JPH0422826A - Diagnostic method for looseness of ac motor stator coil - Google Patents
Diagnostic method for looseness of ac motor stator coilInfo
- Publication number
- JPH0422826A JPH0422826A JP2127931A JP12793190A JPH0422826A JP H0422826 A JPH0422826 A JP H0422826A JP 2127931 A JP2127931 A JP 2127931A JP 12793190 A JP12793190 A JP 12793190A JP H0422826 A JPH0422826 A JP H0422826A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- stator
- vibration
- frequency
- stator coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002405 diagnostic procedure Methods 0.000 title description 3
- 238000000034 method Methods 0.000 claims description 13
- 238000006073 displacement reaction Methods 0.000 abstract description 5
- 238000003745 diagnosis Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 230000001360 synchronised effect Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 108010048295 2-isopropylmalate synthase Proteins 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241001330002 Bambuseae Species 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012001 immunoprecipitation mass spectrometry Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、従来の各種ハンマリング法に依らない交流電
動機固定子コイル弛み診断方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for diagnosing stator coil slack in an AC motor that does not rely on various conventional hammering methods.
一般に、交流電動機の固定子コイル1は、例えば第2図
に固定子の部分図として示すように、固定子の鉄心スロ
ット2内に挿入されており、このコイル1を該鉄心スロ
ット内に固定するために、鉄心スロットの上部に形成し
たアリ溝3内に竹やヘークライト等で断面台形に形成さ
れたウェッジ4が装着されている。5は固定子の鉄心を
示す。Generally, a stator coil 1 of an AC motor is inserted into a core slot 2 of a stator, as shown for example in FIG. 2 as a partial view of the stator, and this coil 1 is fixed in the core slot. For this purpose, a wedge 4 having a trapezoidal cross section made of bamboo, hakelite, etc. is installed in a dovetail groove 3 formed at the top of the core slot. 5 indicates the iron core of the stator.
しかし、上記固定子コイル1のコイル導体1a表面を被
覆している絶縁物1bは年月の経過に伴って油分が減少
しくこの現象を[コイルの枯れjと称す)、コイル1が
収縮するために、アリ溝3に係合しているウェッジ4の
下面とコイル1の間や鉄心スロット2内にあるコイル1
とコイル1との間に空隙ができるため、ウェッジ4のコ
イル1に対する押さえ力が小さくなってくる。However, the oil content of the insulator 1b covering the surface of the coil conductor 1a of the stator coil 1 decreases over time, and this phenomenon (referred to as coil withering) causes the coil 1 to shrink. The coil 1 is located between the lower surface of the wedge 4 engaged in the dovetail groove 3 and the coil 1 or within the core slot 2.
Since a gap is created between the coil 1 and the coil 1, the pressing force of the wedge 4 against the coil 1 becomes smaller.
その結果、コイル1は交番磁束による電磁力によって発
生する振動のためにコイル自体の絶縁物を摩耗させ、最
悪の場合には接地事故に至り、事故系統の修復のため数
日間も操業を停止しなければならない事態を生じるとい
った問題があった。As a result, the insulation of the coil 1 was worn out due to the vibrations generated by the electromagnetic force caused by the alternating magnetic flux, and in the worst case, a grounding accident occurred, and the operation had to be suspended for several days to repair the accident system. There was a problem in that it created a situation where it was necessary to do so.
そこで、このような問題を解消するために、(1)J
I P M S、57/11.第7回「設備診断技術
基礎コース」による[インパルス ハンマリング法によ
る診断法J 、(2)専門家によるハンマリング打音チ
エツク法、などが提案されている。Therefore, in order to solve this problem, (1) J
IPMS, 57/11. The 7th ``Equipment Diagnosis Technology Basic Course'' proposes the diagnosis method J using the impulse hammering method, (2) the hammering sound check method by experts, etc.
(発明が解決しようとする課題〕
しかしながら、上記(1)のインパルス ハンマリング
法では、インパルス発生装置が高価であることと、短時
間とはいえ大電流を流すために、例えば電機子各部に過
熱による形状や材質の変化といったストレスを生じるこ
とになる。さらに、測定の手間がかかるといった種々の
欠点がある。また上記(2)の専門家によるハンマリン
グ打音チエツク法では、高価な装置を必要としないこと
や前記ストレスがないという利点を有する反面、評価が
定性的で曖昧なこと、鉄心内部のコイルの枯れによる弛
みが検出できないこと、測定に手間がかがること、など
の欠点がある。(Problems to be Solved by the Invention) However, in the impulse hammering method described in (1) above, the impulse generator is expensive, and in order to flow a large current even for a short time, for example, various parts of the armature may overheat. This causes stress such as changes in the shape and material due to the impact.Furthermore, there are various disadvantages such as the time and effort required for measurement.Furthermore, the above method (2) of hammering sound check by experts requires expensive equipment. Although it has the advantage of not causing stress or the stress mentioned above, it has disadvantages such as the evaluation is qualitative and ambiguous, the slack due to deadness of the coil inside the core cannot be detected, and the measurement is time-consuming. .
