JPH042320B2 - - Google Patents

Info

Publication number
JPH042320B2
JPH042320B2 JP57151264A JP15126482A JPH042320B2 JP H042320 B2 JPH042320 B2 JP H042320B2 JP 57151264 A JP57151264 A JP 57151264A JP 15126482 A JP15126482 A JP 15126482A JP H042320 B2 JPH042320 B2 JP H042320B2
Authority
JP
Japan
Prior art keywords
sludge
water content
organic sludge
dehydrating agent
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57151264A
Other languages
Japanese (ja)
Other versions
JPS5939400A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57151264A priority Critical patent/JPS5939400A/en
Publication of JPS5939400A publication Critical patent/JPS5939400A/en
Publication of JPH042320B2 publication Critical patent/JPH042320B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリN−ビニルアセトアミドを部分加
水分解して得られる重合体からなる有機汚泥の脱
水剤に関するものである。更に詳しくはポリN−
ビニルアセトアミドを部分加水分解して得られる
部分的にポリビニルアミン構造を有する高分子量
のポリカチオンからなる有機汚泥の含水率を著し
く低減する効果を有する有機汚泥の脱水剤に関す
るものである。 近年都市下水、屎尿処理及び工場排水などの活
性汚泥による処理が広く行われているが発生する
有機汚泥は含水率が高いので廃棄、焼却、及び肥
料化するために効率良く脱水することが必要であ
る。従来、ジメチルアミノエチル(メタ)アクリ
レートの中和塩や4級塩の重合体、ポリアクリル
アミドのマンニツヒ反応物などを用いて有機汚泥
を凝集したのち高速遠心機等を用いて脱水する方
法が一般的であるがこの場合、処理速度は速いが
有機汚泥の含水率を充分に下げることができなか
つた。一方有機汚泥の含水率を下げる目的のため
にプレス型の脱水機が有利であるが高速遠心機に
用いられる上述の凝集剤を脱水剤として用いると
含水率の高い巨大な凝集フロツクを形成するため
含水率が充分に低下しない上にプレス脱水時に汚
泥がはみだしたり、布からの汚泥の剥離性が悪
くなり円滑に脱水することができなくなる傾向が
ある。プレス脱水機は一般に有機汚泥の重力過
工程、加圧プレス工程、及び汚泥の布からの剥
離工程を経る。脱水剤として添加される凝集剤は
重力過の水性が良く、加圧プレス時の水速
度が速く含水率を低下し、布からの剥離が良い
ことが望まれるが従来これらのいずれも満足する
凝集剤は得られていない。 本発明者らは有機汚泥の含水率を著しく低減で
きる脱水剤について鋭意検討した結果ポリN−ビ
ニルアセトアミドを部分加水分解して得られるポ
リビニルアミン構造を有する高分子量の重合体が
有機汚泥の脱水率を著しく低減する効果を有する
ことを見い出し本発明に到達した。 すなわち本発明の要旨は下記一般式〔〕およ
び〔〕で表わされる構造単位からなり、 (ここでX は陰イオンを表わす) 構造単位〔〕:〔〕のモル比が、85:15〜
45:55の範囲であり、1規定食塩水中0.1g/dl
の溶液として25℃で測定した還元粘度が2dl/g
以上である水溶性重合体からなる有機汚泥の脱水
剤に存する。 以下、更に詳しく本発明を説明するに、本発明
の有機汚泥の脱水剤はN−ビニルアセトアミドの
重合体を部分加水分解して得られる一般式() (ここでX は陰イオンを表わす) 及び一般式〔〕 で示される構造単位を85:15〜45:55のモル比の
範囲で含有する水溶性の重合体である。一般式
〔〕の構造単位がこれより少ないと凝集力と有
機汚泥の含水率を下げる効果が低下し、これより
大きいと有機汚泥に対する凝集力が低下し、汚泥
の種類によつては全く凝集しない。X はハロゲ
ンイオン、硝酸イオン、カルボン酸イオン、スル
ホン酸イオンなどを表わすが、塩素イオン、酢酸
イオンが好ましい。 本発明の脱水剤は1規定の食塩水中0.1g/dl
の濃度に溶解し25℃で測定した還元粘度が2dl/
g以上のものが用いられる。好ましくは還元粘度
3dl/g以上である。還元粘度は高い程脱水性能
が高いが還元粘度が10dl/gを越えると汚泥との
混合がしにくくなる。本発明の有機汚泥の脱水剤
は0.1〜5重量%の水溶液として有機汚泥に添加
される。脱水剤の使用量は有機汚泥スラリーに対
し、10〜5000ppm好ましくは50〜500ppmの範囲
である。本発明の有機汚泥の脱水剤の製造方法は
その方法に制約されないが、次の方法が好まし
い。N−ビニルカルボン酸アミドの20〜60重量%
の水溶液をPH6〜10の範囲でラジカル重合開始剤
により実質的に酸素の存在しない条件下40〜80℃
の温度で重合して得られる高分子量の水溶性重合
体を加水分解することにより部分加水分解ポリN
−ビニルアセトアミドが得られる。ラジカル重合
開始剤は通常の水溶性ビニルモノマーの重合に用
いられる一般的な開始剤を用いることができるが
高分子量のポリマーを収率良く得るためには水溶
性のアゾ化合物が好ましい。好ましいラジカル重
合開始剤としては、2,2′−アゾビス−2−アミ
ジノプロパンの塩酸塩や酢酸塩;4,4′−アゾビ
ス−4シアノ吉草酸のナトリウム塩;アゾビス−
N,N′−ジメチレンイソブチルアミジンの塩酸
塩、硫酸塩及び酢酸塩などであり、通常単量体に
対し100〜10000ppmの重量の範囲で用いるのが良
い。加水分解反応は塩基性、酸性のいずれでも良
いが、酸性加水分解が好ましい。好ましい加水分
解方法は重合体の5〜10%の水溶液に塩酸などの
鉱酸を原料の単量体に対して0.4〜10倍モル好ま
しくは1〜5倍モル添加して60〜100℃に加熱す
ることにより達せられる。加水分解率は酸の使用
量、温度、反応時間により適宜調節することがで
きる。 かくして本発明の有機汚泥の脱水剤は有機汚泥
に添加することにより例えばジメチルアミノエチ
ルメタクリレートの4級化物のホモポリマーなど
のカチオン凝集剤と同様の方法で使用される。本
発明の有機汚泥の脱水剤の添加により強固な凝集
フロツクを形成し脱水過や遠心分離を施こすこ
とにより著しく汚泥の含水率を低下することがで
きる。またその効果はプレス脱水処理において特
に優れている。プレス脱水機の重力過工程にお
いて水性が良く、加圧プレス工程において加圧
過速度が速く含水率が著しく低下し、布との
剥離が極めて良い。 脱水処理の対象となる有機汚泥としては下水処
理における初沈生汚泥、活性汚泥処理における余
剰汚泥及びこれらの混合物、屎尿の活性汚泥処理
における余剰汚泥、消化汚泥、各種の有機物含有
排水の活性汚泥処理により発生する余剰汚泥など
が挙げられる。 本発明の有機汚泥の脱水剤により脱水された有
機汚泥は粘着性が少なく含水率が低いので取扱い
やすく、また焼却したり肥料化する際の燃料や費
用を著しく低減できる。 以下実施例により本発明を具体的に説明するが
本発明はその要旨を越えないかぎり実施例に制約
されるものではない。 重合体の製造例 N−ビニルアセトアミド10gを10gの脱塩水に
溶解し、撹拌機、窒素導入管及び冷却管を備えた
50mgの4ツ口フラスコに導入した。窒素ガス気流
下撹拌しつつ60℃に界温したのち10%2,2′−ア
ゾビス2−アミジノプロパンの塩酸塩を0.3g添
加し、60℃で8時間重合した。生成物は重合率
99.6%、還元粘度6.4dl/gであつた。 生成物4.8g(純分2.4g)を135mgの水に溶解
したのち62mlの濃塩酸を氷冷下添加した。第1表
に示した時間、加熱還流したのち成成物をイソプ
ロパノールで脱水後真空乾燥して部分加水分解ポ
リN−ビニルアセトアミドを得た重合体A〜Hの
組成を第1表に示した。 還元粘度は0.1g/dlの重合体の1規定食塩水
溶液を用いてオストワルドの粘度計(t0=30.24
秒)を用いて25℃で測定した値(t秒)より求め
た。 還元粘度 ηsp/C =(t−t0/t0)/0.1(dl/g) 加水分解率は1/400規定のポリビニル硫酸カリ
ウム水溶液によりPH3の条件下トルイジンブルー
を指示薬として用いたコロイド滴定値より求めた
カチオン基当量より算出した。
The present invention relates to an organic sludge dehydrating agent comprising a polymer obtained by partially hydrolyzing poly-N-vinylacetamide. For more details, please refer to PolyN-
