JPH0422966A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH0422966A
JPH0422966A JP12855490A JP12855490A JPH0422966A JP H0422966 A JPH0422966 A JP H0422966A JP 12855490 A JP12855490 A JP 12855490A JP 12855490 A JP12855490 A JP 12855490A JP H0422966 A JPH0422966 A JP H0422966A
Authority
JP
Japan
Prior art keywords
undercoat layer
layer
surface roughness
conductive substrate
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12855490A
Other languages
Japanese (ja)
Inventor
Haruhiro Horiuchi
晴宏 堀内
Kenji Seki
謙二 関
Kiyoshi Masuda
潔 増田
Hirofumi Yamanami
弘文 山南
Takaaki Ikegami
孝彰 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP12855490A priority Critical patent/JPH0422966A/en
Publication of JPH0422966A publication Critical patent/JPH0422966A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a good image free from moire by specifying the relation between the maximum surface roughness and the film thickness of an undercoat layer. CONSTITUTION:The electrophotographic sensitive body is formed by successively laminating on a conductive substrate the undercoat layer containing an inorganic pigment, an electric charge generating layer, and a charge transfer layer, and the relation between the maximum surface roughness (Rmax) of the conductive substrate and the film thickness (t) of the undercoat layer is expressed by t <=5x Rmax. As the conductive substrate material, metals, such as Al, Ni, Cu, and stainless steel, and plastics containing conductive powder, such as carbon, Al, and Cu, and the like can be used. It is preferred that the undercoat layer contains the inorganic pigment, thus permitting occurrence of moire to be prevented and a good image to be obtained by specifying the relation between the maximum roughness of the conductive substrate and the film thickness of the undercoat layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子写真感光体に関し、特に電子写真プロセス
を応用したプリンタ等に用いられる電子写真感光体に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrophotographic photoreceptor, and particularly to an electrophotographic photoreceptor used in a printer or the like to which an electrophotographic process is applied.

〔従来の技術及び発明が解決しようとする課題〕従来可
干渉光(レーザー光)を光源とする電子写真方式のプリ
ンタの感光体としてはSe、 Se合金。
[Prior art and problems to be solved by the invention] Conventionally, Se and Se alloys have been used as photoreceptors for electrophotographic printers that use coherent light (laser light) as a light source.

硫化カドミウム・樹脂分散系、ポリビニルカルバゾール
とトリニトロフルオレノンとの電荷移動錯体などが用い
られ、又レーザーとしてはヘリウム−カドミウム、アル
ゴン、ヘリウム−ネオンなどのガスレーザーが用いられ
てきたが、最近小型低コストで、直接変調が可能な半導
体レーザーが用いられるようになった。しかし半導体レ
ーザーは発振波長が750nm以上のものが多く、上述
のような感光体はその波長領域で感度が低く使用が困難
であった。そのため、感光波長域を比較的自由に選択で
きる積層型有機感光体が半導体レーザー用感光体として
注目されている。
Cadmium sulfide/resin dispersion systems, charge transfer complexes of polyvinyl carbazole and trinitrofluorenone, etc. have been used, and gas lasers such as helium-cadmium, argon, and helium-neon have been used, but recently small and low-cost lasers have been used. Semiconductor lasers, which can be directly modulated, have come to be used due to their cost. However, many semiconductor lasers have an oscillation wavelength of 750 nm or more, and the photoreceptor described above has low sensitivity in that wavelength range, making it difficult to use. Therefore, laminated organic photoreceptors that can relatively freely select the photosensitive wavelength range are attracting attention as photoreceptors for semiconductor lasers.

積層型有機感光体は導電性支持体上に電荷発生層、電荷
輸送層を順次積層した構成をとるもので、電荷発生層の
下に下引き層を設けても良い。
The laminated organic photoreceptor has a structure in which a charge generation layer and a charge transport layer are sequentially laminated on a conductive support, and an undercoat layer may be provided below the charge generation layer.

電荷発生層は光を吸収して自由電荷を発生させる役割を
持ち、その厚さは発生したホトキャリアの飛程を短くす
るために0.1〜5−と薄いのが通例である。
The charge generation layer has the role of absorbing light and generating free charges, and its thickness is usually as thin as 0.1 to 5 - to shorten the range of the generated photocarriers.

電荷輸送層は自由電荷の輸送の役割を持ち、像形成光を
ほとんど吸収しないものを用いる。その厚さは通例5〜
50−である。
The charge transport layer has the role of transporting free charges, and a material that hardly absorbs image forming light is used. Its thickness is usually 5~
It is 50-.