この発明は、このような従来の問題点にかんがみてなさ
れたものであって、運転中の固定子の外側に振動計を当
てて振動測定することにより、上記課題を解決すること
を目的としている。This invention was made in view of these conventional problems, and aims to solve the above problems by applying a vibration meter to the outside of the stator during operation to measure vibrations. .
[課題を解決するための手段]
本発明は、上記目的を達成するために、交流電動機の固
定子コイルの弛みを診断する方法において、固定子の外
側から固定子コイルの弛みにより発生する振動を測定し
、次にその測定データを周波数解析して、その周波数成
分のうちから電源周波数及び電源周波数の2倍の振動値
を基に、前記固定子コイルの弛み程度を判定する交流電
動機固定子コイル弛み診断方法を提供するものである。[Means for Solving the Problem] In order to achieve the above object, the present invention provides a method for diagnosing the slackness of a stator coil of an AC motor, in which vibrations generated by the slackness of the stator coil are detected from the outside of the stator. AC motor stator coil that measures, then frequency-analyzes the measured data, and determines the degree of slack of the stator coil based on the power frequency and a vibration value twice the power frequency among the frequency components. A method for diagnosing slackness is provided.
本発明では、運転中の固定子の外側に振動計を当て振動
測定したところ、運転中のコイルの、交番磁束による電
磁力によって発生する振動が、固定子やフレームを伝播
しており、特にその振動のうち、電源周波数及び電源周
波数の2倍の周波数成分をデータ処理することにより、
コイルの弛み程度を判定できることが分かった。In the present invention, when vibration was measured by placing a vibration meter on the outside of the stator during operation, it was found that the vibration generated by the electromagnetic force due to the alternating magnetic flux of the coil during operation propagated through the stator and frame. By data processing the power supply frequency and frequency components twice the power supply frequency among vibrations,
It was found that the degree of slack in the coil can be determined.
そこで、本発明は、固定子の外側の振動(変位)を測定
し、その測定データを周波数解析してその周波数成分の
うちから電源周波数及び電源周波数の2倍の成分を、例
えばバンドパスフィルタで取り出し、これをデータ処理
することにより、コイル弛みを定量化することができる
。Therefore, the present invention measures the vibration (displacement) on the outside of the stator, performs frequency analysis on the measured data, and extracts the power frequency and twice the power frequency from among the frequency components using, for example, a band-pass filter. By extracting and processing this data, coil slack can be quantified.
以下、本発明を図面を参照して説明する。第1図は本発
明による診断方法を示す説明図であって、交流電動機の
固定子6の外側から振動計7を当て、振動を測定する。Hereinafter, the present invention will be explained with reference to the drawings. FIG. 1 is an explanatory diagram showing a diagnostic method according to the present invention, in which a vibration meter 7 is applied from outside to a stator 6 of an AC motor to measure vibrations.
この際、測定条件を一定にするために交流電動機の空転
時、すなわち無負荷時に測定するのが好ましい。11は
回転子を示す。At this time, in order to keep the measurement conditions constant, it is preferable to measure when the AC motor is idling, that is, when there is no load. 11 indicates a rotor.
次に測定した振動の測定データを周波数分析器8により
分析するわけであるが、この際の測定モードは「変位」
とする。さらに周波数分析器8から送られた周波数成分
のうちからバンドパスフィルタ9により電源周波数及び
電源周波数の2倍成分を取り出す。このときの振動値を
それぞれμ、。Next, the measured vibration data is analyzed by the frequency analyzer 8, and the measurement mode at this time is "displacement".
shall be. Furthermore, from among the frequency components sent from the frequency analyzer 8, a bandpass filter 9 extracts the power supply frequency and twice the power supply frequency. The vibration values at this time are μ, respectively.
μZt+ とすると、次のコイル弛み演算回路1oでコ
イルの弛み程度を次式に定量化する。When μZt+ is assumed, the degree of coil slack is quantified by the following equation in the next coil slack calculation circuit 1o.
