JPH0422572B2 - - Google Patents

Info

Publication number
JPH0422572B2
JPH0422572B2 JP57159426A JP15942682A JPH0422572B2 JP H0422572 B2 JPH0422572 B2 JP H0422572B2 JP 57159426 A JP57159426 A JP 57159426A JP 15942682 A JP15942682 A JP 15942682A JP H0422572 B2 JPH0422572 B2 JP H0422572B2
Authority
JP
Japan
Prior art keywords
magnification
lens
illumination light
variable
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57159426A
Other languages
Japanese (ja)
Other versions
JPS5949736A (en
Inventor
Kazuo Nunokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP57159426A priority Critical patent/JPS5949736A/en
Publication of JPS5949736A publication Critical patent/JPS5949736A/en
Publication of JPH0422572B2 publication Critical patent/JPH0422572B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、変倍可能な眼底カメラに係り、殊
に観察撮影系の変倍レンズを変倍させたときにも
常に一定のフイルム露光量が得られるようにした
変倍可能な眼底カメラに関する。 従来の変倍可能な眼底カメラにあつては、観察
撮影系に拡大倍率を変えるための変倍レンズが設
けられ、変倍レンズの変倍操作に連動して観察撮
影系の撮影絞りを可変させるようにして眼底照明
系の照明光量が一定のときでもフイルム露光量を
常に一定にして画面の明るさの変動をなくするよ
うにしたものがあつた。 しかしながら、このような従来の変倍可能な眼
底カメラにあつては、変倍レンズを変倍操作して
高倍にしたときには撮影絞りを大きくしてフイル
ム露光量を一定にするようにしているため、変倍
レンズを高倍にするに従い撮影絞りが次第に大き
くなり、それに伴つて被写界深度が次第に浅くな
るので、凹凸のある眼底の撮影では高倍時に眼底
の一部にのみピントのあつた写真となつて実用上
の難点があるという問題点があつた。 また、別の従来の変倍可能な眼底カメラにあつ
ては、観察撮影系に拡大倍率を変えるための変倍
レンズが設けられ、変倍レンズの変倍操作に連動
して眼底照明系の照明光量を可変させるようにし
て観察撮影系の撮影絞りの開口度が一定のときで
もフイルム露光量を常に一定にして画面の明るさ
の変動をなくすようにしたものがあつた。 しかしながら、このような従来の変倍可能な眼
底カメラにあつては、変倍レンズを変倍操作して
高倍にしたときには、照明光量を増大させてフイ
ルム露光量を一定にするようにしているため、変
倍レンズを高倍にするに従い照明光量が次第に増
大する。その増大量は例えば変倍レンズの変倍
率、即ち撮影倍率がβmin〜βi〜βmaxまで可変す
るとし、βminのときの光源、例えば照明用光源
の照明光量を1とすると、βi時にはβ/βmin2
値だけ増大し、急激な増大量となる。 従つて、被検眼者の眼底照度は高倍時に非常に
大きな値となり、通常の場合でも被検眼者にとつ
てまぶしさに耐えるのが困難な状態であるのにも
つと状態が悪くなつて涙の流出、まばたきの増加
などが生じてくるので、撮影時における操作性が
悪くなるという問題点があつた。また、光源にも
大容量のものが必要とされ、装置全体が高価なも
のになるという問題点も生じていた。 この発明はこのような従来の問題点に着目して
なされたもので、観察撮影系に設けた変倍レンズ
の倍率変化のうち低倍側変化に対応させて観察撮
影系の撮影絞りを可変させ、高倍側変化に対応さ
せて眼底照明系の照明光量を可変させてフイルム
露光量を一定にすることにより、上記問題点を解
決することを目的としている。 以下、この発明を図面に基づいて説明する。 第1図〜第6図はこの発明の一実施例を示す図
である。図中、符号1は被検眼Eの眼底Efに対
向して置かれた対物レンズであり、対物レンズ1
の光軸2上には、対物レンズ1に関し被検眼Eの
瞳とほぼ共役の位置に孔あきミラー3が斜設され
ている。 照明光学系は、白熱ランプである照明用光学4
とキセノン管である撮影用光源5とを有し、照明
用光源4からの光は第1コンデンサレンズ6によ
つて一旦撮影用光源5上に収斂し、次いで発散し
て第2コンデンサレンズ7に入射し、リング状絞
り8を通り、ミラー9により反射されてリレーレ
ンズ10,11を経て孔あきミラー3により対物
レンズ1に向けて反射され、対物レンズ1を経て
被検眼Eの瞳を通つて眼底Efに投影される。撮
影用光源5からの光も第2コンデンサレンズ7に
入射した以降は撮影用光源5と同様の光路で眼底
Efに投影される。 他方、観察撮影系は、孔あきミラー3の背後に
おいて、対物レンズ1に関し被検眼Eの瞳とほぼ
共役な位置に設けた開口を可変可能な撮影絞り1
2と、撮影絞り12の後方に撮影光軸2aに沿つ
て順次設けられた合焦レンズ13、変倍レンズ1
4及び結像レンズ15を有し、眼底Efからの反
射光は撮影絞り12、合焦レンズ13、変倍レン
ズ14を通り結像レンズ15により撮影フイルム
面16上に結像する。 撮影フイルム面16上の前方には、はね上げ可
能なミラー17が配置され、ミラー17の図示位
置においては、結像レンズ15からの光はミラー
17により反射され、焦点面fa上に結像し、フイ
ールドレンズ18、プリズム19及び接眼レンズ
20を通して観察される。 次に変倍レンズ14について詳細に説明する。 第2図に示すように、変倍レンズ14は回転軸
21上に軸着された回転円板22に装着されてい
る。変倍レンズ14は低倍側のレンズで広角45°
のレンズ14a及び広角30°のレンズ14bと高
倍側のレンズで狭角20°のレンズ14cおよび狭
角15°のレンズ14dとで構成されており、これ
ら各レンズ14a〜14dが回転円板22上に等
間隔で円環状に装着されている。 回転軸21は両端において図示しない眼底カメ
ラハウジングに取り付けられている軸受23,2
4により回転自在に支持されており、一端部に傘
歯車25が固定されている。この傘歯車25に操
作軸26が噛合され、操作軸26は図示しない変
倍操作ハンドルによつて回転させられる。従つ
て、変倍操作ハンドルを回転操作して操作軸26
を回転させ、傘歯車25を駆動させて、回転軸2
1と共に回転円板22を回転させることにより、
回転円板22に装着されている変倍レンズ14の
うち任意のレンズ14a〜14dを観察撮影系の
撮影光軸2aに挿入することができる。この実施
例の変倍レンズ14では撮影光軸2aにレンズ1
4a〜14dを選択的に挿入するようにしたもの
であるが、これに限られるものではなく、結像レ
ンズを交換する方式、或いはズーム方式によつて
倍率を変えるようにしたものであつても良いこと
は勿論である。 更に、開口度を可変可能な撮影絞り12につい
て説明する。 回転軸21には、撮影絞り12を構成する絞り
板30が装着され、絞り板30に異なつた開口度
を有する絞り穴12a,12b,12c,12d
が形成されている。即ち、変倍レンズ14の低倍
側におけるレンズ14a,14bに対応する絞り
穴12a,12bの開口は撮影系の明るさが等し
くなるような大きさに形成され、高倍側における
レンズ14c,14dに対応する絞り穴12c,
12dの開口は低倍側における角各30°のレンズ
14bに対応した絞り穴12bの開口と同じ大き
さの開口となるように形成されている。この撮影
絞り12及び変倍レンズ14の回転円板22が装
着されている回転軸21は、変倍レンズの倍率変
化のうち低倍率側変化に対応させて前記撮影絞り
を可変させさせ、高倍率側変化に対応させて前記
撮影絞りを一定とさせる絞り連動手段を構成して
いる。 従つて、変倍レンズ14のうち、任意のレン
ズ、例えばレンズ14aが観察撮影系の撮影光軸
2aに挿入されたとき、回転円板22の回転に連
動して絞り板30も回転して、そのレンズ14a
に対応した絞り値を有する絞り穴12aが観察撮
影系の撮影光軸2aに挿入される。 最後に、照明用光源4及び撮影用光源5の照明
光量を可変させる構成について説明する。 第1図に示すように、回転軸21には変倍レン
ズ14の変倍とともに三段階に切り替る撮影用光
源5のための切替用スイツチSと、変倍レンズ1
4の変倍に対応して照明用光源4のための抵抗値
が変わる照明用可変抵抗RTとが設けられている。 そして、切替用スイツチSはコンデンサの容量
を切り替えることで撮影用光源5の発光量を変え
る第5図に示す電気回路に設けられている。この
電気回路は電源E1に対して切替用スイツチSを
介して並列に接続した容量の異なる三つのコンデ
ンサC1、C2、C3を直列に接続すると共に電源E1
に対して撮影用光源5例えばキセノン管を直列に
接続して構成されている。変倍レンズ14が変倍
されて低倍側のレンズ14a,14bが使用され
ているときには切替用スイツチSはコンデンサ
C1に接続されており、高倍側のレンズ14cが
使用されているときには切替用スイツチSはコン
デンサC2に、高倍側のレンズ14dが使用され
ているときには切替用スイツチSはコンデンサ
C3にそれぞれ切り変え接続されて撮影用光源5
は選択された光量を発する。 なお、撮影用光源5は、図示しないトリガース
イツチがオンされたときのみ発光する。 この場合、変倍レンズ14の各レンズ14a〜
14dの明るさ(Fナンバー)の比は1:1:
1.52:2.05となり、高倍側では暗くなつている。
そこで、フイルム露光量を一定にするため、各レ
ンズ14a〜14dに対する撮影用光源5の光量
を1:1:1.522:2.052となるような割合で増加
させるようにコンデンサC1〜C3の容量を設定し
ておく。 また、照明用可変抵抗RTは抵抗値を変えるこ
とで照明用光源4の発光量を変える第6図に示す
電気回路に設けられている。 この電気回路は電源E2に対して照明用光源4
例えば白熱ランプと照明用可変抵抗RTを直列に
接続して構成されている。 この場合も前述と同様に変倍レンズ14におけ
る各レンズ14aから14dまでの変倍に対応し
て可変抵抗RTが三段階の抵抗値に切り替えられ
てそれぞれフイルム露光量が一定となるように照
明用光源4は選択された光量を発する。 尚、光源自体の明るさを変えずに、照明系に透
過率可変フイルターを配置し、眼底への照明光量
を変化させ得るように構成してもよい。 次に作用について説明する。 まず、図示しない変倍操作ハンドルを回転操作
して操作軸26を回転させると、傘歯車25が駆
動して回転軸21と共に回転円板22が回転す
る。そして回転円板22に装着されている変倍レ
ンズ14も変位し、変倍レンズ14のうち低倍レ
ンズで広角45°のレンズ14aが観察撮影系の撮
影光軸2aに挿入されたときに変倍操作ハンドル
の回転操作をストツプする。こうして、レンズ1
4aが観察撮影系の撮影光軸2aに設定される。
それと同時に回転軸21に設けられている絞り板
30も回転して撮影絞り12のレンズ14aに対
応した絞り値を有する絞り穴12aが観察撮影系
の撮影光軸2aに連動して挿入される。 このとき、回転軸21上に設けられている切替
用スイツチSと照明用可変抵抗RTは回転軸21
の回転に伴いそれぞれ作動させられ、切替用スイ
ツチSはコンデンサC1に切り換えられ、照明用
可変抵抗RTはレンズ14aに対応した抵抗値に
切り替えられる。 以後、変倍操作ハンドルを回転操作して変倍レ
ンズ14を低倍側のレンズ14b及び低倍側のレ
ンズ14a,14bから高倍側のレンズ14c,
14dにそれぞれ変倍させたときには変倍された
各レンズ14b〜14dに対応して撮影絞り12
もそれぞれ対応する各絞り穴12b〜12dに可
変され、切替用スイツチSと照明用可変抵抗RT
も各レンズ14b〜14dにそれぞれ対応したコ
ンデンサC2、C3及び抵抗値に切り替えられる。 次に、第7図〜第12図に示すグラフ及び以下
に示す表に基づいて従来例とこの実施例との作
用の相違を説明する。
The present invention relates to a variable-magnification fundus camera, and more particularly to a variable-magnification fundus camera that can always obtain a constant film exposure amount even when the variable-magnification lens of an observation photographing system is varied. In the case of a conventional variable-magnification fundus camera, a variable-magnification lens is provided in the observation photographing system to change the magnification, and the photographing aperture of the observation-photographing system is changed in conjunction with the variable magnification operation of the variable-magnification lens. In this way, even when the amount of illumination light from the fundus illumination system is constant, there is a device that always keeps the amount of film exposure constant and eliminates fluctuations in the brightness of the screen. However, with such conventional variable-magnification fundus cameras, when the variable-magnification lens is operated to increase the magnification, the photographic aperture is increased to keep the film exposure constant. As the magnification of a variable magnification lens increases, the aperture becomes larger and the depth of field gradually becomes