JPH0422852A - In-irradiating plane distribution measuring instrument for electromagnetic wave/corpuscular beam - Google Patents

In-irradiating plane distribution measuring instrument for electromagnetic wave/corpuscular beam

Info

Publication number
JPH0422852A
JPH0422852A JP12697790A JP12697790A JPH0422852A JP H0422852 A JPH0422852 A JP H0422852A JP 12697790 A JP12697790 A JP 12697790A JP 12697790 A JP12697790 A JP 12697790A JP H0422852 A JPH0422852 A JP H0422852A
Authority
JP
Japan
Prior art keywords
distribution
electromagnetic wave
current
current measuring
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12697790A
Other languages
Japanese (ja)
Inventor
Makoto Nakamura
誠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12697790A priority Critical patent/JPH0422852A/en
Publication of JPH0422852A publication Critical patent/JPH0422852A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To directly and accurately measure two-dimensional intensity distribution by providing plural independent conductive areas on a substrate arranged at an irradiating plane, connecting each area to each current measuring instrument, and measuring in-plane distribution by the measured value of the current measuring instrument. CONSTITUTION:At a plane on which a sample is irradiated with an electromagnetic wave/corpuscular beam 1, the substrate 2 is placed instead of the sample. The plural independent conductive areas 3-1, 3-2 to 3-n are provided on the substrate 2 arranged at the irradiating plane, and the areas 3-1 to 3-n are connected to the current measuring instruments 4-1, 4-2 to 4-n. The conductive areas 3-1, 3-2 to 3-n emit secondary electrons when they are irradiated with the electromagnetic wave/corpuscular beam 1 such as x-rays. Therefore, since the current measuring instruments 4-1, 4-2 to 4-n show current values in accordance with emitted secondary electrons, it is possible to measure the distribution of the electromagnetic wave/corpuscular beam 1 on the irradiating plane in point of quantity when a current is measured at every area.

Description

【発明の詳細な説明】 〔概要〕 X線などの電磁波・粒子線の照射面内における分布を正
確に測定し、軸合ゎせを容易に行う装置に関し、 照射面内における分布を電流測定器により二次元分布を
直接・正確に測定する装置を提供することを目的とし、 電磁波・粒子線が照射される面の面内分布を測定する装
置において、 照射面に配置した基板上には、複数の各独立”した導電
性領域を設け、各領域は各々電流測定器と接続され、電
流測定器の測定値によって、面内分布を測定することて
構成する。
[Detailed Description of the Invention] [Summary] Regarding a device that accurately measures the distribution of electromagnetic waves such as X-rays and particle beams within the irradiation surface and easily aligns the axis, the present invention relates to a current measuring device that measures the distribution within the irradiation surface. The purpose of this device is to provide a device that directly and accurately measures the two-dimensional distribution using electromagnetic waves and particle beams. Each independent conductive region is provided, each region is connected to a current measuring device, and the in-plane distribution is measured based on the measured value of the current measuring device.

〔発明の技術分野〕[Technical field of invention]

本発明はX線なとの電子波・粒子線の照射面内における
分布を正確に測定し、軸合わせを容易に行う装置に関す
る。
The present invention relates to an apparatus that accurately measures the distribution of electron waves such as X-rays or particle beams within an irradiation surface and easily performs axis alignment.

X線分析用などX線発生装置において照射面内のフラッ
クス分布の測定は、定性的に行われるのみてあり、また
軸合わせを行うときは、種々な方法を採用しているか、
面内分布を観測することは独立的に行っているため、長
時間を要したり正確さに欠けていた。面内分布を定量的
に測定し、且つ軸合わせも同時に可能とする技術を開発
することか要望された。
In X-ray generators such as those used for X-ray analysis, the flux distribution within the irradiated surface is only measured qualitatively, and various methods are used to align the axis.
Observing the in-plane distribution was done independently, which took a long time and lacked accuracy. There was a request to develop a technology that could quantitatively measure the in-plane distribution and also enable axis alignment at the same time.