感光体としては上記の2層構成でも機能するが。The two-layer structure described above also functions as a photoreceptor.

基板と感光層の接着性の改良、感光層の塗工性の向上、
感光体の帯電性の改善等の目的で下引き層を設けるのが
好ましい。又、下引き層には無機顔料が含まれることが
望ましい。この無機顔料としては、特に可視光近赤外光
における屈折率が1.9以上の比較的高い値を持つ白色
顔料が望ましい。
Improving the adhesion between the substrate and the photosensitive layer, improving the coating properties of the photosensitive layer,
It is preferable to provide an undercoat layer for the purpose of improving the chargeability of the photoreceptor. Further, it is desirable that the undercoat layer contains an inorganic pigment. As this inorganic pigment, a white pigment having a relatively high refractive index of 1.9 or more in visible light and near-infrared light is particularly desirable.

このような感光体を用いてレーザー光をライン走査して
画像出しを行ってみると、文字などのライン画像では問
題はないが、中間調画像ではモアレ(縞状の濃度ムラ)
が発生することがある。この原因は、前述の如く電荷発
生層が薄層で形成されているため、電荷発生層で吸収す
る光量が制限され、そのために電荷発生層を通過した光
が下引き層表面で反射されてこの反射光と感光層表面で
の反射光とが干渉を生じるためであると考えられる。
When we use such a photoreceptor to create an image by scanning a line with a laser beam, there is no problem with line images such as characters, but with halftone images, moiré (striped density unevenness) occurs.
may occur. The reason for this is that, as mentioned above, the charge generation layer is formed as a thin layer, which limits the amount of light absorbed by the charge generation layer, and as a result, the light that has passed through the charge generation layer is reflected on the surface of the undercoat layer. This is thought to be due to interference between the reflected light and the reflected light on the surface of the photosensitive layer.

このようなモアレを防止する手段として、導電性支持体
素面を荒くすることにより光を散乱させ。
As a means to prevent such moiré, light is scattered by roughening the bare surface of the conductive support.

モアレを防止する方法がある(特開昭60−25615
3号公報)。
There is a method to prevent moire (Japanese Patent Application Laid-Open No. 60-25615
Publication No. 3).

しかし、無機顔料を使用した下引き層を含む感光体にお
いては、下引き層表面における入射光の反射によるモア
レ発生が無視できないという問題があった。
However, a photoreceptor including an undercoat layer using an inorganic pigment has a problem in that moire generation due to reflection of incident light on the surface of the undercoat layer cannot be ignored.

本発明はこのような従来技術の問題点を解決し、モアレ
の出ない良好な画像を得ることが出来る電子写真感光体
を提供することを目的とする。
It is an object of the present invention to solve the problems of the prior art and to provide an electrophotographic photoreceptor capable of obtaining good images free of moiré.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決すべく、本発明者らは鋭意検討を行っ
た。無機顔料を使用した下引き層表面における入射光の
反射によるモアレ防止を行うためには下引き層表面で光
を散乱させる必要がある。
In order to solve the above problems, the present inventors conducted extensive studies. In order to prevent moire caused by reflection of incident light on the surface of an undercoat layer using an inorganic pigment, it is necessary to scatter light on the surface of the undercoat layer.

ところが、下引き層の最適な表面荒さは材料に起因する
もののみならず、導電性支持体の表面荒さと下引き層の
膜厚が深く関わっているものと考えられる。そこで、下
引き層の膜厚と導電性支持体の表面荒さを種々変化させ
て実験を行ったところ、これら膜厚と表面荒さとの間に
モアレ防止に最適な関係が存在することを見いだし、本
発明を完成するに至った。
However, it is thought that the optimum surface roughness of the undercoat layer is not only due to the material, but is also deeply related to the surface roughness of the conductive support and the thickness of the undercoat layer. Therefore, we conducted experiments by varying the thickness of the undercoat layer and the surface roughness of the conductive support, and found that there is an optimal relationship between these thicknesses and surface roughness for moire prevention. The present invention has now been completed.

