JPH0422557B2 - - Google Patents

Info

Publication number
JPH0422557B2
JPH0422557B2 JP57058439A JP5843982A JPH0422557B2 JP H0422557 B2 JPH0422557 B2 JP H0422557B2 JP 57058439 A JP57058439 A JP 57058439A JP 5843982 A JP5843982 A JP 5843982A JP H0422557 B2 JPH0422557 B2 JP H0422557B2
Authority
JP
Japan
Prior art keywords
resistance
strain
gmp
decoinine
adenine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57058439A
Other languages
Japanese (ja)
Other versions
JPS58175492A (en
Inventor
Shigeatsu Shimizu
Takayasu Tsuchida
Nobuki Kawashima
Takashi Tanaka
Hitoshi Ei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP57058439A priority Critical patent/JPS58175492A/en
Publication of JPS58175492A publication Critical patent/JPS58175492A/en
Publication of JPH0422557B2 publication Critical patent/JPH0422557B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】 本発明は発酵法によるグアノシン−5′−モノリ
ン酸(以下「GMP」と記す)の製造法に関する。 発酵法によるGMPの生産に関しては、アデニ
ン要求性、又はそれに各種のプリンアナログ耐性
を付与したバチルス属の微生物(特公昭42−
6158)ブレビバクテリウム属の微生物(特公昭42
−6158)、エシエリヒア属の微生物(特公昭43−
11760)、アデニン要求性およびデコイニン又はメ
チオニンスルフオキシド耐性のバチルス属の微生
物(特公昭56−12438)等がGMPを生産すること
が知られている。 本発明者らは上述のような従来のGMPの製造
法に対し、プリンアナログ耐性又はデコイニン耐
性を有するバチルス属の染色体より得たプリンア
ナログ耐性又はデコイニン耐性に関与する遺伝子
領域が組み込まれているベクターをアデニン要求
性のバチルス属の変異株に含有せしめたGMP生
産性バチルス属の微生物が著量のGMPを蓄積す
ることを見い出した。 本発明はこの知見に基づいて完成されたもので
ある。本発明でいうプリンアナログとはバチルス
属の微生物の増殖を抑制し、かつその抑制がヒポ
キサンチン、イノシン、5−イノシン酸、グアニ
ン、グアノシン、5′−グアニル酸等を培地中に添
加すれば全体的又は部分的に解除されるようにも
のである。例えば、8−アザグアニン、8−アザ
ヒポキサンチン、8−アザアデニン、2,6−ジ
アミノブリン、6−メルカプトプリン、6−メル
カプトプリンボシド、8−メルカプトグアノシン
等がある。 プリンアナログ耐性又はデコイニン耐性に関与
する染色体遺伝子の供与菌はバチルス属のプリン
アナログ耐性又はデコイニン耐性を有する変異株
ならどのような菌株でもよいが、耐性度のより高
いものが望ましい。又、アデニン要求性であつて
GMP生産能を有する菌株を親株として、プリン
アナログ耐性又はデコイニン耐性を有する変異株
を誘導すれば、GMP生産能がより高い変異株を
得ることができ、このような変異株を遺伝子供与
菌として用いればよりよい結果が得られる。又、
遺伝子供与菌として、アデニン要求性及びプリン
アナログ又はデコイニン耐性変異株に、さらに従
来知られているようなGMP生産能を向上させる
ような性質、例えばメチオニンスルホキシド耐
性、サイコフラニン耐性、サルフアグアニジン耐
性等を深した菌株を誘導して用いれば、GMPの
生産能がより高い菌株を得ることができ、このよ
うな菌株を染色体遺伝子供与菌として用いれば、
より好ましい結果が得られる。 遺伝子供与菌より染色体DNAを抽出する方法
は、例えばJ.Bacteriol.、89、1065(1965)に記載
されているような通常の方法により行うことがで
きる。 ベクターDNAとしては、バチルス属の菌体中
で複製するプラスミド又はフアージならば、どの
ようなものでもよい。例えばスタフイロコツカス
属微生物由来のpT127、pC194、pC221、pC223、
pUB112(以上、Proc.Natl.Acad.Sci.U.S.A.、74
1680(1977)参照)、pUB110(J.Bacteriol.、134
318(1978)参照)、pTP4、pTP5(以上、
Microbiol Letters、、55(1978)参照)、枯草
菌由来のpLS15、pLS28(以上、J.Bacteriol.、
131、699(1977)参照)、pLS13(J.Bacteriol.、
129、1487(1977)参照)、pPL1、pPL2(以上、J.