The present invention relates to a dehydrating agent for organic sludge that has the effect of significantly reducing the water content of organic sludge made of a high molecular weight polycation partially having a polyvinylamine structure obtained by partially hydrolyzing vinyl acetamide. In recent years, treatment of urban sewage, human waste, and industrial wastewater with activated sludge has become widespread, but the organic sludge generated has a high moisture content, so it is necessary to efficiently dewater it in order to dispose of it, incinerate it, or make it into fertilizer. be. Conventionally, the common method is to flocculate organic sludge using neutralized salts of dimethylaminoethyl (meth)acrylate, polymers of quaternary salts, Mannitz reaction products of polyacrylamide, etc., and then dewatering using a high-speed centrifuge, etc. However, in this case, although the treatment speed was fast, the water content of the organic sludge could not be lowered sufficiently. On the other hand, press-type dehydrators are advantageous for the purpose of lowering the water content of organic sludge, but if the above-mentioned flocculants used in high-speed centrifuges are used as the dehydrating agent, huge flocs with high water content will be formed. In addition to not reducing the water content sufficiently, sludge tends to protrude during press dehydration, and the ability to remove sludge from cloth deteriorates, making it impossible to dewater smoothly. Press dehydrators generally undergo a gravity passing process of organic sludge, a pressure pressing process, and a process of peeling the sludge from the cloth. It is desirable for the flocculant added as a dehydrating agent to have good aqueous properties under gravity, to reduce the water content quickly during pressure pressing, and to be able to be easily peeled off from the fabric. No drug was obtained. The present inventors conducted intensive studies on dehydrating agents that can significantly reduce the water content of organic sludge. As a result, a high molecular weight polymer having a polyvinylamine structure obtained by partially hydrolyzing polyN-vinylacetamide has a high dehydration rate of organic sludge. The inventors have discovered that the present invention has the effect of significantly reducing the That is, the gist of the present invention consists of structural units represented by the following general formulas [] and [], (Here, X represents an anion) The molar ratio of structural units []:[] is 85:15~
45:55 range, 0.1g/dl in 1 normal saline
The reduced viscosity measured as a solution at 25℃ is 2 dl/g.
The present invention relates to an organic sludge dehydrating agent comprising the above water-soluble polymer. Hereinafter, to explain the present invention in more detail, the organic sludge dehydrating agent of the present invention has the general formula () obtained by partially hydrolyzing a polymer of N-vinylacetamide. (Here, X represents an anion) and general formula [] It is a water-soluble polymer containing structural units represented by the formula in a molar ratio of 85:15 to 45:55. If the structural unit of the general formula [] is less than this, the cohesive force and the effect of lowering the water content of organic sludge will be reduced, and if it is larger than this, the cohesive force for organic sludge will be reduced, and depending on the type of sludge, it may not coagulate at all. . X represents a halogen ion, a nitrate ion, a carboxylate ion, a sulfonate ion, etc., and preferably a chloride ion or an acetate ion. The dehydrating agent of the present invention is 0.1 g/dl in 1 normal saline solution.
The reduced viscosity measured at 25℃ is 2 dl/
g or more is used. Preferably, the reduced viscosity is 3 dl/g or more. The higher the reduced viscosity, the higher the dewatering performance, but if the reduced viscosity exceeds 10 dl/g, it becomes difficult to mix with sludge. The organic sludge dehydrating agent of the present invention is added to organic sludge as a 0.1 to 5% by weight aqueous solution. The amount of the dehydrating agent used is in the range of 10 to 5000 ppm, preferably 50 to 500 ppm, based on the organic sludge slurry. Although the method for producing the organic sludge dehydrating agent of the present invention is not limited to that method, the following method is preferred. 20-60% by weight of N-vinylcarboxylic acid amide