〔従来の技術〕[Conventional technology]

X線光分光分析装置・X線回折装置などX線発生装置を
使用する機器は多岐多様化している。そのときX線発生
装置からのX線フラックスか照射面内所定の場所、通常
は面中心位置に到達していることを確認するための作業
、所謂軸合わせを当初に行っている。軸合わせのため、
X線フラックスを蛍光板などに照射したり、シンチレー
ション計数管により計数する。スリットを移動させたり
、スリット幅を可変とすることて、試料上に到達してい
るX線か、何処において最大値を示すかを探してから、
その位置を試料の中心位置と一致させる。また、試料か
ら回折され放出されるX線についてもスリットを移動さ
せたり、スリット幅を可変として、蛍光板、またはシン
チレーション計数管に最大に計数されるように調整する
。或いはX線光電子分光分析装置の場合は、特にモノク
ロメータを励起源とする場合は、予め電子分析器の分析
中心位置を求めておき、X線励起された電子数が最大に
計数される位置にX線フラックスが照射されるようにX
線源及び分光結晶を移動させることて行う。
BACKGROUND ART Equipment that uses X-ray generators, such as X-ray spectrometers and X-ray diffractometers, is diversifying. At this time, a so-called axis alignment is initially performed to confirm that the X-ray flux from the X-ray generator has reached a predetermined location within the irradiation surface, usually the center position of the surface. For axis alignment,
X-ray flux is irradiated onto a fluorescent screen or counted using a scintillation counter. By moving the slit or making the slit width variable, find out where the maximum value of X-rays reaches the sample, and then
Match that position with the center position of the sample. Furthermore, the X-rays diffracted and emitted from the sample are adjusted by moving the slit or making the slit width variable so that they can be counted to the maximum on the fluorescent screen or scintillation counter. Alternatively, in the case of an X-ray photoelectron spectrometer, especially when a monochromator is used as the excitation source, the analysis center position of the electron analyzer is determined in advance, and the position is set at the position where the maximum number of X-ray excited electrons can be counted. X so that the X-ray flux is irradiated
This is done by moving the radiation source and spectroscopic crystal.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

従来技術におけるシンチレーションカウンタや電子分光
分析器を用いる場合、X線フラックスか照射面上何処の
位置において最大値となっているかを測定することか行
われているのみで、照射面内における分布については測
定を行っていない。
When using conventional scintillation counters and electron spectroscopy analyzers, the only way to measure the X-ray flux is to determine where on the irradiated surface the maximum value is reached, and the distribution within the irradiated surface is not measured. No measurements were taken.

X線フラックスは試料面上において、その断面か真円と
は限らないので一旦求めた強度分布も、フラックスの条
件を変えると当然変化する。そのためゆっくりとした測
定しか出来ないと、測定か中々終了しない。一方、蛍光
板に照射して測定するときは、前記スリットを急速に移
動させるなどによって、照射面内の全体像を大まかに観
測することは出来るか、試料面上で■単位で分布状況を
正確に測定することは出来ない。また蛍光板使用のとき
は励起電子による蛍光を観測するため、X線なとの照射
面と蛍光板面とが不一致であるため、測定は正確でない
。更に蛍光板を使用する場合弱いX線のときは発光する
ことか出来ず、逆に、X線源として強力なものを使用す
るときX線シールドの問題か派生して来る。シールド構
造の外部から離れて観測するから不正確となり易い。
Since the cross section of the X-ray flux on the sample surface is not necessarily a perfect circle, the intensity distribution once determined will naturally change if the flux conditions are changed. Therefore, if you can only measure slowly, the measurement will not be completed. On the other hand, when measuring by irradiating a fluorescent screen, is it possible to roughly observe the entire image within the irradiated surface by moving the slit rapidly? It cannot be measured. Furthermore, when a fluorescent screen is used, since fluorescence due to excited electrons is observed, the surface irradiated with X-rays and the surface of the fluorescent screen do not match, so the measurement is not accurate. Furthermore, when a fluorescent screen is used, it cannot emit light in the case of weak X-rays, and conversely, when a powerful X-ray source is used, problems with X-ray shielding arise. Since it is observed from a distance from the outside of the shield structure, it is likely to be inaccurate.