Bacteriol.、124、484(1975)参照)、テンペレー
トフアージとしても知られるrho11(Gene.、
89(1979))、phi105(Gene.、、87(1979))、
SPO2(Gene.、、51(1979))等がある。更に上
記プラスミドをもとにして構築した複合プラスミ
ドも当然のことながらベクターDNAとして利用
できうる。 染色体DNA及びベクターDNAはそれぞれ制限
エンドヌクレアーゼを用いて切断する。それぞれ
のベクターには適した制限エンドヌクレアーゼが
あるが、それは上記ベクターについての記載があ
る文献等に示されてある。染色体DNAについて
は制限エンドヌクレアーゼによる切断が部分的に
行なわれるように反応条件を調節すれば多くの種
類の制限酵素が利用できる。 かくして得られた染色体NDA断片と、切断さ
れたベクターNDAとを連結せしめる方法は、リ
ガーゼを用いる通常の法が使用できる。一方、タ
ーミナルトランスフエラーゼを用いて染色体
NDA断片と開裂したベクターDNAとにデオキシ
アデニール酸とデオキシシチジル酸をそれぞれ付
加し、混合した後アニーリングして連結せしめる
方法も利用し得る。 かくして得られた染色体NDA断片を組み込ん
で組換えベクターNDAの受容菌はバチルス属の
アデニン要求性を有する変異株からどのようなも
のでもよいが、プリンアナログ耐性又はデコイニ
ン耐性を有していない菌株を用いれば、形質転換
株を選択する際に好都合である。更に組換え
DNA受容菌としてプリンアナログ耐性又はデコ
イニン耐性を有し、より高いGMP生産能を有す
る菌株を用いれば、よりGMP生産性の高い形質
転換株を得ることができる。受容菌としては当然
GMP分解能がより低いものを用いなければなら
ない。 染色体NDAとベクターの混合物をNDA受容菌
に導入するには例えばMolec.Gene.Genet.、168
111(1979)に記載されているような通常の形質転
換法が利用できる。 GMP生産能を有し、プリンアナログ耐性又は
デコイニン耐性に関与する遺伝子領域が組み込ま
れているベクターを含有する形質転換株を選択す
るには、例えばベクター受容菌としてアデニン要
求性変異株を用いて形質転換し、プリンアナログ
又はデコイニンを含有する培地で生育してくる菌
株を選択すればよい。又、ベクターNDA上の抗
生物質耐性等の性質を併せもつ菌株を選択できる
ような培地を用いればより選別が容易である。 このようにして、一旦選別されたプリンアナロ
グ耐性等に関与する遺伝子領域が組み込まれてい
る組換えベクターNDAは、形質転換株より抽出
後、他の組換えベクターNDA受容菌、例えば
GMP生産能を有する菌株に導入することにより
GMP蓄積量をさらに増大させることができる。 かくして得られたGMP生産菌を培養してGMP
を製造する方法は従来知られている方法と特に変
らない。 即ち、このような微生物を培養する培地は、炭
素源、窒素源、無機塩類、アデニンおよび必要な
らば更にその他の微量栄養素を含有する通常の液
体培地である。炭素源としては、グルコース、糖
蜜、デンプン加水分解液などの炭水化物が望まし
い。窒素源としては硫安、硝安、塩安、リン安等
のアンモニウム塩、硝安等の硝酸塩、尿素、アン
モニアガス等が使用できる。また栄養要求物質と
してのアデニンはアデニン、アデニン鉱酸塩、ア
デノシン、アデニル酸等のいずれも使用可能であ
る。また必要に応じてビタミン酸、アミノ酸、ア
デニン以外の核酸塩基などの微量栄養素を添加す
れば、GMP蓄積量を増すことができる場合が多
い。 培養方法は好気的条件がく、また、培養温度は
27ないし38℃の範囲が好適である。場合によつて
は培養途中にて培養温度を変更させてもよい。培
養開始時および培養中に培養液のPHを5.0ないし
9.0に調節し培養するのが望ましい。PHの調整に
は無機酸、有機酸あるいはアルカリさらに尿素、
炭酸カルシウム、アンモニウム水、アンモニアガ
スなどを使用することが出来る。かくして2ない
し5日間培養すれば著量のGMPが培地中に蓄積
される。 培養液からGMPを採取する方法は、イオン交
換樹脂を用いる等通常の方法でよい。 実施例 バチルス・ズブチリスAJ11711(アルギニン、
ロイシン複要求株)からN−メチル−N′−ニト
ロ−ニトロソグアニン変異処理(500μg/mlの
N−メチル−N′−ニトロ−N−ニトロソグアニ
ジンに0℃にて30分間108コ/mlの菌体を接触せ
しめた)によつてアデニン要求株の中からGMP
生産能を有する菌株AJ11853(FERM−P6484)
(アルギニン要求性、ロイシン要求性、アデニン
要求性)を得た。さらにこのアデニン要求株から
同様の変異処理によつて誘導したGMP生産菌
AJ11854(FERM−P6485)(アルギニン要求性、
ロイシン要求性、アデニン要求性、8−アガグア
ニン耐性)、AJ11855(FERM−P)(アルギニン
要求性、ロイシン要求性、アデニン要求性、デコ
イニン耐性)、AJ11856(アルギニン要求性、ロイ
シン要求性、アデニン要求性、8−アザグアニン