すなわち、本発明によれば、導電性支持体上に無機顔料
を含有する下引き層、電荷発生層及び電荷輸送層を順次
積層してなる電子写真感光体において、前記導電性支持
体の最大表面粗さ(RIIlax)と前記下引き層の膜
厚(1)との関係が、t≦5Rmax であることを特徴とする電子写真感光体が提供される。
That is, according to the present invention, in an electrophotographic photoreceptor in which an undercoat layer containing an inorganic pigment, a charge generation layer, and a charge transport layer are sequentially laminated on a conductive support, the largest surface of the conductive support There is provided an electrophotographic photoreceptor characterized in that the relationship between roughness (RIIlax) and the thickness (1) of the undercoat layer is t≦5Rmax.

以下本発明の構成について詳述する。The configuration of the present invention will be explained in detail below.

本発明の電子写真感光体は、導電性支持体上に、下引き
層、電荷発生層、電荷輸送層の順に積層された構成をと
る。
The electrophotographic photoreceptor of the present invention has a structure in which an undercoat layer, a charge generation layer, and a charge transport layer are laminated in this order on a conductive support.

導電性支持体としては、AQ、 Ni、 Cd、ステン
レスなどの金属の他、導電性の粉末(カーボン、AQ、
Cu等)を含有したプラスチック等も使用できる。
As the conductive support, in addition to metals such as AQ, Ni, Cd, and stainless steel, conductive powders (carbon, AQ,
Plastics containing Cu, etc.) can also be used.

下引き層としては、無機顔料が含有されている事が望ま
しい。こうした無機顔料には、二酸化チタン、酸化亜鉛
、亜鉛華、鉛白、リトポン、酸化カルシウム、バリウム
、ホワイトカーボン等が例示でき、好ましくは可視光な
いしは近赤外における屈折率が1.9以上の比較的高い
屈折率を持ったものが望ましい。
It is desirable that the undercoat layer contains an inorganic pigment. Examples of such inorganic pigments include titanium dioxide, zinc oxide, zinc white, lead white, lithopone, calcium oxide, barium, white carbon, etc., and preferably have a refractive index of 1.9 or more in visible light or near infrared light. A material with a high refractive index is desirable.

又、下引き層のバインダーとしては、(1)導電性支持
体表面と接着性が良い事、(2)下引き層上に塗布され
る感光層形成液に侵されない、等の条件を満たせば何で
も使用できる。たとえば、ウレタン樹脂、エポキシ樹脂
、アルキッド樹脂、メラミン樹脂、ポリエステル樹脂、
アクリル−メラミン樹脂、ポリエステル樹脂、アクリル
−メラミン樹脂、アルキッドメラミン樹脂等の熱硬化性
樹脂。
The binder for the undercoat layer must meet the following conditions: (1) it has good adhesion to the surface of the conductive support, and (2) it is not attacked by the photosensitive layer forming liquid applied on the undercoat layer. You can use anything. For example, urethane resin, epoxy resin, alkyd resin, melamine resin, polyester resin,
Thermosetting resins such as acrylic-melamine resin, polyester resin, acrylic-melamine resin, and alkyd melamine resin.

水又はアルコール可溶性のポリビニルアルコール。Water or alcohol soluble polyvinyl alcohol.

ポリアクリル酸ソーダ、 CMC、カゼイン、ナイロン
、共重合ナイロン等があげられる。
Examples include sodium polyacrylate, CMC, casein, nylon, and copolymerized nylon.

バインダーと顔料の割合は、バインダーを1部とした場
合、無機顔料は10部以下、好ましくは0゜05〜10
部くらいが適当である。
The ratio of the binder to the pigment is 1 part of the binder and 10 parts or less of the inorganic pigment, preferably 0.05 to 10.
About 100% is appropriate.

これらの材料により下引き層を形成するには。To form an undercoat layer using these materials.

溶剤、無機顔料、バインダーを添加して、ボールミル等
でよく分散し、導電性基板上に塗布乾燥する。下引き屡
の厚さは0.3声〜20pn<らいが適当である。
A solvent, an inorganic pigment, and a binder are added, dispersed well using a ball mill, etc., and coated on a conductive substrate and dried. The appropriate thickness of the undercoat is 0.3 to 20 pn.

電荷発生層はアゾ系顔料、フタロシアニン系顔料、イン
ジゴ系顔料、ペリレン系顔料、スクエアリック顔料、セ
レン粉末、セレン合金粉末、アモルファスシリコン粉末
、酸化亜鉛粉末、硫化カドミウム粉末のごとき電荷発生
物質をポリエステル、ポリカーボネート、ポリビニルブ
チラール、アクリル樹脂などの結着樹脂溶液中に分散し
、これを下引き層上に塗工することにより形成される。
The charge-generating layer is made of polyester, charge-generating substances such as azo pigments, phthalocyanine pigments, indigo pigments, perylene pigments, square pigments, selenium powder, selenium alloy powder, amorphous silicon powder, zinc oxide powder, and cadmium sulfide powder. It is formed by dispersing in a solution of a binder resin such as polycarbonate, polyvinyl butyral, or acrylic resin, and coating this on the undercoat layer.

