JPH04224734A - Magnetic resonance imaging apparatus - Google Patents

Magnetic resonance imaging apparatus

Info

Publication number
JPH04224734A
JPH04224734A JP2415197A JP41519790A JPH04224734A JP H04224734 A JPH04224734 A JP H04224734A JP 2415197 A JP2415197 A JP 2415197A JP 41519790 A JP41519790 A JP 41519790A JP H04224734 A JPH04224734 A JP H04224734A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic circuit
gradient magnetic
applying means
gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2415197A
Other languages
Japanese (ja)
Other versions
JP3098044B2 (en
Inventor
Hirotaka Takeshima
弘隆 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP02415197A priority Critical patent/JP3098044B2/en
Publication of JPH04224734A publication Critical patent/JPH04224734A/en
Application granted granted Critical
Publication of JP3098044B2 publication Critical patent/JP3098044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To lessen a sense of pressing felt by a person to be inspected by reducing a dead space between an inclined magnetic field coil and a magnetic circuit to allow a larger space for housing the person to be inspected. CONSTITUTION:An inclined magnetic field coil 30 is arranged in a magnetic circuit 35 having a polygonal opening section. A sectional shape of the inclined magnetic field coil 30 is made almost similar to an opening section of the magnetic circuit 35. With such an arrangement, there is no dead space generated between the magnetic circuit 35 and the inclined magnetic field coil 30, thereby ensuring a broad space for housing a person to be inspected making the best of the opening of the magnetic circuit.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、磁気共鳴イメージング
装置(以下、MRI装置と略称)に係り、特に傾斜磁場
印加手段と静磁場印加手段との間の無駄な空間を減らし
、被検者収容空間を広く取ることを可能とした構造を持
つ傾斜磁場印加手段を備えたMRI装置に関する。
[Industrial Field of Application] The present invention relates to a magnetic resonance imaging apparatus (hereinafter abbreviated as MRI apparatus), and in particular, the present invention relates to a magnetic resonance imaging apparatus (hereinafter abbreviated as MRI apparatus), and in particular, to reduce wasted space between a gradient magnetic field applying means and a static magnetic field applying means, and to accommodate a patient under examination. The present invention relates to an MRI apparatus equipped with a gradient magnetic field applying means having a structure that allows for a wide space.

【0002】0002

【従来の技術】MRI装置は、NMR現象を利用して計
測した信号を演算処理することで、被検者中の核スピン
の密度分布,緩和時間分布等を断層像として画像表示す
るものである。このNMR現象を発生させるためには、
空間的に一様な強度と方向を持った静磁場が必要である
。被検者に対する静磁場の方向によって、MRI装置は
垂直磁場方式と水平磁場方式の2種類に大別できる。 このうち、被検者の体軸と垂直な方向に静磁場が加えら
れる垂直磁場方式は、信号検出に検出感度の高いソレノ
イドコイルを使用できるという利点を持つ。垂直磁場方
式の磁気回路としては、専ら永久磁石を用いた方式が採
用されている。永久磁石方式は、漏洩磁場が少なく装置
の設置が容易であるという特長を持つ。また、他の常電
導や超電導方式とは異なり、一旦着磁してしまえば、そ
の後は磁場発生に電力及びヘリウムなどの冷媒を必要と
しないので、ランニングコストがかからないという優れ
た特長を持っている。
[Prior Art] An MRI apparatus displays the density distribution, relaxation time distribution, etc. of nuclear spins in a subject as a tomographic image by processing signals measured using NMR phenomena. . In order to generate this NMR phenomenon,
A static magnetic field with spatially uniform strength and direction is required. Depending on the direction of the static magnetic field relative to the subject, MRI apparatuses can be roughly divided into two types: vertical magnetic field type and horizontal magnetic field type. Among these, the vertical magnetic field method, in which a static magnetic field is applied in a direction perpendicular to the subject's body axis, has the advantage that a solenoid coil with high detection sensitivity can be used for signal detection. As a vertical magnetic field type magnetic circuit, a type using permanent magnets is exclusively used. The permanent magnet method has the advantage of having little leakage magnetic field and easy installation of the device. In addition, unlike other normal conductivity and superconductivity systems, once magnetized, it does not require electricity or coolant such as helium to generate a magnetic field, so it has the excellent feature of low running costs. .