耐性、デコイニン耐性)を得た。 (1) 染色体DNAの調整 AJ11854、AJ11855及びAJ11856を各々1
の「Bacto−Penassay Broth」(Difco社製)
中で35℃、約2時間振盪培養を行い、対数増殖
期の菌株を集菌後、通常のNDA抽出法(J.
Bacteriol.、89、1065(1965))により染色体
NDAを抽出、精製し、最終AJ11854から3.1
mg、AJ11855から2.6mg、AJ11856から3.6mgを
得た。 (2) 染色体DNA断片のベクターへの挿入 プリンアナログ耐性又はデコイニン耐性を支
配する遺伝子領域をクローニングするため、そ
のベクターとして自立増殖性のプラスミド
pUB110(カナマイシン耐性、ネオマイシン耐
性を発現する)を用いた。(1)で得られた染色体
DNAを各々5μgずつとプラスミドpUB110 5μ
gずつをそぞれ制限エンドヌクレアーゼEcoRI
を37℃にて60分作用させてDNA鎖を切断した。
65℃で10分間熱処理後、各両反応液を混合し、
ATPおよびジチオスライトール存在下、T4
アージ由来のDNAリガーゼにて10℃にて24時
間、DNA鎖の連絡反応を行なつた。 (3) 組換えプラスミドNDAによる形質転換 バチルス・ズブチリスAJ11853を
「Penassay−Broth」(Difco社製)に接触した
30℃で1晩振とう培養を行ない、第培養培地
(グルコース5g/、(NH42SO42g/、
KH2PO46g/、K2HPO414g/、
MgSO4・7H2O0.2g/、クエン酸ナトリウ
ム1g/、酵母エキス2g/、L−アルギ
ニン250mg/、L−ロイシン50mg/、アデ
ニン50mg/を含む)に接触し、37℃にて4時
間振盪培養を行なつた後、さらに第培養培地
(グルコース5g/、(NH42SO42g/、
KH2PO46g/、K2HPO414g/、
MgSO4・7H2O1.2g/、クエン酸ナトリウ
ム1g/、酵母エキス0.2g/、L−アル
ギニン50mg/、L−ロイシン5mg/、アデ
ニン50mg/を含む)に接触し、37℃で1.5時
間振盪培養を行なうことによつて、いわゆるコ
ンピテントな(NDA取込能を有する)細胞を
調製した(参考文献J.Bacteriol.、81、741
(1961))。このコンピテント細胞懸濁液に(2)で
得たNDA溶液を各々、別々に加えて37℃でさ
らに2時間振盪を行なつて形質転換反応を完了
させた。 次に菌株AJ11853のDNA形質転換株を含む
懸濁液をカナマイシン5μg/ml、8−アザグ
アニン100μg/を含有する最小培地(最小
培地)、カナマイシン5μg/ml及びデコイニ
ン1000μg/mlを含有する最小培地(最小培地
)、カナマイシン5μg/ml及び8−アザグア
ニン100μg/ml及びデコイニン1000μg/mlを
含有する最小培地(最小培地)のプレート上
に塗沫し37℃で培養した。(最小培地はグルコ
ース5g/、(NH42SO42g/、
KH2PO46g/、K2HPO414g/、
MgSO4・7H2O0.2g/、クエン酸ナトリウ
ム1g/、L−アルギニン100mg/、L−
ロイシン100mg/、アデニン50mg/及び寒
天20g/、PH7.2)の組成を有するものであ
る。)培養3日後には上記最小培地上に6個
のコロニーが、最小培地上に5個のコロニー
が、最小培地上に3個のコロニーそそれぞれ
出現したので、これらを釣菌し各クローンをそ
れぞれ純粋に分離した。 得られた形質転換株の性質はいずれもアルギ
ニン要求性、ロイシン要求性、アデニン要求
性、カナマイシン耐性を有し、かつ最小培地
から得られた形質転換株は8−アザグアニン耐
性、最小培地から得られた形質転換株はデコ
イニン耐性、最小培地から得られた形質転換
株は8−アザグアニン耐性及びデコイニン耐性
の性質をそれぞれ併せもつ菌株であつた。 (4) 組換えプラスミドNDAの抽出 (3)で得られたクローンのうち、最小培地上
のクローンAJ11857(FERM−P6488)及び最
小培地上のクローンAJ11858(FERM−
P6489)、倍地上のクローンAJ11859を用いて
C.I.kadoらの方法(J.Bacteriol.、145、1368
(1981))に基づいたDNA抽出法により各々
別々に菌体DNAを抽出し、アガロース電気泳
動によつてプラスミドDNAと染色体DNAを分
離し、プラスミドDNA区分を各々分画、採取
し、精製した。得られたプラスミド、即ち菌株
AJ11857、AJ11858、AJ11859から得られたプ
ラスミドを(3)で述べたのと同様の方法によつて
各々の原株のGMP生産菌株AJ11854、
AJ11855、AJ11856へ形質転換法により再導入
し、各々の菌株に対応するカナマイシン耐性株
AJ11860、AJ11861(FERM−P6490)及び
AJ11870(FERM−P6501)を得た。 (5) GMPの生産;AJ11853、AJ11854、
AJ11855、AJ11856、AJ11857、AJ11858、
AJ11859、AJ11860、AJ11861、AJ11870を培
