,23,24……溝、14,15,16,1
8,25,26,27……繊維材。
1 to 3 are sectional views of main parts showing different embodiments of this invention. 1... Cylindrical inner wall, 2... End wall, 3... Inner wall inner surface, 11, 12, 13, 19, 20, 21, 2
2, 23, 24...groove, 14, 15, 16, 1
8, 25, 26, 27... fiber material.

Claims (1)

【実用新案登録請求の範囲】 1 円筒状内壁と、円筒状外壁と、これら内外壁
を相互接続する両端壁とで形成された少なくと
も1個の液体冷媒容器を有し、外壁に対向する
内壁内面に少なくとも1個の電気コイル設置溝
を設け、この溝を、硬化樹脂で結合した繊維材
に形成し、溝内に電磁石巻線を配設したことを
特徴とする磁石装置。 2 実用新案登録請求の範囲第1項において、繊
維材が捲回繊維複合材であることを特徴とする
磁石装置。 3 実用新案登録請求の範囲第1項において、繊
維材がガラス・エポキシ樹脂被覆であることを
特徴とする磁石装置。 4 実用新案登録請求の範囲第1項乃至第3項の
いずれかにおいて、冷却媒体容器の内壁内面
に、溝形成材と係着する少なくとも1個の補強
壁を設けたことを特徴とする磁石装置。 5 実用新案登録請求の範囲第4項において、補
強壁は液体冷却媒体容器の内壁と一体形成され
ていることを特徴とする磁石装置。 6 実用新案登録請求の範囲第1項乃至第5項の
いずれかにおいて、硬化樹脂繊維材を機械加工
して溝を形成したことを特徴とする磁石装置。
[Claims for Utility Model Registration] 1. At least one liquid refrigerant container formed of a cylindrical inner wall, a cylindrical outer wall, and both end walls interconnecting these inner and outer walls, and an inner wall inner surface facing the outer wall. 1. A magnet device, characterized in that the groove is provided with at least one electric coil installation groove, the groove is formed in a fibrous material bonded with a cured resin, and an electromagnetic winding is disposed within the groove. 2. The magnet device according to claim 1 of the utility model registration claim, characterized in that the fiber material is a wound fiber composite material. 3. The magnet device according to claim 1 of the utility model registration, characterized in that the fiber material is coated with glass and epoxy resin. 4. The magnet device according to any one of claims 1 to 3 of the claims for utility model registration, characterized in that at least one reinforcing wall that engages with the groove forming material is provided on the inner surface of the cooling medium container. . 5. The magnet device according to claim 4 of the utility model registration, characterized in that the reinforcing wall is integrally formed with the inner wall of the liquid cooling medium container. 6. A magnet device according to any one of claims 1 to 5 as a utility model, characterized in that the grooves are formed by machining a cured resin fiber material.
JP15063886U 1986-09-30 1986-09-30 Expired JPH0423290Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15063886U JPH0423290Y2 (en) 1986-09-30 1986-09-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15063886U JPH0423290Y2 (en) 1986-09-30 1986-09-30

Publications (2)

Publication Number Publication Date
JPS6357704U JPS6357704U (en) 1988-04-18
JPH0423290Y2 true JPH0423290Y2 (en) 1992-05-29

Family

ID=31066957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15063886U Expired JPH0423290Y2 (en) 1986-09-30 1986-09-30

Country Status (1)

Country Link
JP (1) JPH0423290Y2 (en)

Also Published As

Publication number Publication date
JPS6357704U (en) 1988-04-18

Similar Documents

Publication Publication Date Title
US5325080A (en) Superconducting coil apparatus and method of manufacturing the same
US5014032A (en) Cylindrical permanent magnet with longitudinal induced field
US5481191A (en) Shielded gradient coil for nuclear magnetic resonance imaging
US4644313A (en) Cylindrical magnet apparatus
EP0118807A2 (en) Superconducting magnet having a support structure for ring-shaped superconductive coils
US20120149580A1 (en) Method of Manufacturing a Solenoidal Magnet, and a Solenoidal Magnet Structure
EP0309577B1 (en) A method of making an integrally shielded mr magnet
US5045826A (en) Actively shielded magnetic resonance magnet without cryogens
US5179338A (en) Refrigerated superconducting MR magnet with integrated gradient coils
EP0782006A1 (en) Simplified active shield superconducting magnet assembly for magnetic resonance imaging
GB2432260A (en) A resin-impregnated superconducting magnet coil and its method of manufacture which comprises a cooling layer and a filler layer.
JP4208099B2 (en) Superconducting electromagnet and MRI apparatus having the same
JP3806177B2 (en) Improvement of MRI magnet
CA2017476A1 (en) Expoxy-impregnated superconductive tape coils
US5225782A (en) Eddy current free MRI magnet with integrated gradient coils
JPH0423290Y2 (en)
US6275129B1 (en) Shim assembly for a magnet and method for making
US5426845A (en) Method of making a gradient coil assembly
JP3104268B2 (en) Superconducting magnet application equipment
US7013553B2 (en) Superconducting magnet coil support structure
US6883226B2 (en) Near net shape coil support structure
JPS5871606A (en) Super-conductive magnet
JP2695065B2 (en) Composite superconducting magnet
US20020196114A1 (en) Superconducting magnet support structure
JPS6390875A (en) Manufacture of permanent current switch