本発明の目的は前述の欠点を改善し、照射面内における
分布を電流測定器により、二次元強度分布を直接・正確
に測定する装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned drawbacks and to provide an apparatus for directly and accurately measuring the two-dimensional intensity distribution within the irradiated surface using a current measuring device.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理構成を示す図である。第1図にお
いて、■は電磁波・粒子線、2は電磁波なとの照射面に
配置した基板、3−1.3−2−・・3−nは導電性領
域、4−1.4−2−4−nは電流測定器を示す。
FIG. 1 is a diagram showing the basic configuration of the present invention. In Figure 1, ■ is an electromagnetic wave/particle beam, 2 is a substrate placed on the surface irradiated with electromagnetic waves, 3-1.3-2-...3-n is a conductive region, 4-1.4-2 -4-n indicates a current measuring device.

電磁波・粒子線lが照射される面の面内分布を測定する
装置において、本発明は下記の構成とする。即ち、 照射面内に配置した基板2上には、複数の各独立した導
電性領域3−1.3−2−・3−nを設け、各領域3−
I −3−nは各々電流測定器4−1.4−2−4−n
と接続され、電流測定器4−1−・−4−nの測定値に
よって面内分布を測定することで構成する。
In an apparatus for measuring the in-plane distribution of a surface irradiated with electromagnetic waves/particle beams 1, the present invention has the following configuration. That is, a plurality of independent conductive regions 3-1, 3-2-, and 3-n are provided on the substrate 2 disposed within the irradiation surface, and each region 3-
I-3-n are each current measuring device 4-1.4-2-4-n
The in-plane distribution is measured by the measured values of the current measuring devices 4-1- and -4-n.

〔作用〕[Effect]

電磁波・粒子線1か試料を照射する試料の面において、
試料の代わりに基板2を置く。基板2上には各導電性領
域3−1.3−2−3−nを有し、それはX線なとの電
磁波・粒子線を照射したとき、二次電子を放出する。そ
のため電流測定器4−1.4−24−nは放出した二次
電子に対応する電流値を示すから、各領域毎に電流を測
定するとき、電磁波・粒子線の照射面内の分布を量的に
測定することか出来る。
On the surface of the sample where the electromagnetic wave/particle beam 1 or the sample is irradiated,
Place the substrate 2 in place of the sample. The substrate 2 has conductive regions 3-1, 3-2-3-n, which emit secondary electrons when irradiated with electromagnetic waves such as X-rays or particle beams. Therefore, since the current measuring device 4-1.4-24-n indicates the current value corresponding to the emitted secondary electrons, when measuring the current in each region, it is possible to quantify the distribution within the irradiated surface of the electromagnetic wave/particle beam. It can be measured accurately.

〔実施例〕〔Example〕

第1図における導電性領域について、第2図に具体例を
横断面図により説明する。基板2としては、例えば2c
m平方で厚さ0.5止のシリコン製のものを基板層2−
1とする。2−2は各導電性領域と、それに対応する電
流計接続端子5−1との配線を通すための配線層を示す
。導電性領域3−1は例えば100μm平方で、隣接領
域との間隔6−1は50μmとする。各導電性領域の周
囲部7−1は例えは厚さ1μmの絶縁体膜(酸化シリコ
ンなど)で囲まれている。導電性領域3−1なとは多く
の二次電子を放出させるために銀を使用することか良く
、基板層2−1内で直方体になっている。この時導電性
領域3−1などは基板2上の前面に規則正しく配置して
おけば、基板2面上の二次元分布を求めることに有効で
ある。
A specific example of the conductive region in FIG. 1 will be explained using a cross-sectional view in FIG. 2. As the substrate 2, for example, 2c
The substrate layer 2- is made of silicon and has a size of m square and a thickness of 0.5 mm.
Set to 1. 2-2 indicates a wiring layer for passing wiring between each conductive region and the corresponding ammeter connection terminal 5-1. The conductive region 3-1 is, for example, 100 μm square, and the distance 6-1 between adjacent regions is 50 μm. The peripheral portion 7-1 of each conductive region is surrounded by an insulating film (such as silicon oxide) having a thickness of 1 μm, for example. The conductive region 3-1 may be made of silver in order to emit many secondary electrons, and has a rectangular parallelepiped shape within the substrate layer 2-1. At this time, if the conductive regions 3-1 and the like are arranged regularly on the front surface of the substrate 2, it is effective to obtain a two-dimensional distribution on the surface of the substrate 2.