shallower, so when photographing an uneven fundus, only part of the fundus is in focus at high magnification. The problem was that there were practical difficulties. In addition, in the case of another conventional fundus camera capable of variable magnification, a variable magnification lens is provided in the observation photographing system to change the magnification, and the illumination of the fundus illumination system is linked to the variable magnification operation of the variable magnification lens. There has been a system in which the amount of light is varied so that even when the aperture of the photographing diaphragm of an observation photographing system is constant, the amount of film exposure is always constant and fluctuations in the brightness of the screen are eliminated. However, in conventional variable-magnification retinal cameras like this, when the variable-magnification lens is operated to increase the magnification, the amount of illumination light is increased to keep the film exposure constant. As the magnification of the variable magnification lens increases, the amount of illumination light gradually increases. The amount of increase is, for example, assuming that the variable magnification of the variable magnification lens, that is, the imaging magnification, is variable from βmin to βi to βmax, and if the illumination light amount of the light source, for example, an illumination light source, at βmin is 1, then at βi, it is β/βmin 2 It increases by the value of , resulting in a rapid increase. Therefore, the illuminance of the fundus of the subject's eye becomes extremely large when the magnification is high, and although it is difficult for the subject to withstand the glare even under normal circumstances, the condition worsens and the condition worsens, resulting in tearing. This causes problems such as leakage and increased blinking, resulting in poor operability during shooting. Furthermore, a large-capacity light source is required, resulting in the problem that the entire device becomes expensive. This invention has been made in view of these conventional problems, and involves changing the photographing aperture of the observation photographing system in response to changes in the lower magnification of the variable magnification lens provided in the observation photographing system. The object of the present invention is to solve the above-mentioned problems by varying the amount of illumination light from the fundus illumination system in response to changes in the high magnification side and keeping the amount of film exposure constant. The present invention will be explained below based on the drawings. 1 to 6 are diagrams showing one embodiment of the present invention. In the figure, reference numeral 1 is an objective lens placed facing the fundus Ef of the eye E to be examined.
A perforated mirror 3 is obliquely provided on the optical axis 2 of the eye E at a position substantially conjugate with the pupil of the eye E with respect to the objective lens 1. The illumination optical system includes an illumination optical system 4 which is an incandescent lamp.
and a photographing light source 5 which is a xenon tube, and the light from the illumination light source 4 is once converged onto the photographing light source 5 by a first condenser lens 6, and then diverged to a second condenser lens 7. The light enters, passes through the ring-shaped diaphragm 8, is reflected by the mirror 9, passes through the relay lenses 10 and 11, is reflected by the perforated mirror 3 toward the objective lens 1, passes through the objective lens 1, and passes through the pupil of the eye E to be examined. Projected onto the fundus Ef. After the light from the photographic light source 5 enters the second condenser lens 7, it follows the same optical path as the photographic light source 5 and reaches the fundus.
Projected to Ef. On the other hand, the observation photographing system includes a photographing diaphragm 1 with a variable aperture, which is provided behind the perforated mirror 3 at a position approximately conjugate with the pupil of the eye E with respect to the objective lens 1.
2, a focusing lens 13 and a variable magnification lens 1 provided sequentially along the photographing optical axis 2a behind the photographing aperture 12.
4 and an imaging lens 15, the reflected light from the fundus Ef passes through a photographic aperture 12, a focusing lens 13, and a variable magnification lens 14, and is imaged by the imaging lens 15 on a photographic film surface 16. A flip-up mirror 17 is disposed in front of the photographic film surface 16, and when the mirror 17 is in the illustrated position, the light from the imaging lens 15 is reflected by the mirror 17, and an image is formed on the focal plane fa. , the field lens 18 , the prism 19 and the eyepiece 20 . Next, the variable power lens 14 will be explained in detail. As shown in FIG. 2, the variable magnification lens 14 is mounted on a rotating disk 22 that is mounted on a rotating shaft 21. As shown in FIG. The variable magnification lens 14 is a low-magnification lens with a wide angle of 45°.
It is composed of a lens 14a with a wide angle of 30°, a lens 14b with a wide angle of 30°, and a lens 14c with a narrow angle of 20° and a lens 14d with a narrow angle of 15° on the high magnification side, and each of these lenses 14a to 14d is mounted on a rotating disk 22. They are attached in a circular pattern at equal intervals. The rotating shaft 21 has bearings 23, 2 attached at both ends to a fundus camera housing (not shown).
4, and a bevel gear 25 is fixed to one end. An operating shaft 26 is meshed with this bevel gear 25, and the operating shaft 26 is rotated by a variable-magnification operating handle (not shown). Therefore, the operation shaft 26 is rotated by rotating the variable power operation handle.
rotates, drives the bevel gear 25, and rotates the rotating shaft 2.
By rotating the rotating disk 22 together with 1,
Any lens 14a to 14d among the variable magnification lenses 14 mounted on the rotating disk 22 can be inserted into the photographing optical axis 2a of the observation photographing system. In the variable magnification lens 14 of this embodiment, the lens 1 is located on the photographing optical axis 2a.
4a to 14d are selectively inserted, but the present invention is not limited to this, and the magnification may be changed by changing the imaging lens or by using a zoom method. Of course it's a good thing. Furthermore, the photographing diaphragm 12 whose aperture can be varied will be explained. A diaphragm plate 30 constituting the photographic diaphragm 12 is attached to the rotating shaft 21, and the diaphragm plate 30 has aperture holes 12a, 12b, 12c, and 12d having different aperture degrees.
