JPH0423172B2 - - Google Patents

Info

Publication number
JPH0423172B2
JPH0423172B2 JP63025327A JP2532788A JPH0423172B2 JP H0423172 B2 JPH0423172 B2 JP H0423172B2 JP 63025327 A JP63025327 A JP 63025327A JP 2532788 A JP2532788 A JP 2532788A JP H0423172 B2 JPH0423172 B2 JP H0423172B2
Authority
JP
Japan
Prior art keywords
heat
tank
cooling
heating
cooling tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63025327A
Other languages
Japanese (ja)
Other versions
JPH01200135A (en
Inventor
Takashi Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63025327A priority Critical patent/JPH01200135A/en
Publication of JPH01200135A publication Critical patent/JPH01200135A/en
Publication of JPH0423172B2 publication Critical patent/JPH0423172B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は、貯熱槽、より詳細には、貯熱槽と外
部との熱伝導を小さくするとともに、冷却槽と加
熱槽の熱伝導及び対流を小さくして効率のよい貯
熱を行い得るようにした貯熱槽を提供することを
目的としてなされたものである。
Detailed Description of the Invention Technical Field The present invention is directed to a heat storage tank, more specifically, to reduce heat conduction between the heat storage tank and the outside, and to reduce heat conduction and convection between a cooling tank and a heating tank. The purpose of this invention is to provide a heat storage tank that can store heat efficiently.

従来技術 第2図は、従来の貯熱槽の一例を説明するため
の構成図で、図中、1は貯熱槽、HPはヒートポ
ンプ、2は該ヒートポンプHPの吸熱側、3は放
熱側、4は冷水取り出し口器、5は温水取り出し
口器、P1,P2はポンプ、6,7は熱交換器、8
は使用済冷水戻し口器、9は使用済温水戻し口器
で、周知のように、貯熱槽1内の熱媒体である液
体Wは、ヒートポンプHPによつて上部が温水
に、下部が冷水にされており、冷却水使用時は、
ポンプP1を駆動して貯熱槽1の下部に蓄えられ
ている冷却水を冷却水取り出し口器4より取り出
し、熱交換器6を通してその冷熱を取り出して利
用し、例えば、部屋の冷房を行い、該熱交換器6
によつて冷熱を奪われて温度が上つた熱媒体は使
用済冷水戻し口器8より貯熱槽1内に戻されて再
使用される。また、温水使用時は、ポンプP2
駆動し、貯熱槽1内の温水を温水取り出し口5よ
り取り出し、該温水を熱交換器7を通して該熱交
換器7にてその熱を取り出して利用し、例えば、
部屋の暖房を行い、該熱交換器7によつて熱が奪
われて温度が下つた熱媒体は使用済温水戻し口器
9より貯熱槽1内に戻される。而して、上記従来
の貯熱槽1は、単一の貯熱槽にて構成され、この
単一の貯熱槽内に加温された熱媒体と冷却された
熱媒体とが一緒に入つているため、これらの間で
の熱伝導が大きく熱媒体の蓄熱効率が悪かつた。
また、使用済み冷却水及び温水を貯熱槽の略中央
に戻すようにしてできるだけ熱効率を上げるよう
にしているが、使用量が多いと、戻し口から放出
される使用済熱媒体によつて貯熱槽1内の熱媒体
が撹拌され対流をおこしてしまい、そのため、熱
効率が悪く、また、熱効率を良くするためには熱
媒体の撹拌が生じない程度に熱交換器での使用量
を少なくしなければならない等の問題点があつ
た。
Prior Art FIG. 2 is a configuration diagram for explaining an example of a conventional heat storage tank, in which 1 is a heat storage tank, HP is a heat pump, 2 is a heat absorption side of the heat pump HP, 3 is a heat radiation side, 4 is a cold water outlet device, 5 is a hot water outlet device, P 1 and P 2 are pumps, 6 and 7 are heat exchangers, 8
9 is a used cold water return port, and 9 is a used hot water return port. As is well known, the liquid W, which is a heat medium in the heat storage tank 1, is converted into hot water at the top and cold water at the bottom by the heat pump HP. When using cooling water,
The pump P1 is driven to take out the cooling water stored in the lower part of the heat storage tank 1 from the cooling water outlet device 4, and the cold heat is taken out through the heat exchanger 6 and used to cool a room, for example. , the heat exchanger 6
The heat medium whose temperature has increased due to removal of cold energy is returned to the heat storage tank 1 through the used cold water return port 8 and is reused. When using hot water, the pump P 2 is driven to take out the hot water in the heat storage tank 1 from the hot water outlet 5, and the hot water is passed through the heat exchanger 7, where the heat is taken out and used. For example,
The room is heated, and the heat medium whose temperature has been lowered by the heat removed by the heat exchanger 7 is returned to the heat storage tank 1 through the used hot water return port 9. The conventional heat storage tank 1 described above is composed of a single heat storage tank, and a heated heat medium and a cooled heat medium are contained together in this single heat storage tank. Because of this, the heat conduction between them was large and the heat storage efficiency of the heat medium was poor.
In addition, the used cooling water and hot water are returned to the approximate center of the heat storage tank to increase thermal efficiency as much as possible, but if the amount used is large, the spent heat medium discharged from the return port is The heat medium in the heat tank 1 is stirred and causes convection, resulting in poor thermal efficiency.In order to improve thermal efficiency, the amount used in the heat exchanger must be reduced to the extent that no stirring of the heat medium occurs. There were some problems, such as having to do it.