【0003】永久磁石を用いた垂直磁場方式の磁気回路
のうち、現在最も普及している対向型磁気回路と呼ばれ
るものの例を図9,10に示す。図9は磁気回路の斜視
図を、図10はその縦断面図を示す。この磁気回路5は
、被検者が入りえるだけの間隔を持って対向配置した一
対の永久磁石構成体2a,2bを、これらの永久磁石構
成体2a,2bを支持すると共に磁気的に結合する板状
継鉄3a,3b、及び柱状継鉄4によって連結し、静磁
場を発生させている。更に、上記一対の永久磁石構成体
2a,2bの対向する面には、それぞれ磁極片1a,1
bを固着している。この磁極片1a,1bは、被検者を
含む空隙内の静磁場分布の均一度を向上させるためのも
のである。その構造については、例えば、特開昭60−
88407 などで述べられているが、通常は周辺部が
盛り上がり内部に窪みを有する形状を用いている。
Among the perpendicular magnetic field type magnetic circuits using permanent magnets, examples of what is currently the most popular type of magnetic circuit are shown in FIGS. 9 and 10. FIG. 9 shows a perspective view of the magnetic circuit, and FIG. 10 shows a longitudinal sectional view thereof. This magnetic circuit 5 supports and magnetically couples a pair of permanent magnet structures 2a and 2b that are arranged facing each other with an interval large enough for the subject to enter. They are connected by plate yokes 3a, 3b and columnar yokes 4 to generate a static magnetic field. Furthermore, magnetic pole pieces 1a and 1 are provided on opposing surfaces of the pair of permanent magnet structures 2a and 2b, respectively.
b is fixed. The magnetic pole pieces 1a and 1b are provided to improve the uniformity of the static magnetic field distribution within the air gap containing the subject. Regarding its structure, for example, JP-A-60-
88407, etc., a shape in which the peripheral portion is raised and the inside is depressed is usually used.

【0004】一方、MRI装置では上記した静磁場以外
に、受信信号の位置情報を得るために、空間的に磁場強
度が変化する傾斜磁場を用いる。この傾斜磁場は3次元
空間の位置に対応してX,Y,Zの3方向に対応するも
のが必要である。図では静磁場の方向をZ軸にとったX
,Y,Zの直交座標系50を示している。各傾斜磁場は
、対向した1対の傾斜磁場コイル群9a,9bによって
作り出される。この図では煩雑さを避けるために敢えて
示していないが、傾斜磁場コイル9a,9bの各々は、
X,Y,Zの3方向に対応する3つの傾斜磁場コイルか
ら構成されている。被検者に対する圧迫感の低減や、操
作者による被検者の取扱を容易にするためには、磁気回
路開口(L)ができるだけ広いことが望ましい。 磁気回路開口の広さを生かすために、例えば特開平1−
64638で述べられているように、傾斜磁場コイル群
9a,9bは、上記磁極片1a,1bが形成する窪みの
内側に取付けている。
On the other hand, in addition to the above-mentioned static magnetic field, an MRI apparatus uses a gradient magnetic field whose magnetic field strength varies spatially in order to obtain position information of a received signal. This gradient magnetic field needs to correspond to the three directions of X, Y, and Z, corresponding to the position in the three-dimensional space. In the figure, the direction of the static magnetic field is taken as the Z axis.
, Y, and Z. Each gradient magnetic field is created by a pair of opposing gradient magnetic field coil groups 9a and 9b. Although not shown in this figure to avoid complication, each of the gradient magnetic field coils 9a and 9b is
It is composed of three gradient magnetic field coils corresponding to the three directions of X, Y, and Z. In order to reduce the feeling of pressure on the subject and to facilitate the operator's handling of the subject, it is desirable that the magnetic circuit opening (L) be as wide as possible. In order to take advantage of the width of the magnetic circuit aperture, for example,
64638, the gradient magnetic field coil groups 9a, 9b are attached inside the recesses formed by the magnetic pole pieces 1a, 1b.