電荷発生層の厚さはo、oi〜2癖くらいが適当である
The appropriate thickness of the charge generation layer is about 0.000000000000000000000000000000000000000000000000000

電荷輸送層はα−フェニルスチルベン化合物(特開昭5
8−198043号公報に記載)、ヒドラゾン化合物(
特開昭55−46760号公報に記載)などの電荷輸送
性物質を成膜性のある樹脂例えばポリエステル、ポリサ
ルホン、ポリカーボネート、ポリメタクリル酸エステル
類、ポリスチレンなどに溶解させ、これを電荷発生層上
に厚さ10〜30声程度に塗工すればよい。ここで成膜
性樹脂が用いられるのは、電荷輸送性物質が一般に低分
子量でそれ自身では成膜性に乏しいためである。
The charge transport layer is an α-phenylstilbene compound (Japanese Patent Application Laid-open No.
8-198043), hydrazone compounds (
A charge transporting substance such as those described in JP-A No. 55-46760 is dissolved in a film-forming resin such as polyester, polysulfone, polycarbonate, polymethacrylic acid ester, polystyrene, etc., and this is applied onto the charge generation layer. It may be applied to a thickness of about 10 to 30 tones. The film-forming resin is used here because the charge transporting substance generally has a low molecular weight and has poor film-forming properties by itself.

単に以上のような各層を積層した積層型電子写真感光体
では、レーザー光(可干渉光)をライン走査して、プリ
ンターで中間調画像を出すと、前述したようにモアレが
発生することがある。これは下引き層表面の粗度が不足
しているものと考えられ、そこで本発明では、導電性支
持体の最大表面粗さ(Rmax)と下引き層の膜厚(1
)をt≦5Rmaxなる関係を満足させるように規定す
ることで、このようなモアレ発生の防止を可能としたも
のである。
With a laminated electrophotographic photoreceptor that simply laminates each layer as described above, when line-scanning a laser beam (coherent light) and producing a halftone image with a printer, moiré may occur as described above. . This is considered to be due to insufficient roughness of the surface of the undercoat layer, and therefore, in the present invention, the maximum surface roughness (Rmax) of the conductive support and the film thickness of the undercoat layer (1
) is defined so as to satisfy the relationship t≦5Rmax, thereby making it possible to prevent the occurrence of moiré.

〔実施例〕〔Example〕

次に実施例により本発明をさらに詳細に説明するが、本
発明はこれら実施例のみに限定されるものではない。
EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited only to these Examples.

実施例1 塗工液−1(下引き層用塗工液)の調整酸化チタンタイ
ベークA−100 (6原産業社製)           6QOgメチ
ルエチルケトン         300g以上をボー
ルミルに入れて、24時間分散した後に、メチルエチル
ケトン200gを投入してさらに5分間ボールミル分散
して得られた液を濾過し、下引き暦月の塗工液−1とし
た。
Example 1 Preparation of coating liquid-1 (coating liquid for undercoat layer) Titanium oxide tie bake A-100 (manufactured by 6 Hara Sangyo Co., Ltd.) 6QOg methyl ethyl ketone 300 g or more was placed in a ball mill and dispersed for 24 hours, followed by methyl ethyl ketone. 200 g was added and dispersed in a ball mill for an additional 5 minutes, and the resulting liquid was filtered to obtain Coating Liquid-1 for undercoating.

導電性支持体(AΩドラム)の作成 ARドラムをバイト切削で表面加工した後に表面粗さを
東京精密製サーフコム(E−ST−5o−3A)で測定
したところ最大表面粗さRmax=0.5JRであった
Preparation of conductive support (AΩ drum) After the surface of the AR drum was processed by cutting with a cutting tool, the surface roughness was measured using a Tokyo Seimitsu Surfcom (E-ST-5o-3A), and the maximum surface roughness was Rmax = 0.5 JR. Met.