目 的 本発明は、上述のごとき実情に鑑みてなされた
もので、特に、貯熱効率の高い貯熱槽を提供する
ことを目的としてなされたものである。
Purpose The present invention has been made in view of the above-mentioned circumstances, and in particular, has been made for the purpose of providing a heat storage tank with high heat storage efficiency.

構 成 第1図は、本発明による貯熱槽の一実施例を説
明するための構成図で、図中、は冷却媒体槽、
は加熱媒体槽、はこれら冷却媒体槽と加熱
媒体槽とを連通する連通路で、該連通路の断面
積はできるだけ小さく設計されており、冷却槽
と加熱槽との間の対流及び熱伝導をできるだけ
小さくするようにしている。また、これら冷却槽
及び加熱槽は地下に埋設されており、これに
より、外部との熱交換をできるだけ小さくして熱
効率の向上を図つている。10は冷却槽内に配
設された熱交換器、20は加熱槽内に配設され
た熱交換器で、これら熱交換器10及び20はそ
れぞれ上下方向に移動可能に配設されている。3
1は冷房時に使用して好適な第1のヒートポンプ
で、該ヒートポンプ31の吸熱部31aは冷却槽
の下部に配設され、放熱部31bは加熱槽の
下部に配設されており、これにより、冷却部31
aによつて冷却された冷却槽内の熱媒体は該冷
却槽の下部に蓄えられ、加熱槽内の熱媒体は
放熱部31bによつて加温されて該加熱槽の上
部に蓄えられる。32は暖房時に使用して好適な
第2のヒートポンプで、32aは該第2のヒート
ポンプの吸熱部、32bは放熱部で、該第2のヒ
ートポンプ32の吸熱部は冷却槽の上部に配設
され、また、放熱部32bは加熱槽の上部に配
設されている。なお、熱媒体液として、冷却槽
内の液体w1に不凍液を使用し、加熱槽内の液
体w2に冷却槽内の液体より比重の小さい液体
を使用すると、冷却槽内の流体を液体のままで
使用することができ効率よく使用することがで
き、また、冷却槽と加熱槽との間で液体の対流が
生じず、効率のよい貯熱を行うことができる。而
して、本発明は、ヒートポンプを夜間の電力料金
の安い時に使用して冷却槽及び加熱槽に熱エネル
ギーを蓄えておき、これを昼間利用するものであ
り、従つて、冷却槽及び加熱槽は、略1日分
の熱使用量を貯熱できる容量を持つよう設計され
ている。
Configuration FIG. 1 is a configuration diagram for explaining an embodiment of a heat storage tank according to the present invention, and in the figure, denotes a cooling medium tank,
is a heating medium tank, and is a communication path that communicates the cooling medium tank and heating medium tank, and the cross-sectional area of the communication path is designed to be as small as possible to prevent convection and heat conduction between the cooling tank and the heating tank. I try to keep it as small as possible. Furthermore, these cooling tanks and heating tanks are buried underground, thereby minimizing heat exchange with the outside to improve thermal efficiency. 10 is a heat exchanger disposed in the cooling tank, and 20 is a heat exchanger disposed in the heating tank. These heat exchangers 10 and 20 are respectively disposed so as to be movable in the vertical direction. 3
Reference numeral 1 designates a first heat pump suitable for use during cooling, and the heat absorption part 31a of the heat pump 31 is arranged at the lower part of the cooling tank, and the heat radiation part 31b is arranged at the lower part of the heating tank. Cooling section 31
The heat medium in the cooling tank cooled by a is stored in the lower part of the cooling tank, and the heat medium in the heating tank is heated by the heat radiation part 31b and stored in the upper part of the heating tank. 32 is a second heat pump suitable for use during heating; 32a is a heat absorption part of the second heat pump; 32b is a heat radiation part; the heat absorption part of the second heat pump 32 is disposed above the cooling tank; Moreover, the heat radiation part 32b is arranged at the upper part of the heating tank. In addition, if an antifreeze liquid is used as the heat transfer liquid for liquid w1 in the cooling tank, and a liquid with a specific gravity smaller than that of the liquid in the cooling tank is used for liquid w2 in the heating tank, the fluid in the cooling tank will be It can be used as is and can be used efficiently, and no liquid convection occurs between the cooling tank and the heating tank, allowing efficient heat storage. Therefore, the present invention uses a heat pump at night when electricity rates are low to store thermal energy in a cooling tank and a heating tank, and uses this during the day. is designed to have a capacity to store approximately one day's worth of heat usage.