養した結果を第1表に示す。培養方法は500ml
容肩付フラスコにGMP生産培地(グルコース
80g/、NH4Cl15g/、KH2PO410g/
、K2HPO414g/、MgSO4・7H2O5g/
、FeSO4・7H2O10mg/、MnSO4
7H2O10mg/、CaCl2・2H2O 2g/、ア
デニン200mg/、大豆蛋白加水分解液40mg/
、アルギニン100mg/、ロイシン100mg/
及びL−グルタミン酸10g/を含みPH6.5に
KOHで調製した。)を20mlずつ分注し、115℃
で10分間加熱殺菌した後、予め斜面培地で培養
して得た各種菌体を接触後、34℃で3日間振盪
培養を行つた。 【表】 【表】 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing guanosine-5'-monophosphate (hereinafter referred to as "GMP") by a fermentation method. Regarding the production of GMP by the fermentation method, microorganisms of the genus Bacillus (Special Publication No. 1973-
6158) Microorganisms of the genus Brevibacterium (Special Publication 1977)
-6158), microorganisms of the genus Escherichia (Special Publication 1977-
11760), microorganisms of the genus Bacillus that are auxotrophic for adenine and resistant to decoinine or methionine sulfoxide (Japanese Patent Publication No. 12438/1983), etc. are known to produce GMP. The present inventors developed a vector incorporating a gene region involved in purine analog resistance or decoinine resistance obtained from the chromosome of a Bacillus genus that has purine analog resistance or decoinine resistance, in contrast to the conventional GMP production method described above. We found that GMP-producing Bacillus microorganisms containing adenine auxotrophic Bacillus microorganisms accumulated a significant amount of GMP. The present invention was completed based on this knowledge. Purine analogs as used in the present invention inhibit the growth of microorganisms belonging to the genus Bacillus, and can be inhibited completely by adding hypoxanthine, inosine, 5-inosinic acid, guanine, guanosine, 5'-guanylic acid, etc. to the medium. It shall be such that it may be terminated in its entirety or in part. Examples include 8-azaguanine, 8-azahypoxanthine, 8-azaadenine, 2,6-diaminobulin, 6-mercaptopurine, 6-mercaptopurimboside, and 8-mercaptoguanosine. The donor strain of the chromosomal gene involved in purine analog resistance or decoinine resistance may be any mutant strain of the genus Bacillus as long as it has purine analog resistance or decoinine resistance, but one with a higher degree of resistance is preferable. Also, it is adenine-requiring.