An aqueous solution with a pH of 6 to 10 was heated at 40 to 80°C under substantially oxygen-free conditions using a radical polymerization initiator.
Partially hydrolyzed polyN is produced by hydrolyzing a high molecular weight water-soluble polymer obtained by polymerization at a temperature of
-vinylacetamide is obtained. As the radical polymerization initiator, a general initiator used for the polymerization of ordinary water-soluble vinyl monomers can be used, but in order to obtain a high molecular weight polymer in a good yield, a water-soluble azo compound is preferable. Preferred radical polymerization initiators include hydrochloride and acetate of 2,2'-azobis-2-amidinopropane; sodium salt of 4,4'-azobis-4cyanovaleric acid;
These include hydrochloride, sulfate and acetate of N,N'-dimethyleneisobutyramidine, and are usually used in a weight range of 100 to 10,000 ppm based on the monomer. The hydrolysis reaction may be either basic or acidic, but acidic hydrolysis is preferred. A preferred hydrolysis method is to add a mineral acid such as hydrochloric acid to a 5 to 10% aqueous solution of the polymer by 0.4 to 10 times the mole of the raw material monomer, preferably 1 to 5 times the mole, and heat the mixture to 60 to 100°C. This can be achieved by doing. The hydrolysis rate can be appropriately adjusted by adjusting the amount of acid used, temperature, and reaction time. Thus, the organic sludge dewatering agent of the present invention is used in the same manner as a cationic flocculant, such as a homopolymer of a quaternized dimethylaminoethyl methacrylate, by adding it to an organic sludge. By adding the dehydrating agent for organic sludge of the present invention, a strong coagulated floc is formed, and by performing dehydration or centrifugation, the water content of the sludge can be significantly reduced. Moreover, the effect is particularly excellent in press dehydration treatment. It has good aqueous properties in the gravity process of the press dehydrator, has a fast pressure overspeed in the pressure press process, significantly reduces the water content, and has excellent peelability from fabrics. Organic sludge that can be subjected to dewatering treatment includes primary sedimentation sludge in sewage treatment, surplus sludge in activated sludge treatment, and mixtures thereof, surplus sludge in activated sludge treatment of human waste, digested sludge, and activated sludge treatment of various organic matter-containing wastewater. Examples include surplus sludge generated by Organic sludge dehydrated using the organic sludge dehydrating agent of the present invention has less stickiness and a lower water content, so it is easier to handle and can significantly reduce fuel and costs when incinerated or turned into fertilizer. The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to the Examples unless the gist thereof is exceeded. Polymer production example: 10 g of N-vinylacetamide was dissolved in 10 g of demineralized water, and equipped with a stirrer, a nitrogen introduction tube, and a cooling tube.
It was introduced into a 50 mg four-necked flask. After bringing the temperature to 60°C with stirring under a nitrogen gas stream, 0.3 g of 10% 2,2'-azobis2-amidinopropane hydrochloride was added and polymerized at 60°C for 8 hours. The product is the polymerization rate
99.6%, and the reduced viscosity was 6.4 dl/g. After dissolving 4.8 g of the product (2.4 g pure) in 135 mg of water, 62 ml of concentrated hydrochloric acid was added under ice cooling. Table 1 shows the compositions of polymers A to H, which were heated under reflux for the time shown in Table 1, dehydrated with isopropanol, and dried under vacuum to obtain partially hydrolyzed poly-N-vinylacetamide. The reduced viscosity was measured using an Ostwald viscometer (t 0 = 30.24
It was determined from the value (t seconds) measured at 25°C using t seconds). Reduced viscosity ηsp/C = (t-t 0 /t 0 )/0.1 (dl/g) The hydrolysis rate is the colloid titration value using toluidine blue as an indicator under PH3 conditions with a 1/400 normal polyvinyl potassium sulfate aqueous solution. It was calculated from the cationic group equivalent determined from