なお導電性領域3は電流計4との接続が出来る限り、小
面積のものを多数配置することか良い。
It is preferable to arrange a large number of conductive regions 3 with small areas as long as they can be connected to the ammeter 4.

より正確な測定か出来るからである。This is because more accurate measurements can be made.

第3図は導電性領域3−1にX線か照射されたときの状
況を説明するだめの図である。第3図において、1はX
線、4−1は電流計、5−1は接続端子、8は二次電子
、9は接地を示す。導電性領域3−1にX線1か照射さ
れたとき、光電効果やオーソエ過程により二次電子8か
放出される。そのため電子か接地9から電流計4=1と
端子5−1を介して導電性領域3−1に到達する。電流
計4iの電流値は実験によれば数μAか得られた。
FIG. 3 is a diagram for explaining the situation when the conductive region 3-1 is irradiated with X-rays. In Figure 3, 1 is
4-1 is an ammeter, 5-1 is a connection terminal, 8 is a secondary electron, and 9 is a ground. When the conductive region 3-1 is irradiated with X-rays 1, secondary electrons 8 are emitted due to the photoelectric effect or the orthogonal process. Therefore, electrons reach the conductive region 3-1 from the ground 9 via the ammeter 4=1 and the terminal 5-1. According to experiments, the current value of the ammeter 4i was several μA.

本発明によれば、X線以外の電磁波・粒子線を使用する
ことか出来、線の種類に応して導電性領域の材質を変え
ることか良い。
According to the present invention, electromagnetic waves and particle beams other than X-rays can be used, and the material of the conductive region can be changed depending on the type of beam.

第4図は少ない数の電流計を使用する場合の結線図であ
る。第4図において、4は電流計、5−1゜5−2−6
−nは導電性領域の各接続端子、10は切換スイッチを
示す。切換スイッチ10の切換により導電性領域におけ
るX線の照射量を各別に測定することか出来る。
FIG. 4 is a wiring diagram when using a small number of ammeters. In Figure 4, 4 is an ammeter, 5-1゜5-2-6
-n indicates each connection terminal of the conductive region, and 10 indicates a changeover switch. By switching the changeover switch 10, the amount of X-ray irradiation in each conductive area can be measured separately.

第5図は本発明の実施例として、導電性領域から得られ
た電流を処理する装置を具備する場合を示す図である。
FIG. 5 is a diagram showing an embodiment of the present invention including a device for processing current obtained from a conductive region.

第5図において、11は電流計測定値のインタフェース
、12はパソコンのような処理装置、13は陰極線管(
CRT)表示装置を示す。電流計3−1.3−2 −・
3−nの測定値はインタフェース1】を介してパソコン
】2に導かれ、処理される。その結果はCRT13にお
いて二次元濃淡表示か得られ、直視てきる。必要に応し
て、コントラストをつけるなと画像処理を行うから、見
易い画像が容易に得られる。
In FIG. 5, 11 is an interface for ammeter measurement values, 12 is a processing device such as a personal computer, and 13 is a cathode ray tube (
CRT) display device. Ammeter 3-1.3-2 -・
The measured values 3-n are led to the personal computer 2 via the interface 1 and processed. The result is displayed as a two-dimensional grayscale display on the CRT 13, which can be viewed directly. If necessary, image processing is performed to add contrast, so an easy-to-see image can be easily obtained.