If a mutant strain with purine analog resistance or decoinine resistance is induced using a strain with GMP-producing ability as a parent strain, a mutant strain with higher GMP-producing ability can be obtained, and such a mutant strain can be used as a gene donor. This will give you better results. or,
As gene-donating bacteria, we have added to the adenine auxotrophic and purine analog or decoinine resistant mutant strains, properties that improve the GMP production ability, such as methionine sulfoxide resistance, cycofuranine resistance, sulfaguanidine resistance, etc. By inducing and using a strain with a high level of GMP production, it is possible to obtain a strain with a higher GMP production ability, and if such a strain is used as a chromosomal gene donor,
More favorable results are obtained. Chromosomal DNA can be extracted from gene-donating bacteria by a conventional method such as that described in J. Bacteriol., 89 , 1065 (1965). The vector DNA may be any plasmid or phage that replicates in the cells of the genus Bacillus. For example, pT127, pC194, pC221, pC223 derived from Staphylococcus microorganisms,
pUB112 (above, Proc. Natl. Acad. Sci. USA, 74 ,
1680 (1977)), pUB110 (J. Bacteriol., 134 ,
318 (1978)), pTP4, pTP5 (and above,
Microbiol Letters, 5 , 55 (1978)), pLS15 and pLS28 derived from Bacillus subtilis (see J. Bacteriol.
131, 699 (1977)), pLS13 (J. Bacteriol.
129, 1487 (1977)), pPL1, pPL2 (see above, J.
Bacteriol., 124 , 484 (1975)), rho11, also known as temperate phage (Gene., 5 ,
89 (1979)), phi105 (Gene., 5 , 87 (1979)),
There are SPO2 (Gene., 7 , 51 (1979)), etc. Furthermore, a complex plasmid constructed based on the above-mentioned plasmid can also be used as a vector DNA. The chromosomal DNA and vector DNA are each cut using restriction endonucleases. There is a suitable restriction endonuclease for each vector, which is indicated in the literature describing the vector. For chromosomal DNA, many types of restriction enzymes can be used by adjusting the reaction conditions so that the restriction endonuclease can partially cut the DNA. A conventional method using ligase can be used to link the chromosomal NDA fragment thus obtained and the cut vector NDA. On the other hand, using terminal transferase, chromosome
A method may also be used in which deoxyadenylic acid and deoxycytidylic acid are added to the NDA fragment and the cleaved vector DNA, respectively, and the mixture is annealed and ligated. The recipient bacteria of the recombinant vector NDA incorporating the thus obtained chromosomal NDA fragment may be any mutant strain of the genus Bacillus that has adenine auxotrophy, but strains that do not have purine analog resistance or decoinine resistance may be used. If used, it is convenient when selecting transformed strains. Further recombination
If a strain having purine analog resistance or decoinine resistance and higher GMP production ability is used as a DNA receptor, a transformed strain with higher GMP productivity can be obtained. Of course as a recipient bacterium
A lower GMP resolution must be used. To introduce a mixture of chromosomal NDA and vector into NDA recipient bacteria, e.g. Molec.Gene.Genet., 168 ;
111 (1979) are available. To select a transformant strain containing a vector that has GMP-producing ability and incorporates a gene region involved in purine analog resistance or decoinine resistance, for example, an adenine auxotrophic mutant strain is used as a vector recipient. A strain that can be converted and grows in a medium containing a purine analog or decoinine may be selected. In addition, selection can be made easier if a medium is used that allows selection of strains that have the characteristics of vector NDA such as antibiotic resistance. In this way, the once selected recombinant vector NDA incorporating a gene region involved in purine analog resistance, etc., is extracted from the transformed strain and then transferred to other recombinant vector NDA recipient bacteria, e.g.