【0005】ところで永久磁石材は非常に高価であり、
装置の製造原価を抑制するためには、出来るだけその使
用量を減らす必要がある。そのためには、磁場の生成効
率を向上させる事が重要であり、図9で示したのとは構
造の異なるトンネル型の磁気回路が種々検討されている
(例えば、Philips J. Res. 40,p
p.259〜288(1985)あるいは、IEEE 
TRANSACTIONS ON MAGNETICS
, VOL.25,No.5,pp.3904〜390
6(1989)等)。
By the way, permanent magnet materials are very expensive,
In order to suppress the manufacturing cost of the device, it is necessary to reduce its usage as much as possible. To this end, it is important to improve the efficiency of magnetic field generation, and various tunnel-type magnetic circuits with structures different from that shown in FIG. 9 have been studied (for example, Philips J. Res. 40, p.
p. 259-288 (1985) or IEEE
TRANSACTIONS ON MAGNETICS
, VOL. 25, No. 5, pp. 3904-390
6 (1989) etc.).

【0006】その一例を図11に示す。このトンネル型
磁気回路6は、磁場発生源の永久磁石構成体11とそれ
らを保持し且つ磁束を通すために純鉄などで作られた継
鉄10、及び静磁場の均一度を向上させるための磁極片
12から構成されている。この形式の磁気回路では、図
9の形式のものに比べ20〜40%の磁場生成効率の向
上が期待される。
An example is shown in FIG. This tunnel type magnetic circuit 6 includes a permanent magnet structure 11 as a magnetic field generation source, a yoke 10 made of pure iron or the like to hold them and pass magnetic flux, and a yoke 10 made of pure iron or the like to improve the uniformity of the static magnetic field. It consists of a magnetic pole piece 12. This type of magnetic circuit is expected to improve magnetic field generation efficiency by 20 to 40% compared to the type shown in FIG.

【0007】なお上記した以外にも、原子核のスピンを
操作するための高周波パルスを照射するRF照射コイル
、被検者からのNMR高周波信号を受信するための受信
コイル、更に受信信号を基に各種画像を計算する画像再
構成装置などが必要である。
[0007] In addition to the above, there is also an RF irradiation coil that irradiates high-frequency pulses to manipulate the spin of atomic nuclei, a receiving coil that receives NMR high-frequency signals from the subject, and various types of coils based on the received signals. An image reconstruction device for calculating images is required.

【0008】[0008]

【発明が解決しようとする課題】上で述べたように、近
年、磁場発生効率の向上を目指して、トンネル型の磁気
回路が色々と検討されている。この形式の磁気回路に用
いる傾斜磁場コイルには、超伝導磁石あるいは常伝導磁
石を用いた磁気回路に使用されている方式が適用できる
。すなわち、コイル外形が円筒の形状をした傾斜磁場コ
イルを用いている。ただし、超伝導磁石では静磁場の方
向が水平なのに対して、永久磁石方式では垂直である。 従って、当然、傾斜磁場コイルのパターンはそれに合わ
せて設計する必要があるが、これは既存の計算機シミュ
レーションによって容易に行える。超伝導磁石あるいは
常伝導磁石を用いた磁気回路では、その開口断面も円筒
形状であり、その中心軸は傾斜磁場コイルと同心である
。そのため磁気回路の内側と傾斜磁場コイルとの間隔は
どの個所でも一定であり、無駄な空間はない。
[Problems to be Solved by the Invention] As mentioned above, in recent years, various tunnel-type magnetic circuits have been studied with the aim of improving the efficiency of magnetic field generation. For the gradient magnetic field coils used in this type of magnetic circuit, the method used in magnetic circuits using superconducting magnets or normal conducting magnets can be applied. That is, a gradient magnetic field coil having a cylindrical outer shape is used. However, while the direction of the static magnetic field is horizontal in superconducting magnets, it is vertical in permanent magnet systems. Naturally, therefore, the pattern of the gradient magnetic field coil must be designed accordingly, but this can be easily done using existing computer simulations. In a magnetic circuit using a superconducting magnet or a normal conducting magnet, its opening cross section is also cylindrical, and its central axis is concentric with the gradient magnetic field coil. Therefore, the distance between the inside of the magnetic circuit and the gradient magnetic field coil is constant everywhere, and there is no wasted space.