is formed. That is, the openings of the aperture holes 12a and 12b corresponding to the lenses 14a and 14b on the low magnification side of the variable magnification lens 14 are formed in a size such that the brightness of the photographing system is equal, and Corresponding aperture hole 12c,
The aperture 12d is formed to have the same size as the aperture of the aperture hole 12b corresponding to each lens 14b having an angle of 30° on the low magnification side. The rotating shaft 21 on which the photographing aperture 12 and the rotating disk 22 of the variable magnification lens 14 are mounted is configured to vary the photographic aperture in response to changes in the lower magnification of the variable magnification lens, and Aperture interlocking means is configured to keep the photographing aperture constant in response to side changes. Therefore, when an arbitrary lens among the variable magnification lenses 14, for example, the lens 14a, is inserted into the photographing optical axis 2a of the observation photographing system, the aperture plate 30 also rotates in conjunction with the rotation of the rotating disk 22. The lens 14a
An aperture hole 12a having an aperture value corresponding to the aperture value is inserted into the photographing optical axis 2a of the observation photographing system. Finally, a configuration for varying the amount of illumination light from the illumination light source 4 and photographing light source 5 will be described. As shown in FIG. 1, the rotary shaft 21 is provided with a switching switch S for a photographing light source 5 which switches in three stages as the variable magnification lens 14 changes magnification, and a switch S for a photographic light source 5 that switches to three stages as the variable magnification lens 14 changes magnification.
An illumination variable resistor R T whose resistance value changes for the illumination light source 4 in response to the magnification change of the illumination light source 4 is provided. The changeover switch S is provided in the electric circuit shown in FIG. 5, which changes the amount of light emitted from the photographing light source 5 by changing the capacitance of the capacitor. This electric circuit connects three capacitors C 1 , C 2 , C 3 with different capacities in series to the power source E 1 via a changeover switch S, and connects them in series .
A photographing light source 5, for example, a xenon tube, is connected in series to the camera. When the variable magnification lens 14 is variable and the lower magnification lenses 14a and 14b are used, the switching switch S is set to the condenser.
When the high-magnification lens 14c is used, the switch S is connected to the condenser C2 , and when the high-magnification lens 14d is used, the switch S is connected to the condenser C2.
Light source 5 for photography is connected to C 3 in a switching manner.
emits a selected amount of light. Note that the photographing light source 5 emits light only when a trigger switch (not shown) is turned on. In this case, each lens 14a~ of the variable power lens 14
The brightness (F number) ratio of 14d is 1:1:
The ratio is 1.52:2.05, and it becomes darker on the high magnification side.
Therefore, in order to keep the amount of film exposure constant, the capacitors C 1 to C 3 are adjusted so that the amount of light from the photographing light source 5 to each lens 14a to 14d is increased at a ratio of 1:1:1.52 2 :2.05 2 . Set the capacity. Further, the variable resistor R T for illumination is provided in the electric circuit shown in FIG. 6, which changes the amount of light emitted from the illumination light source 4 by changing the resistance value. This electrical circuit connects the power source E 2 to the lighting light source 4.
For example, it is constructed by connecting an incandescent lamp and a lighting variable resistor R T in series. In this case, similarly to the above, the variable resistor R T is switched to three resistance values corresponding to the variable magnification of each lens 14a to 14d in the variable magnification lens 14, and the illumination is performed so that the film exposure amount is constant. The light source 4 emits a selected amount of light. Note that a variable transmittance filter may be arranged in the illumination system to change the amount of illumination light to the fundus without changing the brightness of the light source itself. Next, the effect will be explained. First, when the operating shaft 26 is rotated by rotating a variable power operating handle (not shown), the bevel gear 25 is driven and the rotating disk 22 is rotated together with the rotating shaft 21 . The variable magnification lens 14 attached to the rotary disk 22 is also displaced, and when the low magnification lens 14a with a wide angle of 45° among the variable magnification lenses 14 is inserted into the photographing optical axis 2a of the observation photographing system, the variable magnification lens 14 is also displaced. Stops the rotation operation of the double operation handle. In this way, lens 1
4a is set as the photographing optical axis 2a of the observation photographing system.
At the same time, the aperture plate 30 provided on the rotating shaft 21 also rotates, and an aperture hole 12a having an aperture value corresponding to the lens 14a of the photographing aperture 12 is inserted in conjunction with the photographing optical axis 2a of the observation photographing system. At this time, the switching switch S and the lighting variable resistor R T provided on the rotating shaft 21 are connected to the rotating shaft 21.
The switching switch S is switched to the capacitor C1 , and the lighting variable resistor R T is switched to a resistance value corresponding to the lens 14a. Thereafter, the variable magnification operation handle is rotated to change the variable magnification lens 14 from the low magnification side lens 14b and the low magnification side lenses 14a, 14b to the high magnification side lens 14c,
14d, the photographic aperture 12 corresponds to each of the lenses 14b to 14d whose magnifications have been changed.
are also variable to the corresponding aperture holes 12b to 12d, respectively, and the switching switch S and the lighting variable resistor R T
The capacitors C 2 and C 3 and resistance values are also switched to correspond to the respective lenses 14b to 14d. Next, the difference in operation between the conventional example and this embodiment will be explained based on the graphs shown in FIGS. 7 to 12 and the table shown below.