最初に、本発明による貯熱槽を夏場において冷
房用に使用する場合について説明すると、この場
合には、ヒートポンプ31は夜間の電力料金の安
い時に駆動するが、この時、冷却槽内の温度は
昼間の冷房使用により比較的高くなつており、下
部の温度も高くなつているので、ヒートポンプ3
1を効率よく運転することができる。なお、この
場合、放熱部31bは加熱槽の下部の比較的温
度の低い箇所に配設されているので、ヒートポン
プ31を効率よく運転することができる。また、
冬場、暖房装置として使用する時は、夜間の電力
料金の安い時にヒートポンプ32を作動するが、
その際、加熱槽内の温度は下つており、また、
この際、吸熱部32aは、冷却槽の上部の比較
的温度の高い上方の箇所に配設されているので、
ヒートポンプ32を効率よく運転することができ
る。
First, we will explain the case where the heat storage tank according to the present invention is used for air conditioning in the summer. In this case, the heat pump 31 is operated at night when the electricity price is low, but at this time, the temperature inside the cooling tank is The temperature is relatively high due to the use of air conditioning during the day, and the temperature at the bottom is also high, so heat pump 3
1 can be operated efficiently. In this case, the heat pump 31 can be operated efficiently because the heat radiating section 31b is disposed at a relatively low temperature location in the lower part of the heating tank. Also,
In the winter, when using the heat pump 32 as a heating device, the heat pump 32 is operated at night when the electricity price is low.
At that time, the temperature inside the heating tank has decreased, and
At this time, since the heat absorbing part 32a is disposed at an upper part of the cooling tank where the temperature is relatively high,
The heat pump 32 can be operated efficiently.