上記のAQドラムからなる導電性支持体上に塗工液−1
を浸漬塗布した後、120℃で10分間乾燥して膜厚1
.5.nの下引き層を形成した。
Coating liquid-1 on the conductive support consisting of the above AQ drum.
After coating by dip coating, dry at 120℃ for 10 minutes to a film thickness of 1
.. 5. A subbing layer of n was formed.

塗工液−2(電荷発生層用塗工液)の調整ブチラール樹
脂(エスレックBL−5;積水化学社製)10gをシク
ロへキサノン300gに溶解し、これに下記構造式 で表されるトリスアゾ顔料20gを加え、ボールミルに
て48時間分散を行なった。続いて、このものにシクロ
へキサノン420gを加えて3時間分散を行った後、容
器に取り出し、固形分が1.5重量%となるように撹拌
しながらシクロヘキサノンで希釈して電荷発生層用の塗
工液−2とした。
Preparation of Coating Solution-2 (Coating Solution for Charge Generation Layer) 10 g of butyral resin (S-LEC BL-5; manufactured by Sekisui Chemical Co., Ltd.) was dissolved in 300 g of cyclohexanone, and a trisazo pigment represented by the following structural formula was added to the solution. 20 g was added and dispersed in a ball mill for 48 hours. Next, 420 g of cyclohexanone was added to this material and dispersed for 3 hours, then taken out into a container and diluted with cyclohexanone while stirring so that the solid content was 1.5% by weight. It was designated as coating liquid-2.

塗工液−3(電荷輸送層用塗工液)の調整ポリカーボネ
ート樹脂(パンライトに1300;帝人化成社ll)2
40gをテトラヒドロフラン1800gに溶解し、これ
に下記構造式 CH。
Preparation of coating liquid-3 (coating liquid for charge transport layer) Polycarbonate resin (1300 for Panlite; Teijin Chemicals Ltd. ll) 2
40g was dissolved in 1800g of tetrahydrofuran, and the following structural formula CH was dissolved therein.

で表される電荷輸送物質140gを溶解し、電荷輸送用
の塗工液−3とした。
140 g of the charge transporting substance represented by was dissolved to prepare coating liquid 3 for charge transport.

塗工液−2を下引き層上に浸漬塗布した後、120℃で
10分間乾燥して膜厚0.3趨の電荷発生層を形成し、
さらにその上に塗工液−3を浸漬塗布した後。
Coating solution 2 was applied onto the undercoat layer by dip coating, and then dried at 120° C. for 10 minutes to form a charge generation layer with a thickness of 0.3 mm.
Further, coating liquid-3 was applied thereon by dip coating.

120℃で13分間乾燥して膜厚22趨の電荷輸送層を
形成して電子写真感光体を作成した。
This was dried at 120° C. for 13 minutes to form a charge transport layer having a thickness of 22 mm, thereby producing an electrophotographic photoreceptor.

実施例2〜6 実施例1において、導電性支持体であるAQドラムの最
大表面粗さRmaxと下引き層の膜厚tを表−1に示す
如く変えた以外は同様にして電子写真感光体を作成した
Examples 2 to 6 An electrophotographic photoreceptor was prepared in the same manner as in Example 1, except that the maximum surface roughness Rmax of the AQ drum as a conductive support and the film thickness t of the undercoat layer were changed as shown in Table 1. It was created.

比較例1〜2 実施例1において、導電性支持体であるAQドラムの最
大表面粗さRmaxと下引き層の膜厚tを表−1に示す
如く変えた以外は同様にして電子写真感光体を作成した
Comparative Examples 1 to 2 An electrophotographic photoreceptor was prepared in the same manner as in Example 1, except that the maximum surface roughness Rmax of the AQ drum as a conductive support and the film thickness t of the undercoat layer were changed as shown in Table 1. It was created.

表−1 表面粗さ(pm)  下引き層膜厚(【)Rmax 実施例1  0,53       1.5JT  2
  051       2.511310     
  3.0 ff41.0       5.0 #520       5.0 #620       10.0 比較例1  0.52       3.01’210
       7.0 以上のようにして作成した各電子写真感光体を(株)リ
コー製複写機イマジオに装着して画像出しを行い、モア
レ発生の様子を調べた。その結果を表−2に示す。
Table-1 Surface roughness (pm) Undercoat layer thickness ([)Rmax Example 1 0.53 1.5JT 2
051 2.511310
3.0 ff41.0 5.0 #520 5.0 #620 10.0 Comparative example 1 0.52 3.01'210
7.0 Each of the electrophotographic photoreceptors prepared as described above was mounted on an Imageo copying machine manufactured by Ricoh Co., Ltd. to produce an image, and the occurrence of moiré was examined. The results are shown in Table-2.