【表】 表中Aは変倍レンズの変倍に対して撮影絞り
を可変させた従来の眼底カメラを示し、Bは変倍
レンズの変倍に対して光量を可変させた別の従来
の眼底カメラを示し、Cはこの発明の眼底カメラ
を示しており、2αはそれぞれの眼底カメラの変
倍レンズの画角、fは変倍レンズの焦点距離、β
は撮影倍率、FはFナンバー、λは使用波長、X
は被写界深度を示している。(X=2F2λ/β2) この図表は第7図〜第12図に示されている値
を比較のために数字で示したものである。
[Table] In the table, A shows a conventional fundus camera in which the photographing aperture is varied as the magnification of the variable magnification lens changes, and B shows another conventional fundus camera in which the light intensity is varied in response to the variable magnification of the variable magnification lens. C indicates the fundus camera of the present invention, 2α is the angle of view of the variable magnification lens of each fundus camera, f is the focal length of the variable magnification lens, and β
is the photographing magnification, F is the F number, λ is the wavelength used, and X
indicates depth of field. (X=2F 2 λ/β 2 ) This chart shows the values shown in FIGS. 7 to 12 numerically for comparison.

【表】 表はこの発明の実施例における数値例をまと
めて示す。尚、画角45°の場合を基準として比で
記載する。 第7図は従来の眼底カメラで撮影絞りを可変さ
せてフイルム露光量を一定にした場合の被写界深
度の変化を示し、第8図は照明用光源の照明光比
の変化を示し、第9図は従来の眼底カメラで照明
用光源の照明光量を可変させてフイルム露光量を
一定にした場合の被写界深度の変化を示し、第1
0図は照明用光源の照明光比の変化を示し、第1
1図はこの発明の眼底カメラで撮影絞りと照明用
光源の照明光量を可変させてフイルム露光量を一
定にした場合の被写界深度の変化を示し、第12
図は照明用光源の照明光比の変化をそれぞれ示し
ている。 第7図、第9図、第11図の縦軸Xは被写界深
度を示し、横軸fは変倍レンズの焦点距離、βは
撮影倍率を示している。また、第8図、第10
図、第12図の縦軸Yは照明光比を示し、横軸
f、βは前述と同様である。なお、撮影倍率βは
使用された変倍レンズ14の各レンズ14a〜1
4dの倍率であり、各レンズ14a〜14dを画
角で表わしている。従来例もこの発明のものと同
じ変倍レンズ14が用いられているものとする。 第7図及び第8付から明らかな如く、従来の眼
底カメラで照明用光源4の照明光量を一定にして
撮影絞り12を変倍レンズ14の変倍に対応させ
て可変させた場合、被写界深度は第7図の被写界
深度曲線D1に見る如く、変倍レンズ14が低倍
側のレンズ14aから高倍側のレンズ14dへと
変倍されていくに従つて次第に浅くなることが分
かる。これに対し、照明光比曲線L1は水平な直
線で一定であることが分かる。尚、このときの照
明光比は低倍レンズ14aの時の照明光を基準と
している。 次に、第9図及び第10図から明らかな如く、
別の従来の眼底カメラで撮影絞り12の開口度を
一定にして照明用光源4の照明光量を変倍レンズ
14の変倍に対応させて可変させた場合、被写界
深度は第9図の被写界深度曲線D2に見る如く、
変倍レンズ14が抵倍のレンズ14aから高倍の
レンズ14dへと変倍されていつても水平な直線
で一定であり、変化しないことが分かる。これに
対し、照明光比曲線L2は上昇しており、変倍レ
ンズ14が低倍から高倍へと変倍されていくに従
い照明用光源4の照明光量が急激に増大している
ことが分る。 これに対して、この発明の眼底カメラで変倍レ
ンズ14を低倍側のレンズ14aから高倍側のレ
ンズ14dへと変倍させていつた場合で低倍側の
レンズ14aから低倍側のレンズ14bに変倍さ
れたときには撮影絞り12も絞り穴12aから1
2bに変えられ、絞り値即ち開口度が小から大に
なり、被写界深度は浅くなる。第11図に見る如
く、被写界深度曲線D3のレンズ14aからレン
ズ14bまでの部分が下降しており、被写界深度
が浅くなつていることが分かる。具体的には、図
表に示す如く、被写界深度は0.18から0.08にな
る。このときの被写界深度は撮影にあたつて実用
上問題とならない値である。 従つて、低倍側と高倍側の境界はこの場合にお
ける被写界深度0.08であるときの変倍レンズの倍
率値、即ち、レンズ14bの倍率値である。 しかし、このとき、切替用スイツチSと照明用
可変抵抗RTの切り替えは行なわれないので、撮
影用光源5と照明用光源4の照明光量は変らず一
定であり、第12図に見る如く、照明光比曲線
L3のレンズ14aからレンズ14bまでの部分
が水平であり、照明用光源4の照明光量が一定で
あることが分かる。具体的には図表に示す如
く、照明光比は1で変らない。 この場合、フイルム露光量は変倍レンズ14の
レンズ14aからレンズ14bへの変倍に対応さ
せて、撮影絞り12も絞り穴12aから12bに
可変され、一定に調整されている。 次に、変倍レンズ14を低倍側のレンズ14b
から高倍側のレンズ14cへと変倍させていつた
場合、回転円板22の回転に連動して絞り板30
も回転して撮影絞り12の絞り穴12bから12
cに変わるが、開口度は同じに設定されており、
被写界深度は一定となる。第11図に見る如く、
被写界深度曲線D3のレンズ14bからレンズ1
4cまでの部分が水平であることは被写界深度が
一定であることを示している。具体的には図表
に示す如く、被写界深度は0.08で変らない。 このとき、切替用スイツチSと照明用可変抵抗
RTの切り替えは行なわれ、撮影用光源5と照明
用光源4との照明光量は増大させられる。第12
図に見る如く、照明光比曲線L3のレンズ14b
からレンズ14cまでの部分が上昇していること
は照明用光源4の照明光量が増大していることを
示している。具体的には、図表に示す如く、照
明用光比は1から2.3に増大するが、照明用光源
の照明光量のみを増大させる従来の眼底カメラの
場合の照明光比5.1に対して約半分である。この
様に照明光源4の照明光量は、第6図に示した照
明用可変抵抗RT(光量制御手段)によつて、第1
2図に示した様に高倍側でのみ変化するように制
御される。 また、変倍レンズ14を高倍側のレンズ14c
から14dへと変倍させていつた場合にも、撮影
絞り12の開口度は、低倍側のレンズ14bのと
きと同じで、照明用光源4の照明光量だけを増大
させているので、前述と同様のことがいえるので
説明を省略する。ただ具体的な数字でいえば、照
明光比が2.3から4.2に増大する。このときも、照
明用光源の照明光量のみを増大させる従来の眼底
カメラの場合の照明光比9.4に対して約半分であ
り、しかも従来の眼底カメラで、レンズ14cが
用いられたときの照明光比5.1よりは0.9も低い。 このように、変倍レンズ14を低倍側のレンズ
14bから高倍側のレンズ14c及び高倍側で、
レンズ14cからレンズ14dへとそれぞれ変倍
させた場合に、撮影絞り12の開口度を一定にし
たことにより生じるフイルム露光量の不足を、照
明用光源4の照明光量を増大させてフイルム露光
量を一定に調整するようにしており、照明用光源
4の照明光量の増大量は従来の眼底カメラに比し
て大きくはない。 従つて、変倍レンズ14を低倍側から高倍側
へ、或いは高倍側から更に高倍側へと変倍させた
としても、被写界深度は低倍時と変らず、眼底の
一部にのみピントのあつた写真となるおそれはな
く、照明用光源4の照明光量の増大量も少なく、
被検眼者にとつてまぶしくなり過ぎるというおそ
れもない。 照明用光源4を例に挙げて説明したが、撮影用
光源5についても同様であることは勿論である。 以上述べたようにこの発明によれば、その構成
を変倍レンズの倍率変化のうち、低倍側変化に対
応させて観察撮影系の撮影絞りを可変させ、高倍
側変化に対応させて眼底照明系の照明光量を可変
させてフイルム露光量を一定にするようにしたた
め、撮影倍率が可変しても適正な露光となり、良
好な撮影ができるという効果が得られる。しか
も、低倍側の倍率変化では、照明光量を一定にす
ると共に撮影絞りを可変させて、フイルム露光量
を一定にするようにしているが、この際の撮影絞
りの変化により被写界深度が変化しても、撮影絞
りの変化が小さいので、写真のピントがボケるほ
ど被写界深度が浅くなるような影響はでない。 また、高倍率側では、撮影絞りを一定にすると
共に照明光量を可変させて、フイルム露光量を一
定にするようにしているので、高倍側で倍率を増
大させても、被写界深度の低下を招くことがない
ようにできる。しかも、照明光源の照明光量は高
倍側でのみ可変させるようにしているので、倍率
変化の大きな眼底カメラに適用して、倍率の増大
に伴つて照明光量を増大させるようにしても、照
明光が被検眼に与える負担を許容内におさめるこ
とができる。 これらの結果、低倍から高倍までの全域におい
て、ピントが合つた写真を撮ることができると共
に、照明光による被検眼に与える負担を許容内に
おさめることができる。 また、低倍側と高倍側との境界をフイルム露光
量を一定にして撮影絞りを可変させた場合におけ
る被写界深度が実用上問題とならない値であると
きの変倍レンズの倍率値とし、変倍レンズが高倍
側で変倍された場合に撮影絞りを低倍側と同様に
して光源を可変させてフイルム露光量を一定にす
るようにしたので被写界深度は実用に足る値とな
り、しかも照明光量の増加を従来の半分程度に押
えることができ、被検眼者にそれほどの負担を与
えることなく、凹凸のある眼底の良好な撮影がで
きるという効果が得られる。
[Table] The table summarizes numerical examples in the embodiments of this invention. Note that the ratio is based on the case where the angle of view is 45°. Figure 7 shows the change in depth of field when the photographic aperture is varied and the film exposure is kept constant using a conventional fundus camera. Figure 8 shows the change in the illumination light ratio of the illumination light source. Figure 9 shows the change in depth of field when the amount of illumination light from the illumination light source is varied and the amount of film exposure is kept constant using a conventional fundus camera.
Figure 0 shows the change in the illumination light ratio of the illumination light source, and the first
Figure 1 shows the change in depth of field when the film exposure amount is kept constant by varying the photographing aperture and the illumination light amount of the illumination light source in the fundus camera of the present invention.
The figures each show changes in the illumination light ratio of the illumination light source. In FIGS. 7, 9, and 11, the vertical axis X indicates the depth of field, the horizontal axis f indicates the focal length of the variable magnification lens, and β indicates the photographing magnification. Also, Figures 8 and 10
The vertical axis Y in the figures and FIG. 12 indicates the illumination light ratio, and the horizontal axes f and β are the same as described above. Note that the photographing magnification β is determined by each lens 14a to 1 of the variable magnification lens 14 used.