上述のごとくして、夏場は、冷却槽内の冷熱
を熱交換器10を通して取り出し、熱交換器41
により室内の冷房等に使用し、冬場は、加熱槽
内の温熱を熱交換器20を通して取り出し、熱交
換器42により室内に暖房等に使用するが、これ
ら冷却槽及び加熱槽の熱容量は、略一日分の
使用量に相当する容量を持つており、ヒートポン
プ31,32は、これらの熱を夜間の低電力料金
の間に蓄積できるようになつている。而して、冷
却槽内の温度は朝方一番冷却されており、ま
た、加熱槽内の温度は朝方一番加熱されてお
り、従つて、朝方は、熱交換器10を上方の比較
的温度の高い上方の位置に位置させても、或い
は、熱交換器20を比較的温度の低い下方に位置
させても、これら熱交換器は効率よく運転するこ
とができる。例えば、冷却槽内において、熱交
換器10を該冷却槽の最下部に位置させると、
該熱交換器10を通して効果的に取り出すことが
できるように思われるが、実際には、朝方は、そ
れ程強力な冷房を必要とするものではなく、却つ
て、取り出した熱を途中の配管等で失つてしま
い、あまり効果的でなく、また、冷却槽内にお
いて、最下部が温められることとなり、従つて、
冷却槽内で対流が生じ、効率のよい運転を行う
ことができない。而して、本発明においては、上
述のごとき点を考慮して、これら熱交換器10,
20を上下方向に移動可能にしており、例えば、
熱交換器10は、朝方は、冷却槽内の略中央の
位置にあり、冷却槽内の温度が上るにつれて下
方に移動させ、理想的には、夜間低電力料金に切
り換える頃、最下位の位置にくるように設計され
ている。このようにすれば、対流は熱交換器10
の上方でしか生じないので、最初から最下位の位
置に配設しておく場合に比して対流を少なくして
冷却槽内の冷熱を効果的に利用することができ
る。また、熱交換器10の温度を外気温に合わせ
て最適の位置にすることができ、従つて、配管途
中での熱ロスを最小にすることができる。同様に
なことは、熱交換器20についても言うことがで
き、この場合には、熱交換器20の下方でしか対
流が生じないので、加熱槽内での対流を少なく
し、かつ、熱交換器20の位置を外気温に合わせ
て最適な位置にして、配管途中での熱ロスを最小
にすることができる。
As described above, in summer, the cold heat in the cooling tank is taken out through the heat exchanger 10 and transferred to the heat exchanger 41.
In the winter, the heat in the heating tank is taken out through the heat exchanger 20 and used for heating the room by the heat exchanger 42, but the heat capacity of these cooling tanks and heating tanks is approximately The heat pumps 31 and 32 have a capacity equivalent to one day's usage, and are designed to store this heat during low electricity rates at night. Therefore, the temperature in the cooling tank is the lowest in the morning, and the temperature in the heating tank is highest in the morning. These heat exchangers can be operated efficiently even if the heat exchanger 20 is located at a high upper position, or even if the heat exchanger 20 is located at a lower position where the temperature is relatively low. For example, if the heat exchanger 10 is located at the bottom of the cooling tank,
It seems that the heat can be effectively extracted through the heat exchanger 10, but in reality, in the morning, there is no need for such strong cooling, and on the contrary, the extracted heat is extracted through pipes, etc. on the way. It is not very effective, and the bottom part is heated in the cooling tank, so
Convection occurs within the cooling tank, making efficient operation impossible. Therefore, in the present invention, in consideration of the above points, these heat exchangers 10,
20 is movable in the vertical direction, for example,
The heat exchanger 10 is located at approximately the center of the cooling tank in the morning, and is moved downward as the temperature inside the cooling tank rises. It is designed to come in handy. In this way, the convection will be transferred to the heat exchanger 10.
Since this occurs only above the cooling tank, compared to the case where it is placed at the lowest position from the beginning, convection can be reduced and the cold energy in the cooling tank can be used effectively. Further, the temperature of the heat exchanger 10 can be set at an optimum position according to the outside air temperature, and therefore, heat loss in the middle of the piping can be minimized. The same can be said about the heat exchanger 20. In this case, since convection occurs only below the heat exchanger 20, convection within the heating tank can be reduced and the heat exchange By optimizing the position of the vessel 20 according to the outside temperature, heat loss along the way of the piping can be minimized.