By introducing it into a strain with GMP production ability.
The amount of GMP accumulated can be further increased. The GMP-producing bacteria thus obtained are cultured to produce GMP.
The manufacturing method is not particularly different from conventionally known methods. That is, the medium for culturing such microorganisms is a conventional liquid medium containing a carbon source, a nitrogen source, inorganic salts, adenine and, if necessary, further micronutrients. Carbohydrates such as glucose, molasses, and starch hydrolyzate are preferred as carbon sources. As the nitrogen source, ammonium salts such as ammonium sulfate, ammonium nitrate, ammonium chloride, ammonium phosphorous, nitrates such as ammonium nitrate, urea, ammonia gas, etc. can be used. Further, as the adenine as a nutritional substance, any of adenine, adenine mineral salt, adenosine, adenylic acid, etc. can be used. Furthermore, if necessary, it is often possible to increase the amount of GMP accumulated by adding micronutrients such as vitamin acids, amino acids, and nucleobases other than adenine. The culture method requires aerobic conditions, and the culture temperature is
A range of 27 to 38°C is preferred. In some cases, the culture temperature may be changed during the culture. At the start of culture and during culture, adjust the pH of the culture solution to 5.0 or above.
It is desirable to adjust the temperature to 9.0 and culture. To adjust the pH, use inorganic acids, organic acids or alkalis, as well as urea,
Calcium carbonate, ammonium water, ammonia gas, etc. can be used. Thus, after 2 to 5 days of culture, a significant amount of GMP accumulates in the medium. GMP may be collected from the culture solution by any conventional method such as using an ion exchange resin. Example Bacillus subtilis AJ11711 (arginine,
Leucine multi-request strain) was treated with N-methyl-N'-nitro-nitrosoguanine mutation (500 μg/ml of N-methyl-N'-nitro-N-nitrosoguanidine at 0°C for 30 minutes at 108 cells/ml). GMP is extracted from adenine auxotrophs by contacting bacterial cells).
Strain AJ11853 (FERM-P6484) with production ability
(arginine requirement, leucine requirement, adenine requirement) were obtained. Furthermore, GMP-producing bacteria derived from this adenine auxotroph strain by similar mutation treatment.
AJ11854 (FERM-P6485) (arginine requirement,
leucine requirement, adenine requirement, 8-agaguanine resistance), AJ11855 (FERM-P) (arginine requirement, leucine requirement, adenine requirement, decoinine resistance), AJ11856 (arginine requirement, leucine requirement, adenine requirement) , 8-azaguanine resistance, and decoinine resistance). (1) Adjustment of chromosomal DNA 1 each of AJ11854, AJ11855 and AJ11856
"Bacto-Penassay Broth" (manufactured by Difco)
After culturing with shaking at 35°C for about 2 hours and harvesting the strains in the logarithmic growth phase, they were extracted using the usual NDA extraction method (J.
Bacteriol., 89 , 1065 (1965))
Extract and purify NDA 3.1 from final AJ11854
mg, 2.6 mg from AJ11855, and 3.6 mg from AJ11856. (2) Insertion of chromosomal DNA fragment into a vector In order to clone the gene region governing purine analog resistance or decoinine resistance, use an autonomously replicating plasmid as the vector.
pUB110 (expressing kanamycin resistance and neomycin resistance) was used. Chromosome obtained in (1)
5 μg of each DNA and 5 μg of plasmid pUB110
Each restriction endonuclease EcoRI
was applied at 37°C for 60 minutes to cleave the DNA strand.
After heat treatment at 65℃ for 10 minutes, both reaction solutions were mixed,
DNA strand ligation reaction was carried out at 10°C for 24 hours using T4 phage-derived DNA ligase in the presence of ATP and dithiothreitol. (3) Transformation with recombinant plasmid NDA Bacillus subtilis AJ11853 was contacted with "Penassay-Broth" (manufactured by Difco).