The magnification is 4d, and each lens 14a to 14d is represented by an angle of view. It is assumed that the conventional example also uses the same variable magnification lens 14 as that of the present invention. As is clear from FIGS. 7 and 8, in a conventional fundus camera, when the illumination light amount of the illumination light source 4 is kept constant and the photographing diaphragm 12 is varied in accordance with the magnification change of the variable magnification lens 14, the subject As shown in the depth of field curve D1 in FIG. 7, the depth of field gradually becomes shallower as the variable power lens 14 is changed from the lower magnification lens 14a to the higher magnification lens 14d. I understand. On the other hand, it can be seen that the illumination light ratio curve L1 is a constant horizontal straight line. Note that the illumination light ratio at this time is based on the illumination light when the low magnification lens 14a is used. Next, as is clear from FIGS. 9 and 10,
In another conventional fundus camera, when the aperture of the imaging diaphragm 12 is kept constant and the illumination light intensity of the illumination light source 4 is varied in accordance with the variable power of the variable magnification lens 14, the depth of field is as shown in FIG. As seen in the depth of field curve D 2 ,
It can be seen that even when the variable magnification lens 14 is changed from a high magnification lens 14a to a high magnification lens 14d, it remains a constant horizontal straight line and does not change. On the other hand, the illumination light ratio curve L 2 is rising, indicating that the amount of illumination light from the illumination light source 4 increases rapidly as the magnification of the variable power lens 14 is changed from low to high magnification. Ru. On the other hand, when the variable magnification lens 14 is changed from the low-magnification lens 14a to the high-magnification lens 14d in the fundus camera of the present invention, from the low-magnification lens 14a to the low-magnification lens 14b. When the magnification is changed to
2b, the aperture value, or aperture, increases from small to large, and the depth of field becomes shallow. As shown in FIG. 11, the portion of the depth of field curve D3 from lens 14a to lens 14b is downward, indicating that the depth of field is becoming shallower. Specifically, as shown in the chart, the depth of field goes from 0.18 to 0.08. The depth of field at this time is a value that does not pose a practical problem when photographing. Therefore, the boundary between the low magnification side and the high magnification side is the magnification value of the variable power lens when the depth of field is 0.08 in this case, that is, the magnification value of the lens 14b. However, at this time, since the switching switch S and the lighting variable resistor R T are not switched, the illumination light amount of the photographing light source 5 and the illumination light source 4 remains constant, and as shown in FIG. illumination light ratio curve
It can be seen that the portion of L 3 from lens 14a to lens 14b is horizontal, and the amount of illumination light from illumination light source 4 is constant. Specifically, as shown in the diagram, the illumination light ratio remains 1. In this case, the film exposure amount is adjusted to a constant value by changing the photographing aperture 12 from the aperture hole 12a to the aperture hole 12b in accordance with the change in magnification of the variable power lens 14 from the lens 14a to the lens 14b. Next, change the magnification variable lens 14 to the low magnification side lens 14b.
When the magnification is changed from to the lens 14c on the high magnification side, the diaphragm plate 30 rotates in conjunction with the rotation of the rotating disk 22.
12 from the aperture hole 12b of the photographing aperture 12.
c, but the opening degree is set to the same,
The depth of field remains constant. As shown in Figure 11,
Depth of field curve D 3 from lens 14b to lens 1
The fact that the portion up to 4c is horizontal indicates that the depth of field is constant. Specifically, as shown in the chart, the depth of field remains unchanged at 0.08. At this time, selector switch S and lighting variable resistor
R T is switched, and the amount of illumination light from the photographing light source 5 and the illumination light source 4 is increased. 12th
As shown in the figure, the lens 14b of the illumination light ratio curve L3
The rise of the portion from the lens 14c to the lens 14c indicates that the amount of illumination light from the illumination light source 4 is increasing. Specifically, as shown in the chart, the illumination light ratio increases from 1 to 2.3, which is about half the illumination light ratio of 5.1 in the case of a conventional fundus camera, which increases only the amount of illumination light from the illumination light source. be. In this way, the amount of illumination light from the illumination light source 4 is controlled by the variable resistance R T for illumination (light amount control means) shown in FIG.
As shown in Figure 2, it is controlled so that it changes only on the high magnification side. Also, the variable magnification lens 14 is set to the high magnification side lens 14c.
Even when the magnification is changed from 14d to 14d, the aperture of the photographic diaphragm 12 is the same as that of the lens 14b on the low magnification side, and only the amount of illumination light from the illumination light source 4 is increased. Since the same thing can be said, the explanation will be omitted. However, in terms of specific numbers, the illumination light ratio increases from 2.3 to 4.2. In this case as well, the illumination light ratio is approximately half of 9.4 in the case of a conventional fundus camera that increases only the amount of illumination light from the illumination light source, and moreover, the illumination light ratio when the lens 14c is used in the conventional fundus camera It is also 0.9 lower than the ratio of 5.1. In this way, the variable magnification lens 14 is changed from the lens 14b on the low magnification side to the lens 14c on the high magnification side, and from the high magnification side,