【表】 実施例1〜5および比較例1〜8 汚泥200mlを500mlのビーカーに入れ次いで第1
表に示すポリカチオンの0.25%水溶液を所定量添
加した。先端に直径5mm長さ20mmの丸棒を3本付
した撹拌棒を用いて1000r.p.m.で10秒間撹拌し
た。 凝集汚泥を重力過により60メツシユのナイロ
ン布で過し、液量が100mlに達する過時
間を第1表に示した。重力過後の汚泥を30cm角
のポリエステル製モノフイラメント布(日本フ
イルコン製OLh−C)2枚にはさみ更にこれを水
ぬけの溝を有するポリ塩化ビニル板にはさみピス
トン径20mmの油圧プレスにてピストン圧50Kg/cm2
の加圧条件を保ちつつ30秒間プレス脱水した。脱
水汚泥の重量と120℃で3時間乾燥後の汚泥固型
分の重量から脱水汚泥の含水比を求め第2表に示
した。 含水比=脱水汚泥中の含有水分の重量 /汚泥固型分の重量 添加量は汚泥スラリーの容量に対する重量で示
した。 また重合体C、DおよびIについて、汚泥を重
力過した際の重合体添加量と液量100mlに達
する過時間の関係、汚泥をプレス脱水した際の
重合体添加量と脱水汚泥の含水比の関係を、それ
ぞれ、第1図および第2図に示した。
[Table] Examples 1 to 5 and Comparative Examples 1 to 8 200 ml of sludge was placed in a 500 ml beaker, and then
A predetermined amount of a 0.25% aqueous solution of the polycation shown in the table was added. Stirring was carried out at 1000 rpm for 10 seconds using a stirring rod with three round rods each having a diameter of 5 mm and a length of 20 mm attached to the tip. The flocculated sludge was passed through a 60 mesh nylon cloth by gravity, and Table 1 shows the elapsed time until the liquid volume reached 100ml. The sludge after passing under gravity was sandwiched between two 30 cm square pieces of polyester monofilament cloth (OLh-C manufactured by Nippon Filcon), which was then sandwiched between polyvinyl chloride plates with grooves for drainage, and subjected to piston pressure using a hydraulic press with a piston diameter of 20 mm. 50Kg/ cm2
Press dehydration was performed for 30 seconds while maintaining the pressurized conditions. The water content ratio of the dehydrated sludge was determined from the weight of the dehydrated sludge and the weight of the solid content of the sludge after drying at 120°C for 3 hours, and is shown in Table 2. Water content ratio = weight of water content in dehydrated sludge / weight of solid sludge The amount added was expressed as the weight relative to the volume of the sludge slurry. Regarding Polymers C, D, and I, the relationship between the amount of polymer added when sludge is passed through gravity and the elapsed time to reach a liquid volume of 100 ml, and the relationship between the amount of polymer added when sludge is press-dehydrated and the water content ratio of dehydrated sludge. The relationships are shown in Figures 1 and 2, respectively.