効 果 以上の説明から明らかなように、本発明による
と、冷却槽と加熱槽を熱遮断効果の大きい地下に
埋設して設置したので、外部との熱交換が少な
く、効率のよい貯熱槽を提供することができる。
また、冷却槽を下にし、加熱槽を該冷却槽の上に
設置するようにしたので、両者間の熱伝導を小さ
くすることができ、また、これら冷却槽と加熱槽
との間を断面積の小さい連通路を通して連通させ
るようにしたので、冷却槽内の熱媒体液と加熱槽
内の熱媒体との間での熱伝導が少なく、また、こ
れらの間での対流による熱伝導も少なく、効率の
よい貯熱槽を提供することができる。更には、第
1のヒートポンプの吸熱部を冷却槽の下部に設
け、放熱部を加熱部の下部に設けるようにしたの
で、冷却時における該ヒートポンプの効率を最大
にし、低い部分と一番高い部分を最大に離すこと
ができ、更に、第2のヒートポンプの放熱部を加
熱槽の上部に吸熱部を冷却槽の上部に設けるよう
にしたので、加熱時において該ヒートポンプの効
率を最大にすることができる貯熱効率の高い貯熱
槽を提供し得るようにしている。更には、冷却槽
内の熱交換器及び加熱槽内の熱交換器をそれぞれ
外部温度との関係で一番効率のよい位置にして使
用し得るようにしているので、最も効率のよい熱
交換を行うことができる。
Effects As is clear from the above explanation, according to the present invention, the cooling tank and the heating tank are installed underground, which has a large heat-blocking effect, so there is less heat exchange with the outside, and the heat storage tank is highly efficient. can be provided.
In addition, since the cooling tank is placed at the bottom and the heating tank is installed above the cooling tank, the heat conduction between the two can be reduced, and the cross-sectional area between the cooling tank and the heating tank can be reduced. Since communication is made through a small communication path, there is little heat conduction between the heat medium liquid in the cooling tank and the heat medium in the heating tank, and there is also little heat conduction between them due to convection. An efficient heat storage tank can be provided. Furthermore, the heat absorption part of the first heat pump is provided at the bottom of the cooling tank, and the heat radiation part is provided at the bottom of the heating part, so that the efficiency of the heat pump during cooling is maximized, and the lowest and highest parts are Moreover, since the heat radiating part of the second heat pump is provided in the upper part of the heating tank and the heat absorbing part is provided in the upper part of the cooling tank, the efficiency of the heat pump can be maximized during heating. This makes it possible to provide a heat storage tank with high heat storage efficiency. Furthermore, the heat exchanger in the cooling tank and the heat exchanger in the heating tank can be used at the most efficient position in relation to the outside temperature, so the most efficient heat exchange can be achieved. It can be carried out.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による貯熱槽の一実施例を説
明するための構成図、第2図は、従来の貯熱槽の
一例を説明するための構成図である。 ……冷却槽、……加熱槽、……連通路、
10,20……熱交換器、31,32……ヒート
ポンプ、31a,32a……吸熱部、31b,3
2b……放熱部、41,42……熱交換器。
FIG. 1 is a block diagram for explaining an embodiment of a heat storage tank according to the present invention, and FIG. 2 is a block diagram for explaining an example of a conventional heat storage tank. ...Cooling tank, ...Heating tank, ...Communication path,
10, 20... Heat exchanger, 31, 32... Heat pump, 31a, 32a... Endothermic part, 31b, 3
2b... Heat radiation section, 41, 42... Heat exchanger.

Claims (1)