When changing the magnification from the lens 14c to the lens 14d, the amount of film exposure is increased by increasing the amount of illumination light from the illumination light source 4 to compensate for the lack of film exposure caused by keeping the aperture of the photographic diaphragm 12 constant. The adjustment is made constant, and the amount of increase in the amount of illumination light from the illumination light source 4 is not large compared to a conventional fundus camera. Therefore, even if the variable magnification lens 14 is changed from a low magnification side to a high magnification side, or from a high magnification side to an even higher magnification side, the depth of field remains the same as when the magnification is low, and only a part of the fundus is affected. There is no risk of the photograph being in focus, and the amount of increase in the amount of illumination light from the illumination light source 4 is small.
There is no fear that it will be too bright for the eye being examined. Although the explanation has been given using the illumination light source 4 as an example, it goes without saying that the same applies to the photographing light source 5. As described above, according to the present invention, the photographing aperture of the observation photographing system is varied in response to the change in the low magnification of the magnification of the variable magnification lens, and the fundus illumination is adjusted in response to the change in the high magnification. Since the amount of illumination light of the system is varied to keep the amount of film exposure constant, even if the photographing magnification is varied, appropriate exposure can be achieved and good photographing can be achieved. Moreover, when changing the magnification on the low magnification side, the amount of illumination light is kept constant and the shooting aperture is varied to keep the film exposure constant, but the depth of field changes due to the change in the shooting aperture at this time. Even if the aperture changes, the change in the photographing aperture is small, so the depth of field will not become so shallow that the photograph will be out of focus. In addition, at high magnifications, the photographic aperture is held constant and the amount of illumination light is varied to keep the film exposure constant, so even if the magnification is increased at high magnifications, the depth of field will decrease. It is possible to avoid inviting Moreover, since the illumination light intensity of the illumination light source is made to vary only at high magnification, even if it is applied to a fundus camera with large magnification changes and the illumination light intensity is increased as the magnification increases, the illumination light will remain unchanged. The burden on the eye to be examined can be kept within an acceptable range. As a result, it is possible to take in-focus photographs in the entire range from low magnification to high magnification, and it is possible to keep the burden on the eye to be examined due to illumination light within an allowable range. In addition, the boundary between the low magnification side and the high magnification side is the magnification value of the variable magnification lens when the depth of field is a value that does not pose a practical problem when the film exposure amount is constant and the photographic aperture is varied, When the magnification of the variable magnification lens is changed to the high magnification side, the photographing aperture is set to the same value as the low magnification side, and the light source is varied to keep the film exposure constant, so the depth of field becomes a value that is sufficient for practical use. Furthermore, the increase in the amount of illumination light can be suppressed to about half that of the conventional method, and the effect that the uneven fundus of the eye can be photographed in a good manner can be obtained without putting much burden on the subject's eye.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例である眼底カメラ
の光学系を示す概略説明図、第2図は同眼底カメ
ラの変倍レンズを備えた回転円板と絞り板が回転
軸に装着された状態を示す正面図、第3図は第2
図の−線断面図、第4図は第2図の−線
断面図、第5図は同眼底カメラの撮影用光源の照
明光量を変えるための電気回路図、第6図は同眼
底カメラの照明用光源の照明光量を変えるための
電気回路図、第7図は従来の撮影絞りを可変する
眼底カメラの被写界深度の変化を示すグラフ、第
8図は同眼底カメラの照明光比を示すグラフ、第
9図は従来の照明光量を可変する眼底カメラの第
7図と同様なグラフ、第10図は同眼底カメラの
第9図と同様なグラフ、第11図はこの発明の一
実施例である眼底カメラの第7図と同様なグラ
フ、第12図は同眼底カメラの第8図と同様なグ
ラフである。 4……照明用光源、5……撮影用光源、12…
…撮影絞り、12a〜12d……絞り穴、14…
…変倍レンズ、14a〜14d……レンズ。
Fig. 1 is a schematic explanatory diagram showing the optical system of a fundus camera that is an embodiment of the present invention, and Fig. 2 shows a rotating disc with a variable magnification lens and an aperture plate of the fundus camera attached to a rotating shaft. Front view showing the condition, Figure 3 is the 2nd
Figure 4 is a cross-sectional view taken along the - line in Figure 2, Figure 5 is an electric circuit diagram for changing the illumination light intensity of the photographing light source of the fundus camera, and Figure 6 is a cross-sectional view of the fundus camera. An electric circuit diagram for changing the amount of illumination light from the illumination light source. Figure 7 is a graph showing changes in the depth of field of a conventional fundus camera with variable photographic aperture. Figure 8 is a graph showing the illumination light ratio of the same fundus camera. 9 is a graph similar to FIG. 7 for a conventional fundus camera that changes the amount of illumination light, FIG. 10 is a graph similar to FIG. 9 for the same fundus camera, and FIG. 11 is an example of an implementation of the present invention. FIG. 12 is a graph similar to FIG. 7 for the fundus camera as an example, and FIG. 12 is a graph similar to FIG. 8 for the same fundus camera. 4...Light source for illumination, 5...Light source for photography, 12...
...Photographing aperture, 12a to 12d...Aperture hole, 14...
...variable magnification lens, 14a to 14d...lens.