コイル弛みの評価値W=に、 ・μ、十に2 ・μ2
f但し、Knミ影響係数
ここで、電源周波数の変位成分μ、は第2図に示すコイ
ル導体1a−本の弛みによる振動値を表し、μ2fは上
下のコイル導体1a、1a二本の弛みによる相互振動値
を表している。Coil slack evaluation value W = ・μ、102 ・μ2
f, where the displacement component μ of the power supply frequency represents the vibration value due to the slackness of the coil conductor 1a shown in Fig. 2, and μ2f is due to the slackness of the two upper and lower coil conductors 1a, Represents mutual vibration value.
すなわち、μ2fはコイルの弛み程度が著しい場合に発
生する成分であり、影響係数に、(K、>K、)で補正
し、コイル弛みの評価(W)の精度を高めている。That is, μ2f is a component that occurs when the degree of coil slack is significant, and the influence coefficient is corrected by (K,>K,) to improve the accuracy of coil slack evaluation (W).
以下に、実際に行った診断例を表11表2に示す。Tables 11 and 2 below show examples of the diagnoses that were actually performed.
この際に用いた交流電動機は、2500に一同期電動機
1台、 6000KW同期電動機3台であって、それぞ
れ空転中の固定子外側の振動測定を行い、50Hz、1
00七の変位成分からコイル弛み程度を算出したところ
、従来のハンマリング打音チエツク法によるウェッジ弛
み率と強い相関がみられた(以下、表1、表2参照)。The AC motors used at this time were one 2500KW synchronous motor and three 6000KW synchronous motors, and vibrations were measured on the outside of the stator during idling.
When the degree of coil slack was calculated from the displacement component of 007, there was a strong correlation with the wedge slack rate determined by the conventional hammering sound check method (see Tables 1 and 2 below).
また、2500に一同期電動機については、ウェッジの
全数打替えを実施し、打替え前後の変化を表2に示すご
とく確認した。In addition, for the 2500 synchronous motor, all wedges were replaced, and the changes before and after replacement were confirmed as shown in Table 2.
なお、上記実施例では、コイルの弛みを間接的に示すウ
ェッジ弛みを比較データとして示した。In the above example, wedge slack, which indirectly indicates coil slack, was shown as comparative data.
また、次に示す表1は本発明による診断結果と従来法に
よる結果との比較表であり、表2は2500KW同期機
におけるウェッジ全数打替え前後の変化を示す表である
。Further, Table 1 shown below is a comparison table between the diagnosis results according to the present invention and the results according to the conventional method, and Table 2 is a table showing changes before and after all wedges in a 2500 KW synchronous machine were replaced.
以上説明したように、本発明によれば、運転中の状態で
回転部分に近づくことなく診断できることから、測定チ
ャンスの制約を受けることなく簡単に診断できる。その
結果、従来のように5〜10年毎に数日間操業を停止し
て診断を行う必要が無くなった。As described above, according to the present invention, diagnosis can be performed without getting close to the rotating parts during operation, and therefore diagnosis can be easily performed without being constrained by measurement opportunities. As a result, it is no longer necessary to stop operations for several days every 5 to 10 years to perform diagnosis, as was the case in the past.
さらに、従来のインパルス ハンマリング法のような電
機子にストレスを与えることもなく且つ装置も低廉であ
ること、また専門家による打音チエツクのように個人に
よる判定結果のバラツキもなく、且つ鉄心内部のコイル
絶縁物の枯れがわかるため、絶縁破壊に至る前に異常が
発見でき、突発事故の防止を図ることもできる等の効果
が得られる。Furthermore, unlike the conventional impulse hammering method, it does not put stress on the armature and the equipment is inexpensive, and there is no variation in judgment results between individuals as in the case of hammering sound checks performed by experts. Because it is possible to detect when the coil insulation has withered, abnormalities can be detected before dielectric breakdown occurs, and unexpected accidents can be prevented.
表1 表2Table 1 Table 2
第1図は本発明による診断方法を示す模式図、第2図は
交流電動機の固定子の部分断面図である。
1・・・固定子コイル、7・・・振動計、8・・・周波
数分析器。FIG. 1 is a schematic diagram showing a diagnostic method according to the present invention, and FIG. 2 is a partial sectional view of a stator of an AC motor. 1... Stator coil, 7... Vibration meter, 8... Frequency analyzer.