Culture with shaking was carried out overnight at 30°C, and the first culture medium (glucose 5g/, (NH 4 ) 2 SO 4 2g/,
KH 2 PO 4 6g/, K 2 HPO 4 14g/,
(contains 0.2 g/MgSO 4 7H 2 O/, 1 g/ sodium citrate, 2 g/ yeast extract, 250 mg/L-arginine, 50 mg/ L-leucine, and 50 mg/ adenine) and shaken at 37°C for 4 hours. After culturing, a second culture medium (glucose 5g/, (NH 4 ) 2 SO 4 2g/,
KH 2 PO 4 6g/, K 2 HPO 4 14g/,
(containing 1.2 g of MgSO 4 7H 2 O, 1 g of sodium citrate, 0.2 g of yeast extract, 50 mg of L-arginine, 5 mg of L-leucine, and 50 mg of adenine) and shaken at 37°C for 1.5 hours. By culturing, so-called competent cells (having the ability to take in NDA) were prepared (Reference J. Bacteriol., 81 , 741
(1961)). The NDA solutions obtained in (2) were separately added to this competent cell suspension, and the mixture was further shaken at 37°C for 2 hours to complete the transformation reaction. Next, a suspension containing the DNA transformant of strain AJ11853 was mixed into a minimal medium (minimal medium) containing 5 μg/ml of kanamycin and 100 μg/ml of 8-azaguanine (minimum medium) containing 5 μg/ml of kanamycin and 1000 μg/ml of decoinine ( The cells were spread on a plate of minimal medium (minimum medium) containing 5 μg/ml of kanamycin, 100 μg/ml of 8-azaguanine, and 1000 μg/ml of decoinine, and cultured at 37°C. (The minimum medium is glucose 5g/, (NH 4 ) 2 SO 4 2g/,
KH 2 PO 4 6g/, K 2 HPO 4 14g/,
MgSO47H2O0.2g /, sodium citrate 1g/, L-arginine 100mg/, L-
It has a composition of 100 mg of leucine, 50 mg of adenine, and 20 g of agar, pH 7.2). ) After 3 days of culture, 6 colonies appeared on the minimal medium, 5 colonies appeared on the minimal medium, and 3 colonies appeared on the minimal medium, so these were harvested and each clone was isolated. Purely isolated. The properties of the obtained transformants were arginine auxotrophy, leucine auxotrophy, adenine auxotrophy, and kanamycin resistance, and the transformant obtained from minimal medium was resistant to 8-azaguanine, and the transformed strain obtained from minimal medium was resistant to 8-azaguanine. The transformed strain obtained from the minimal medium was a strain having both 8-azaguanine resistance and decoinine resistance. (4) Extraction of recombinant plasmid NDA Among the clones obtained in (3), clone AJ11857 (FERM-P6488) on minimal medium and clone AJ11858 (FERM-P6488) on minimal medium
P6489), using clone AJ11859 on double ground
The method of CIkado et al. (J. Bacteriol., 145 , 1368
(1981)), bacterial cell DNA was extracted separately, plasmid DNA and chromosomal DNA were separated by agarose electrophoresis, and each plasmid DNA fraction was fractionated, collected, and purified. The resulting plasmid, i.e. the strain
Using the same method as described in (3), the plasmids obtained from AJ11857, AJ11858, and AJ11859 were used to transform each original strain, GMP-producing strain AJ11854,
Kanamycin-resistant strains corresponding to each strain were reintroduced into AJ11855 and AJ11856 by the transformation method.
AJ11860, AJ11861 (FERM-P6490) and
AJ11870 (FERM-P6501) was obtained. (5) GMP production; AJ11853, AJ11854,
AJ11855, AJ11856, AJ11857, AJ11858,
Table 1 shows the results of culturing AJ11859, AJ11860, AJ11861, and AJ11870. Culture method is 500ml
GMP production medium (glucose) in a shoulder flask.
80g/, NH 4 Cl 15g/, KH 2 PO 4 10g/
, K 2 HPO 4 14g/, MgSO 4・7H 2 O 5g/
, FeSO 4・7H 2 O10mg/, MnSO 4
7H 2 O 10mg/, CaCl 2・2H 2 O 2g/, adenine 200mg/, soy protein hydrolyzate 40mg/
, arginine 100mg/, leucine 100mg/
Contains 10g/L-glutamic acid and has a pH of 6.5.
Prepared with KOH. ) was dispensed in 20 ml portions and heated to 115°C.