Claims (1)

【特許請求の範囲】 1 被検眼眼底を照明する照明光源を有する眼底
照明系と、被検眼眼底を観察撮影するための拡大
倍率を変える変倍レンズ及び撮影絞りを有する観
察撮影系とからなる変倍可能な眼底カメラにおい
て、 前記変倍レンズの倍率変化のうち低倍率側変化
に対応させて前記撮影絞りを可変させ、高倍率側
変化に対応させて前記撮影絞りを一定とさせる絞
り連動手段と、 高倍率側変化に対応させて前記照明光源による
照明光量を可変させる光量制御手段とを設けるこ
とにより、 前記低倍側及び高倍側でフイルム露光量を一定
にさせる様にしたことを特徴とする変倍可能な眼
定カメラ。 2 低倍率側と高倍率側との境界はフイルム露光
量を一定にして撮影絞りを可変させた場合におけ
る被写界深度が実用上問題とならない値であると
きの変倍レンズの倍率値であることを特徴とする
特許請求の範囲第1項記載の変倍可能な眼底カメ
ラ。
[Scope of Claims] 1. A fundus illumination system that has an illumination light source that illuminates the fundus of the eye to be examined, and an observation and photography system that has a variable magnification lens and a photography aperture that changes the magnification for observing and photographing the fundus of the eye to be examined. In the fundus camera capable of magnification, the photographing aperture is varied in response to a change in the lower magnification of the magnification of the variable magnification lens, and the photographing aperture is kept constant in response to a change in the higher magnification. , further comprising a light amount control means for varying the amount of illumination light from the illumination light source in response to changes on the high magnification side, thereby making the film exposure amount constant on the low magnification side and the high magnification side. A variable magnification camera. 2 The boundary between the low magnification side and the high magnification side is the magnification value of the variable magnification lens when the depth of field is a value that does not pose a practical problem when the film exposure amount is constant and the photographic aperture is varied. A variable magnification fundus camera according to claim 1.
JP57159426A 1982-09-16 1982-09-16 Multipliable eye bottom camera Granted JPS5949736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57159426A JPS5949736A (en) 1982-09-16 1982-09-16 Multipliable eye bottom camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57159426A JPS5949736A (en) 1982-09-16 1982-09-16 Multipliable eye bottom camera