【0009】ところが、永久磁石を利用したトンネル型
の磁気回路の場合には、磁石素材が立方体もしくはそれ
に準じた形状をしているために、その開口断面は円では
なく、図11に示したように多角形状となる。このため
に、磁気回路6と傾斜磁場コイル30との間に無駄な空
間が生じる。言い替えれば、被検者の入る空間の寸法は
傾斜磁場コイル30の直径によって規定される。このた
めに、磁気回路6の有する開口断面積よりも被検者の入
る空間断面積が小さくなり、被検者の受ける圧迫感が大
きくなるという問題が生じる。
However, in the case of a tunnel-type magnetic circuit using permanent magnets, since the magnet material has a cubic or similar shape, the opening cross section is not circular, but as shown in FIG. becomes a polygonal shape. For this reason, wasted space is created between the magnetic circuit 6 and the gradient magnetic field coil 30. In other words, the dimensions of the space into which the subject enters are defined by the diameter of the gradient coil 30. For this reason, a problem arises in that the cross-sectional area of the space into which the subject enters becomes smaller than the cross-sectional area of the opening of the magnetic circuit 6, and the sense of pressure experienced by the subject increases.

【0010】この問題を解決するためには、磁気回路の
開口断面を大きくするという方法を考えることはできる
。しかし、磁気回路の製造原価は開口断面積に大きく依
存しており、これを大きくすることはMIR装置の大幅
な価格上昇を招く。従って、本問題を解決するための有
効な手段とはなりえない。本発明は、上記した問題点を
解消し、永久磁石を用いたトンネル型の磁気回路の場合
にも、被検者の受ける圧迫感が少ないMRI装置を安価
に提供することを目的とする。
In order to solve this problem, it is possible to consider a method of increasing the aperture cross section of the magnetic circuit. However, the manufacturing cost of the magnetic circuit largely depends on the aperture cross-sectional area, and increasing this will result in a significant increase in the price of the MIR device. Therefore, it cannot be an effective means to solve this problem. SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide an inexpensive MRI apparatus in which a subject feels less pressure even in the case of a tunnel-type magnetic circuit using permanent magnets.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、検査対象に空間的に一様な静磁場を加えるための静
磁場印加手段と、前記検査対象に互いに直交する3方向
の傾斜磁場を加えるために前記静磁場印加手段の内面に
配置した傾斜磁場印加手段及び、磁気共鳴イメージング
に必要な高周波パルス印加手段,信号検出手段,画像再
構成手段とを備えた磁気共鳴イメージング装置において
、前記傾斜磁場印加手段の外形断面が前記静磁場印加手
段の内側断面形状とほぼ相似形状となるように構成した
ものである。
[Means for Solving the Problems] In order to achieve the above object, there is provided a static magnetic field applying means for applying a spatially uniform static magnetic field to an inspection object, and gradient magnetic fields in three directions orthogonal to each other on the inspection object. In the magnetic resonance imaging apparatus, the magnetic resonance imaging apparatus is provided with a gradient magnetic field applying means disposed on the inner surface of the static magnetic field applying means to apply a magnetic field, and a high frequency pulse applying means necessary for magnetic resonance imaging, a signal detecting means, and an image reconstructing means. The gradient magnetic field applying means is configured so that its outer cross-section has a substantially similar shape to the inner cross-sectional shape of the static magnetic field applying means.

【0012】又、検査対象に空間的に一様な静磁場を加
えるための静磁場印加手段と、前記検査対象に互いに直
交する3方向の傾斜磁場を加えるために前記静磁場印加
手段の内面に配置した傾斜磁場印加手段及び、磁気共鳴
イメージングに必要な高周波パルス印加手段,信号検出
手段,画像再構成手段とを備えた磁気共鳴イメージング
装置において、前記傾斜磁場印加手段の外形断面が楕円
形となるように構成したものである。更には、前文にお
いて前記傾斜磁場印加手段の外形断面を直線状部分と曲
線状部分とを組み合わせて構成したものである。
[0012] Also, a static magnetic field applying means for applying a spatially uniform static magnetic field to the test object, and an inner surface of the static magnetic field applying means for applying gradient magnetic fields in three mutually orthogonal directions to the test object. In the magnetic resonance imaging apparatus, the gradient magnetic field applying means has an elliptical cross-section. It is configured as follows. Furthermore, in the preamble, the external cross section of the gradient magnetic field applying means is constructed by combining a straight portion and a curved portion.