【特許請求の範囲】 1 地下に埋設された冷却槽と、地下において前
記冷却槽の上部に埋設された加熱槽と、前記冷却
槽上部と加熱槽の下部とを連通する断面積の小さ
い流路と、吸熱側が前記冷却槽に配され、放熱側
が前記加熱槽側に配設されたヒートポンプと、前
記冷却槽内に配設された第1の熱交換器と、前記
加熱槽内に配設された第2の熱交換器とを有し、
前記第1の熱交換器を通して前記冷却槽の低い温
度を外部に取り出して利用し、前記第2の熱交換
器を通して前記加熱槽の高い温度を取り出して利
用するようにしたことを特徴とする貯熱槽。 2 前記第1の熱交換器が前記冷却槽内において
上下方向に移動可能に配設され、前記第2の熱交
換器が前記加熱槽内において上下方向に移動可能
に配設されていることを特徴とする請求項1に記
載の貯熱槽。 3 ヒートポンプを2台有し、第1のヒートポン
プは吸熱部が前記冷却槽の下部に配設され、放熱
部が前記加熱槽の下部に配設されており、第2の
ヒートポンプは吸熱部が前記冷却槽の上部に配設
され、放熱部が前記加熱槽の上部に配設されてい
ることを特徴とする請求項1又は2項に記載の貯
熱槽。
[Scope of Claims] 1. A cooling tank buried underground, a heating tank buried above the cooling tank underground, and a flow path with a small cross-sectional area that communicates the upper part of the cooling tank and the lower part of the heating tank. a heat pump whose heat absorption side is disposed in the cooling tank and whose heat radiation side is disposed in the heating tank; a first heat exchanger disposed in the cooling tank; and a heat pump disposed in the heating tank. a second heat exchanger,
A storage device characterized in that the low temperature of the cooling tank is taken out and used outside through the first heat exchanger, and the high temperature of the heating tank is taken out and used through the second heat exchanger. Heat bath. 2. The first heat exchanger is arranged to be movable in the vertical direction in the cooling tank, and the second heat exchanger is arranged to be movable in the vertical direction in the heating tank. The heat storage tank according to claim 1. 3. It has two heat pumps, the first heat pump has a heat absorption part arranged at the bottom of the cooling tank, and the heat radiation part is arranged at the bottom of the heating tank, and the second heat pump has a heat absorption part arranged at the bottom of the heating tank. The heat storage tank according to claim 1 or 2, wherein the heat storage tank is arranged at an upper part of the cooling tank, and a heat radiation section is arranged at the upper part of the heating tank.
JP63025327A 1988-02-04 1988-02-04 Heat accumulation tank Granted JPH01200135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63025327A JPH01200135A (en) 1988-02-04 1988-02-04 Heat accumulation tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63025327A JPH01200135A (en) 1988-02-04 1988-02-04 Heat accumulation tank

Publications (2)

Publication Number Publication Date
JPH01200135A JPH01200135A (en) 1989-08-11
JPH0423172B2 true JPH0423172B2 (en) 1992-04-21

Family

ID=12162858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63025327A Granted JPH01200135A (en) 1988-02-04 1988-02-04 Heat accumulation tank

Country Status (1)

Country Link
JP (1) JPH01200135A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06213482A (en) * 1993-01-12 1994-08-02 Hitachi Ltd Heat accumulating device and heat supplying system
JP4657226B2 (en) * 2007-02-01 2011-03-23 トヨタ自動車株式会社 Heat storage device

Also Published As

Publication number Publication date
JPH01200135A (en) 1989-08-11

Similar Documents

Publication Publication Date Title
US4237859A (en) Thermal energy storage and utilization system
US4167965A (en) Integral water-refrigerant-air heat exchange system
JP2002221358A (en) Solar hot-water supplier
JPH0423172B2 (en)
CN106973553A (en) A kind of pressure-oil tank with liquid cooling heat-exchanger
JPS5835337A (en) Floor heating device
CN113266864B (en) Solar energy layering heat accumulation water tank and system thereof
JPH07269965A (en) Heat supply facility
JPS6218929Y2 (en)
JP2511421Y2 (en) Road snow melting equipment
JPS6218884Y2 (en)
JPS6023756A (en) Hot-water reserving tank
JPS6110131Y2 (en)
JPH0781727B2 (en) Heat storage tank
JPS644043Y2 (en)
JPS6142027Y2 (en)
JPS6030621Y2 (en) Heat storage tank for heating and cooling
JPS5849500Y2 (en) heat storage tank
JPS6141377B2 (en)
JPH0236055Y2 (en)
CN117560904A (en) Heat radiating device for high heat flux electronic equipment
JPH02623B2 (en)
JPS60175969A (en) Heat pump type solar heat water heater
GB2034457A (en) Solar heating
JPS5950028B2 (en) solar heat collector