基板における二次元の強度分布か得られたとき、電磁波
・粒子線のフラックスの傾きの有無などの状況を知るこ
とかできるから、軸合ゎせを行うこと、即ち強度の最も
強いフラックスを所定の位置(通常は照射面の中心位置
)と合わせることが簡便に出来る。
When the two-dimensional intensity distribution on the substrate is obtained, it is possible to know the situation such as the presence or absence of a slope of the flux of electromagnetic waves and particle beams. It is easy to match the position (usually the center position of the irradiation surface).

〔発明の効果〕〔Effect of the invention〕

このようにして本発明によると、電磁波・粒子線フラッ
クスか試料面において二次元的強度分布を数値として直
接測定するから、導電性領域を取り除き軸合わせをする
ことが極めて容易に出来る。
In this manner, according to the present invention, since the two-dimensional intensity distribution of electromagnetic waves/particle beam flux is directly measured as numerical values on the sample surface, it is possible to remove the conductive region and align the axis very easily.

また強度分布を知るため最適な強度を得る領域の選択か
可能である。そして電磁波などの装置の幾何学的な構造
に依存することなく、強度分布の測定を行うことか出来
、放射線被爆の影響から免れることか容易である。強度
分布の測定においてミクロン・オーダーで測定すること
が出来るから、大規模集積回路の製造工程へ応用するこ
とに有効である。
Also, since the intensity distribution is known, it is possible to select a region where the optimum intensity can be obtained. In addition, it is possible to measure the intensity distribution without depending on the geometric structure of the device such as electromagnetic waves, and it is easy to avoid the effects of radiation exposure. Since the intensity distribution can be measured on the micron order, it is effective for application to the manufacturing process of large-scale integrated circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理構成を示す図、 第2図は本発明の実施例として導電性領域の構成を示す
図、 第3図は第2図の動作説明図、 第4図は本発明の実施例として電流計切換の結線図、 第5図は本発明の実施例として電流処理装置を含む構成
を示す図である。 1−電磁波・粒子線 2一基板 3−1.3−2−3−n−導電性領域 4−1.4−2−4−n −電流測定器特許出願人  
 富士通株式会社 代 理 人  弁理士 鈴木栄祐 旧覆ル 粒子t1 配線層 実IN、m l X線 ”9t=te 第2図の動作説明図 軍3図
Fig. 1 is a diagram showing the principle configuration of the present invention, Fig. 2 is a diagram showing the configuration of a conductive region as an example of the present invention, Fig. 3 is an explanatory diagram of the operation of Fig. 2, and Fig. 4 is a diagram illustrating the present invention. FIG. 5 is a diagram showing a configuration including a current processing device as an example of the present invention. 1 - Electromagnetic wave/particle beam 2 - Substrate 3 - 1.3-2-3-n - Conductive region 4-1.4-2-4-n - Current measuring device Patent applicant
Fujitsu Ltd. Representative Patent Attorney Eisuke Suzuki Formerly covered particle t1 Wiring layer actual IN, m l

Claims (1)

【特許請求の範囲】 I 、電磁波・粒子線(1)が照射される面の面内分布
を測定する装置において、 照射面に配置した基板(2)上には、複数の各独立した
導電性領域(3−1)(3−2)・・・(3−n)を設
け、各領域(3−1)・・・(3−n)は各々電流測定
器(4−1)(4−2)・・・(4−n)と接続され、
該電流測定器(4−1)・・・(4−n)の測定値によ
って、面内分布を測定することを特徴とする照射面内分
布測定装置。 II、請求項第 I 項記載の電流測定器を、切換器により
前記導電性領域の数より少ない数で構成する電流測定器
としたことを特徴とする照射面内分布測定装置。 III、請求項第 I 項記載の導電性領域からの各電流が入
力され、各電流を同時に且つ全領域にわたって表示する
装置を具備することを特徴とする照射面内分布測定装置
[Claims] I. In an apparatus for measuring the in-plane distribution of a surface irradiated with electromagnetic waves/particle beams (1), a plurality of independent conductive Areas (3-1) (3-2)...(3-n) are provided, and each area (3-1)...(3-n) is equipped with a current measuring device (4-1) (4-n), respectively. 2)...Connected to (4-n),
An irradiation in-plane distribution measuring device characterized in that the in-plane distribution is measured by the measured values of the current measuring devices (4-1)...(4-n). II. An apparatus for measuring distribution within an irradiation surface, characterized in that the current measuring device according to claim I is configured by a switching device in which the number of conductive regions is smaller than the number of conductive regions. III. An irradiation surface distribution measuring device comprising a device into which each current from the conductive region according to claim I is input and displays each current simultaneously over the entire region.
JP12697790A 1990-05-18 1990-05-18 In-irradiating plane distribution measuring instrument for electromagnetic wave/corpuscular beam Pending JPH0422852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12697790A JPH0422852A (en) 1990-05-18 1990-05-18 In-irradiating plane distribution measuring instrument for electromagnetic wave/corpuscular beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12697790A JPH0422852A (en) 1990-05-18 1990-05-18 In-irradiating plane distribution measuring instrument for electromagnetic wave/corpuscular beam