【0013】[0013]

【作用】上記のように傾斜磁場印加手段を構成すること
で、静磁場印加手段と傾斜磁場印加手段との間の無駄な
空間を削減でき、実質的な被検者収容空間を確保できる
ので、被検者が受ける圧迫感の少ないMRI装置を容易
に且つ安価に実現することができる。
[Operation] By configuring the gradient magnetic field applying means as described above, wasted space between the static magnetic field applying means and the gradient magnetic field applying means can be reduced, and a substantial space for accommodating the subject can be secured. It is possible to easily and inexpensively realize an MRI apparatus that causes less pressure on a subject.

【0014】[0014]

【実施例】以下、本発明の実施例を図面に沿って具体的
に説明する。図12にトンネル型の磁気回路6に対して
用いられている、従来の傾斜磁場コイル30の斜視図を
示す。トンネル型の磁気回路6の場合には、慣用に従っ
てZ軸を磁気回路の中心軸方向に取ったXYZの直交座
標系51を用いる。従って、静磁場の方向は、XかY方
向となる(図11の場合にはY方向)。図12では、Z
方向に中心軸32を持つ円筒型の枠組み33上に、X,
Y,Zの各方向用の3種類の傾斜磁場コイルを形成して
いる。図では一方向のみのパターン34を示している。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 12 shows a perspective view of a conventional gradient magnetic field coil 30 used for a tunnel-type magnetic circuit 6. As shown in FIG. In the case of a tunnel-type magnetic circuit 6, an XYZ orthogonal coordinate system 51 is used in which the Z axis is set in the direction of the central axis of the magnetic circuit, as is customary. Therefore, the direction of the static magnetic field is the X or Y direction (in the case of FIG. 11, the Y direction). In Figure 12, Z
On a cylindrical framework 33 having a central axis 32 in the direction,
Three types of gradient magnetic field coils for each direction of Y and Z are formed. The figure shows a pattern 34 in only one direction.

【0015】先にも説明したように、この傾斜磁場コイ
ル30を図11の磁気回路6に用いると無駄な空間が多
く、被検者の圧迫感が大きい。又、図9に示した上下に
傾斜磁場コイル9を設ける方式を図11の磁気回路6に
用いた場合には、必要とするだけの傾斜磁場の空間的直
線性や生成効率が得られない。これは、図11の形式の
磁気回路の場合には、開口幅Wが図9の場合に比べてか
なり小さくなるためである。この形式の傾斜磁場コイル
で、優れた性能を持つものを設計するためには、かなり
大きなコイル直径Dが必要である。このコイル直径Dは
、必要とする傾斜磁場の直線性や生成効率にも依るが、
少なくとも700ミリ程度以上は必要である。ところが
、図11の形式の磁気回路で開口幅Wを700ミリ以上
とするのは、磁気回路の磁場生成効率の点で非常に不利
であり、製造原価を考えると実際には不可能である。
As described above, if this gradient magnetic field coil 30 is used in the magnetic circuit 6 of FIG. 11, there will be a lot of wasted space, and the subject will feel a great sense of pressure. Furthermore, if the method of providing the gradient magnetic field coils 9 above and below as shown in FIG. 9 is used for the magnetic circuit 6 of FIG. 11, the required spatial linearity and generation efficiency of the gradient magnetic field cannot be obtained. This is because in the case of the magnetic circuit of the type shown in FIG. 11, the aperture width W is considerably smaller than that in the case of FIG. In order to design a gradient coil of this type with good performance, a fairly large coil diameter D is required. This coil diameter D depends on the linearity and generation efficiency of the required gradient magnetic field, but
A length of at least 700 mm is required. However, setting the aperture width W to 700 mm or more in the magnetic circuit of the type shown in FIG. 11 is very disadvantageous in terms of the magnetic field generation efficiency of the magnetic circuit, and is actually impossible when manufacturing costs are considered.