【表】【table】

【表】 実施例6〜9および比較例9〜11 M社活性汚泥処理設備の余剰汚泥(固型分1.51
%)100mlを200mlのビーカーに入れ次いで第2表
に示すポリカチオンの0.1%水溶液を10ml添加し
た。実施例1と同様の条件で撹拌し、過した。
直径3.5cm、深さ5cmの底面に目皿を有するアル
ミ製円筒容器に直径3.3cmの60メツシユのナイロ
ン布を入れこの上に重力過後の汚泥を入れ遠
心分離機を用いて2000r.p.m.で30秒間保持した。
脱水汚泥の重量を測定したのち120℃で3時間乾
燥しその重量から脱水汚泥の含水比を測定し第2
表に示した。
[Table] Examples 6 to 9 and Comparative Examples 9 to 11 Excess sludge from activated sludge treatment equipment of Company M (solid content 1.51
%) was placed in a 200 ml beaker, and then 10 ml of a 0.1% aqueous solution of the polycation shown in Table 2 was added. The mixture was stirred and filtered under the same conditions as in Example 1.
A 60-mesh nylon cloth with a diameter of 3.3 cm was placed in an aluminum cylindrical container with a diameter of 3.5 cm and a depth of 5 cm with a perforated plate on the bottom, and the sludge after gravity was placed on top of it. held for seconds.
After measuring the weight of the dehydrated sludge, it was dried at 120℃ for 3 hours, and the water content ratio of the dehydrated sludge was measured from the weight.
Shown in the table.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は重合体C、D及びIを用いて実施例1
の方法により汚泥を重力過した際の重合体添加
量と液量100mlに達する過時間の関係を示す
グラフである。第2図は重合体C、D及びIを用
いて実施例1の方法により汚泥をプレス脱水した
際の重合体添加量と脱水汚泥の含水比の関係を示
すグラフである。
Figure 1 shows Example 1 using polymers C, D and I.
2 is a graph showing the relationship between the amount of polymer added and the elapsed time to reach a liquid volume of 100 ml when sludge is gravity-filtered using the method described above. FIG. 2 is a graph showing the relationship between the amount of polymer added and the water content ratio of dehydrated sludge when sludge was press-dehydrated by the method of Example 1 using Polymers C, D, and I.