Publications (1)

Publication Number Publication Date
JPH0422852A true JPH0422852A (en) 1992-01-27

Family

ID=14948588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12697790A Pending JPH0422852A (en) 1990-05-18 1990-05-18 In-irradiating plane distribution measuring instrument for electromagnetic wave/corpuscular beam

Country Status (1)

Country Link
JP (1) JPH0422852A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289953A (en) * 2000-04-03 2001-10-19 Seiko Instruments Inc Superconducting radioactive ray detector
JP2006013546A (en) * 2000-08-25 2006-01-12 Asm Lithography Bv Lithographic projection apparatus, method of manufacturing device, and device manufactured thereby

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289953A (en) * 2000-04-03 2001-10-19 Seiko Instruments Inc Superconducting radioactive ray detector
JP2006013546A (en) * 2000-08-25 2006-01-12 Asm Lithography Bv Lithographic projection apparatus, method of manufacturing device, and device manufactured thereby
US7459690B2 (en) 2000-08-25 2008-12-02 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby

Similar Documents

Publication Publication Date Title
US6750451B2 (en) Observation apparatus and observation method using an electron beam
JP2002107134A (en) Thickness meter for x-ray fluorescence film
Graczyk et al. Scanning electron diffraction attachment with electron energy filtering
JP2002221504A (en) X-ray detector and charged particle beam device
JP2009250867A (en) X-ray analyzer with energy dispersive x-ray spectrometer
Grigson Improved scanning electron diffraction system
CN111077561B (en) Residual gas charged particle beam monitoring device and method thereof
DE19948382A1 (en) Large wafer area detector
JP2002181725A (en) Method for analyzing minute foreign matter, analysis apparatus, method for manufacturing semiconductor device and liquid crystal display device
JP3235681B2 (en) Ion beam analyzer
JPH0422852A (en) In-irradiating plane distribution measuring instrument for electromagnetic wave/corpuscular beam
Verona et al. Characterisation of a monolithic ΔE-E diamond telescope detector using low energy ion microbeams
Ding et al. X-ray spectrometry using polycapillary X-ray optics and position sensitive detector
US3180986A (en) Measuring systems for electron diffraction patterns
McBride et al. Deconvolution of electron diffraction patterns of amorphous materials formed with convergent beam
Buchriegler et al. Enhancements in full‐field PIXE imaging—Large area elemental mapping with increased lateral resolution devoid of optics artefacts
US3686501A (en) Charged particle analyzer with means to determine the coordinate position of the sample
JPH063295A (en) Surface analyzing device
JP2001116847A (en) X-ray detector, element analyzer, and device for manufacturing semiconductor
Olsansky et al. High-contrast low-dose proton radiography of thin samples at the Tandetron accelerator
JP3458538B2 (en) X-ray fluorescence analyzer
Issatov et al. IPM Monitor for Nondestructive Diagnostics of Wide Beams in Applied Research
JPH1114566A (en) X-ray apparatus for x-ray diffraction measurement and for fluorescent x-ray measurement
JP2985904B2 (en) X-ray photoelectron analysis method
JPH0361841A (en) Attachment for measuring x-ray absorption spectrum