After heating and sterilizing the cells for 10 minutes, the cells were brought into contact with various bacterial cells obtained by culturing them in advance on a slant medium, and cultured with shaking at 34° C. for 3 days. [Table] [Table] [Table]

Claims (1)

【特許請求の範囲】[Claims] 1 バチルス属のプリンアナログ耐性又はデコイ
ニン耐性を有する変異株の染色体遺伝子より得た
プリンアナログ耐性又はデコイニン耐性に関与す
る遺伝子領域が組み込まれているベクターをバチ
ルス属のアデニン要求性変異株に含有せしめたグ
アノシン−5′−モノリン酸性産性微生物を培養
し、培地中に蓄積されたグアノシン−5′−モノリ
ン酸を採取することを特徴とするグアノシン−
5′−モノリン酸の製造法。
1. A vector incorporating a gene region involved in purine analog resistance or decoinine resistance obtained from the chromosomal gene of a mutant strain of Bacillus having purine analog resistance or decoinine resistance was contained in an adenine auxotrophic mutant strain of Bacillus genus. Guanosine-5'-monophosphate-producing microorganisms are cultivated and guanosine-5'-monophosphate accumulated in the culture medium is collected.
Method for producing 5'-monophosphoric acid.
JP57058439A 1982-04-08 1982-04-08 Preparation of guanosine-5'-monophosphoric acid by fermentation process Granted JPS58175492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57058439A JPS58175492A (en) 1982-04-08 1982-04-08 Preparation of guanosine-5'-monophosphoric acid by fermentation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57058439A JPS58175492A (en) 1982-04-08 1982-04-08 Preparation of guanosine-5'-monophosphoric acid by fermentation process

Publications (2)

Publication Number Publication Date
JPS58175492A JPS58175492A (en) 1983-10-14
JPH0422557B2 true JPH0422557B2 (en) 1992-04-17

Family

ID=13084425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57058439A Granted JPS58175492A (en) 1982-04-08 1982-04-08 Preparation of guanosine-5'-monophosphoric acid by fermentation process

Country Status (1)

Country Link
JP (1) JPS58175492A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE185092T1 (en) * 1984-03-12 1986-11-27 Kyowa Hakko Kogyo Co., Ltd., Tokio/Tokyo METHOD FOR PRODUCING 5'-GUANYL ACID.

Also Published As

Publication number Publication date
JPS58175492A (en) 1983-10-14

Similar Documents

Publication Publication Date Title
US4388405A (en) Method for producing L-histidine by fermentation
DE69124939T2 (en) Recombinant DNA sequences coding for enzymes free from feedback inhibition, plasmids containing these sequences, transformed microorganisms useful for the production of aromatic amino acids, and their processes for the production by fermentation
JP2545078B2 (en) Method for producing nucleic acid-related substance
JPH024276B2 (en)
HU196843B (en) Process for producing l-lysine
JPH0129559B2 (en)
DE10046870A1 (en) Genetic manipulation of corynebacteria, useful for preparing fine chemicals, using a non-replicable vector that is not recognized as foreign
JPH0728749B2 (en) Method for producing L-arginine
JPS6066989A (en) Production of l-arginine
DE69324118T2 (en) Process for the preparation of riboflavin
JPH0575390B2 (en)
JPH0428357B2 (en)
EP1368480B1 (en) Method of modifying the genome of gram-positive bacteria by means of a novel conditionally negative dominant marker gene
US4588687A (en) Method for producing L-tryptophan by fermentation
DE10137815A1 (en) Process for the production of a marker-free mutant target organism and suitable plasmid vectors
JPH0333318B2 (en)
EP0412688A1 (en) Modified DNA and its use
KR900004424B1 (en) Process for producing amino acids
JPH0422557B2 (en)
US4504581A (en) Method for producing L-histidine by fermentation
JPH0459877B2 (en)
DE60035781T2 (en) VECTORS, CELLS AND METHOD FOR THE PRODUCTION OF PYRIMIDINE DEOXYRIBONUCLEOSIDES
DE602004012948T2 (en) Mutated phosphoribosylpyrophosphate synthetase and method for L-histidine production
JPS6070093A (en) Production of l-tyrosine by fermentation process
EP0085958A2 (en) Method for producing l-phenylalanine by fermentation