Claims (1)

【特許請求の範囲】 1 下記一般式〔〕および〔〕で表わされる
構造単位からなり、 (ここでX は陰イオンを表わす) 構造単位〔〕:〔〕のモル比が85:15〜45:
55の範囲であり、1規定食塩水中0.1g/dlの溶
液として25℃で測定した還元粘度が2dl/g以上
である水溶性重合体からなる有機汚泥の脱水剤。
[Claims] 1 Consists of structural units represented by the following general formulas [] and [], (Here, X represents an anion) Structural unit []: [] molar ratio is 85:15-45:
A dehydrating agent for organic sludge comprising a water-soluble polymer having a reduced viscosity of 2 dl/g or more measured as a solution of 0.1 g/dl in 1N saline at 25°C.
JP57151264A 1982-08-31 1982-08-31 Dehydrating agent for organic sludge Granted JPS5939400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57151264A JPS5939400A (en) 1982-08-31 1982-08-31 Dehydrating agent for organic sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57151264A JPS5939400A (en) 1982-08-31 1982-08-31 Dehydrating agent for organic sludge

Publications (2)

Publication Number Publication Date
JPS5939400A JPS5939400A (en) 1984-03-03
JPH042320B2 true JPH042320B2 (en) 1992-01-17

Family

ID=15514857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57151264A Granted JPS5939400A (en) 1982-08-31 1982-08-31 Dehydrating agent for organic sludge

Country Status (1)

Country Link
JP (1) JPS5939400A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174700A (en) * 1984-09-20 1986-04-16 Kyoritsu Yuki Kogyo Kenkyusho:Kk Dehydrating method of organic sewage
JPH0676462B2 (en) * 1986-06-30 1994-09-28 三菱化成株式会社 Vinylamine copolymer and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823809A (en) * 1981-07-18 1983-02-12 バスフ・アクチエンゲゼルシヤフト Linear basic polymer, manufacture and use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823809A (en) * 1981-07-18 1983-02-12 バスフ・アクチエンゲゼルシヤフト Linear basic polymer, manufacture and use

Also Published As

Publication number Publication date
JPS5939400A (en) 1984-03-03

Similar Documents

Publication Publication Date Title
JPH0588846B2 (en)
JP2624089B2 (en) Cationic polymer flocculant
JPS639523B2 (en)
KR100777638B1 (en) Method of clarifying water using low molecular weight cationic dispersion polymers
JPS6310609A (en) V-vinylformamide copolymer and its production
JPH0771678B2 (en) Sludge dehydrator
JP4868127B2 (en) Organic sludge dewatering method
US3835046A (en) Dewatering of aqueous suspensions
JPH042320B2 (en)
JPH0665329A (en) Vinylamine copolymer flocculant
JP3719531B2 (en) Sludge dewatering method
JPS5939399A (en) Agent for dehydration of organic sludge
JPH08243600A (en) Polymer flocculant
JP4161559B2 (en) Composition, amphoteric polymer flocculant and method for dewatering sludge
JP2017100111A (en) Cross-linking type polymer coagulant, manufacturing method of the same and waste water treating method using the same
JP2779732B2 (en) Polymer flocculant
JP2798736B2 (en) Cationic polymer flocculant
JPH06238300A (en) Sludge dehydration
JPH07188332A (en) Hoffman-modified acrylamide polymer
JP2002249503A (en) Dispersion of amphoteric water-solble polymer
JP3722245B2 (en) Sludge dewatering method
JP2004089820A (en) Sludge treatment method
JP2004089815A (en) Sludge treatment method
JPH0429440B2 (en)
JPH08164305A (en) Amphoteric high polymer flocculant