Publications (2)

Publication Number Publication Date
JPS5949736A JPS5949736A (en) 1984-03-22
JPH0422572B2 true JPH0422572B2 (en) 1992-04-17

Family

ID=15693480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57159426A Granted JPS5949736A (en) 1982-09-16 1982-09-16 Multipliable eye bottom camera

Country Status (1)

Country Link
JP (1) JPS5949736A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008110156A (en) * 2006-10-31 2008-05-15 Topcon Corp Ophthalmologic photographing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5695033A (en) * 1980-10-22 1981-08-01 Canon Kk Eyeground camera

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5695033A (en) * 1980-10-22 1981-08-01 Canon Kk Eyeground camera

Also Published As

Publication number Publication date
JPS5949736A (en) 1984-03-22

Similar Documents

Publication Publication Date Title
JP3537205B2 (en) Microscope equipment
JP3756127B2 (en) Ophthalmic imaging equipment
JPS6144499B2 (en)
US4856890A (en) Ophthalmic photographing device
US5302988A (en) Stereoscopic retinal camera including vertically symmetrical apertures
JPH0212572B2 (en)
JPS5823098B2 (en) Ophthalmological device that corrects light intensity according to magnification change
JPH04193155A (en) Fundus camera
JPH0678882A (en) Fundus camera
JPH0422572B2 (en)
JPS6241018B2 (en)
JP3708669B2 (en) Fundus photographing device
JP2005021316A (en) Fundus camera
JP3176657B2 (en) Variable magnification fundus camera
JPH0228884Y2 (en)
JPH02128749A (en) Fundus camera
JPH05309072A (en) Ophthalmic measuring instrument
JPH025921A (en) Stereoscopic vision type camera for ocular fundus
JP3486466B2 (en) Fundus image storage device
JPS6125375B2 (en)
JPS5823099B2 (en) fundus camera
JPH08186830A (en) Optical system for color image pickup
JPH0810229A (en) Ophthalmological photographing device
JPH0471526A (en) Fundus camera
JPH0529683Y2 (en)