表−2 モアレ 実施例10 !l  2   △ n3   0 〃  4  0 n   5    Q 〃  6   △ 比較例 1   × n2    x Oはモアレが全く発生せず美しい画像が得られたことを
示し、Δはモアレが少し発生したが許容レベルであるこ
とを示し、×はモアレの発生が許容範囲を著しくこえて
いたことを示す。
Table-2 Moiré Example 10! 1 × n2 × indicates that the occurrence of moiré significantly exceeded the allowable range.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、無機顔料を含有する下引き層を用いた
電子写真感光体において、導電性支持体の最大表面粗さ
と下引き層の膜厚との関係を特定化したことにより、モ
アレの発生が防止され、良好な画像を得ることが可能と
なる。
According to the present invention, in an electrophotographic photoreceptor using an undercoat layer containing an inorganic pigment, by specifying the relationship between the maximum surface roughness of the conductive support and the thickness of the undercoat layer, moire can be reduced. This can be prevented and good images can be obtained.

特許出願人 株式会社 リ  コPatent applicant Rico Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)導電性支持体上に無機顔料を含有する下引き層、
電荷発生層及び電荷輸送層を順次積層してなる電子写真
感光体において、前記導電性支持体の最大表面粗さ(R
max)と前記下引き層の膜厚(t)との関係が、 t≦5Rmax であることを特徴とする電子写真感光体。
(1) an undercoat layer containing an inorganic pigment on a conductive support;
In an electrophotographic photoreceptor formed by sequentially laminating a charge generation layer and a charge transport layer, the maximum surface roughness (R
max) and the film thickness (t) of the undercoat layer, t≦5Rmax.
JP12855490A 1990-05-17 1990-05-17 Electrophotographic sensitive body Pending JPH0422966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12855490A JPH0422966A (en) 1990-05-17 1990-05-17 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12855490A JPH0422966A (en) 1990-05-17 1990-05-17 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH0422966A true JPH0422966A (en) 1992-01-27

Family

ID=14987633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12855490A Pending JPH0422966A (en) 1990-05-17 1990-05-17 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH0422966A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478685A (en) * 1993-04-02 1995-12-26 Fuji Electric Co., Ltd. Photoconductor for electrophotography
US6335133B1 (en) * 1999-03-19 2002-01-01 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628064U (en) * 1979-08-08 1981-03-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628064U (en) * 1979-08-08 1981-03-16

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478685A (en) * 1993-04-02 1995-12-26 Fuji Electric Co., Ltd. Photoconductor for electrophotography
US6335133B1 (en) * 1999-03-19 2002-01-01 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Similar Documents

Publication Publication Date Title
US4904557A (en) Electrophotographic photosensitive member having a roughened surface
JPH0364062B2 (en)
US6214506B1 (en) Electrophotographic photosensitive member and process for producing the same
EP0982634B1 (en) Electro-photographic photoreceptor and image-forming apparatus using same
JPH0259981B2 (en)
EP0838729A1 (en) Electrophotographic copying method and electrophotographic copying machine used in the method
US6623899B2 (en) Electrophotographic photosensitive member, process for production thereof, process cartridge and electrophotographic apparatus
JP2000242016A (en) Electrophotographic photoreceptor and image forming method using the same
US6383699B1 (en) Photoreceptor with charge blocking layer containing quaternary ammonium salts
JP3847356B2 (en) Electrophotographic photoreceptor and image forming method
JPH0422966A (en) Electrophotographic sensitive body
JPS58100138A (en) Electrophotographic receptor
JP2506694B2 (en) Electrophotographic photoreceptor
JP4169902B2 (en) Image forming apparatus
JPH03146958A (en) Electrophotographic sensitive body
JPS61240247A (en) Electrophotographic sensitive body and its image forming method
US6544703B2 (en) Electrophotographic photoreceptor, electrophotographic process, and electrophotographic image forming method
JPS6136755A (en) Laser light photosensitive body
JPH0547101B2 (en)
JPH02207268A (en) Electrophotographic sensitive body
JPS6261057A (en) Electrophotographic sensitive body
JPH1115183A (en) Electrophotographic photoreceptor
JPS60184258A (en) Electrophotographic sensitive body
JPH0260178B2 (en)
JPH05333581A (en) Laser beam photosensitive body