Claims (1)
において、固定子の外側から固定子コイルの弛みにより
発生する振動を測定し、次にその測定データを周波数解
析して、その周波数成分のうちから電源周波数及び電源
周波数の2倍の振動値を基に、前記固定子コイルの弛み
程度を判定することを特徴とする交流電動機固定子コイ
ル弛み診断方法。(1) In the method of diagnosing the slackness of the stator coil of an AC motor, the vibrations generated by the slackness of the stator coil are measured from the outside of the stator, and then the measured data is frequency-analyzed to determine the frequency component. A method for diagnosing stator coil slack in an AC motor, characterized in that the degree of slack in the stator coil is determined based on a power supply frequency and a vibration value twice the power supply frequency.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2127931A JPH0422826A (en) | 1990-05-17 | 1990-05-17 | Diagnostic method for looseness of ac motor stator coil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2127931A JPH0422826A (en) | 1990-05-17 | 1990-05-17 | Diagnostic method for looseness of ac motor stator coil |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0422826A true JPH0422826A (en) | 1992-01-27 |
Family
ID=14972181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2127931A Pending JPH0422826A (en) | 1990-05-17 | 1990-05-17 | Diagnostic method for looseness of ac motor stator coil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0422826A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5407188A (en) * | 1992-12-15 | 1995-04-18 | Sharp Kabushiki Kaisha | Classifying tray apparatus |
JP2013079850A (en) * | 2011-10-03 | 2013-05-02 | Chugoku Electric Power Co Inc:The | Rotary machine component abrasion detection method and rotary machine component abrasion detector |
-
1990
- 1990-05-17 JP JP2127931A patent/JPH0422826A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5407188A (en) * | 1992-12-15 | 1995-04-18 | Sharp Kabushiki Kaisha | Classifying tray apparatus |
JP2013079850A (en) * | 2011-10-03 | 2013-05-02 | Chugoku Electric Power Co Inc:The | Rotary machine component abrasion detection method and rotary machine component abrasion detector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pineda-Sanchez et al. | Instantaneous frequency of the left sideband harmonic during the start-up transient: A new method for diagnosis of broken bars | |
Faiz et al. | A new pattern for detecting broken rotor bars in induction motors during start-up | |
Henao et al. | Analytical approach of the stator current frequency harmonics computation for detection of induction machine rotor faults | |
Joksimović et al. | Stator-current spectrum signature of healthy cage rotor induction machines | |
Benbouzid | A review of induction motors signature analysis as a medium for faults detection | |
Li et al. | Detection of induction motor faults: a comparison of stator current, vibration and acoustic methods | |
Stack et al. | Bearing fault detection via autoregressive stator current modeling | |
Bangura et al. | Diagnosis and characterization of effects of broken bars and connectors in squirrel-cage induction motors by a time-stepping coupled finite element-state space modeling approach | |
US20110191034A1 (en) | Portable System for Immotive Multiphasic Motive Force Electrical Machine Testing | |
Faiz et al. | Mixed fault diagnosis in three-phase squirrel-cage induction motor using analysis of air-gap magnetic field | |
Pons-Llinares et al. | Transient detection of close components through the chirplet transform: Rotor faults in inverter-fed induction motors | |
Blodt et al. | Mechanical fault detection in induction motor drives through stator current monitoring-theory and application examples | |
Morinigo-Sotelo et al. | Practical aspects of mixed-eccentricity detection in PWM voltage-source-inverter-fed induction motors | |
JP2020527017A (en) | Technology to detect abnormalities in motor leakage flux | |
Penman et al. | Broken rotor bars: their effect on the transient performance of induction machines | |
Becker et al. | Fault detection of circulation pumps on the basis of motor current evaluation | |
Lamim Filho et al. | Axial stray flux sensor proposal for three-phase induction motor fault monitoring by means of orbital analysis | |
Climente-Alarcon et al. | 2-D magnetomechanical transient study of a motor suffering a bar breakage | |
Wang et al. | Induction motor eccentricity fault analysis and quantification with modified winding function based model | |
JPH0422826A (en) | Diagnostic method for looseness of ac motor stator coil | |
JPH03291539A (en) | Detecting method for abnormality of roller bearing of electric motor | |
Sharma et al. | Analysis of broken rotor bar fault diagnosis for induction motor | |
Gulhane et al. | Review of detection of faults in induction motor | |
Subramanian et al. | Detection and severity estimation of static and dynamic eccentricity in induction motors using finite element analysis | |
Cunha et al. | Detection of rotor faults in squirrel-cage induction motors using adjustable speed drives |