【0016】次に、本発明による傾斜磁場コイルの一例
を図1,図2に示す。図1は、傾斜磁場コイル30の斜
視図を、図2はその傾斜磁場コイル30を磁気回路35
の中に配置した状態を示す斜視図である。図2では、磁
気回路35は簡略化して、その外形のみを描いている。 本発明では、傾斜磁場コイル30の外形断面は円形では
なく、磁気回路35の内側断面と相似の形状としている
。ここに示した例では、磁気回路35の内側断面が正方
形なので、傾斜磁場コイル30の外形断面も正方形とし
ている。この様に傾斜磁場コイルを構成することで、図
2に示すように傾斜磁場コイル30と磁気回路35の内
側との間に無駄な空間がなくなり、広い被検者収容空間
32を確保することができる。
Next, an example of a gradient magnetic field coil according to the present invention is shown in FIGS. 1 and 2. FIG. 1 is a perspective view of the gradient magnetic field coil 30, and FIG. 2 shows the gradient magnetic field coil 30 in a magnetic circuit 35.
FIG. In FIG. 2, the magnetic circuit 35 is simplified and only its outer shape is depicted. In the present invention, the outer cross section of the gradient magnetic field coil 30 is not circular, but has a shape similar to the inner cross section of the magnetic circuit 35. In the example shown here, since the inner cross section of the magnetic circuit 35 is square, the outer cross section of the gradient magnetic field coil 30 is also square. By configuring the gradient magnetic field coils in this way, as shown in FIG. 2, there is no wasted space between the gradient magnetic field coils 30 and the inside of the magnetic circuit 35, and a wide subject accommodation space 32 can be secured. can.

【0017】傾斜磁場コイルの具体的な製造方法として
は、これまでに知られているように非導電性の枠33の
上に銅線を必要なパターン形状34に巻きつける方法(
例:特開昭60−94705 )などを用いることがで
きる。 又、図3の様に傾斜磁場コイルの各面(例えば、面36
と面37)間でのパターンの接続をスムーズにするため
には、各面の接合部分38に若干の丸みを付けることが
有効である。
A specific method for manufacturing a gradient magnetic field coil is a method of winding a copper wire in a required pattern 34 on a non-conductive frame 33, as is known so far.
For example, JP-A-60-94705) can be used. Also, as shown in FIG. 3, each surface of the gradient magnetic field coil (for example, surface 36
In order to smoothen the pattern connection between the surfaces 37) and 37), it is effective to slightly round the joint portion 38 of each surface.

【0018】特性の良いコイルのパターン形状を求める
方法には、特開昭59−157549,特開平1−22
0806などで知られている方法を応用できる。すなわ
ち、コイルのパターン形状をある関数で表わし、そこに
流れる電流によって生成される磁場分布を計算機シミュ
レーションする。その磁場分布及び磁場の生成効率が所
望の範囲に入るまで、順次にパターン形状の関数に含ま
れるパラメータを微小変化させ、最適値を求めるもので
ある。
Methods for determining the pattern shape of a coil with good characteristics include Japanese Patent Application Laid-open No. 59-157549 and Japanese Patent Application Laid-open No. 1-22.
A method known for example 0806 can be applied. That is, the pattern shape of the coil is expressed by a certain function, and the magnetic field distribution generated by the current flowing therein is simulated by computer. Parameters included in the pattern shape function are successively changed slightly until the magnetic field distribution and magnetic field generation efficiency fall within a desired range, and the optimum values are determined.

【0019】図2では、磁気回路の内側断面が正方形の
場合を例として示したが、本発明はそれだけに限らず任
意の多角形断面に適用することができる。すなわち、こ
の発明の要点は、磁気回路の内側断面と傾斜磁場コイル
の外形との間の不要な空間を減らし、被検者収容空間を
可能な限り広く取ることにある。例えば、磁気回路の内
側断面が長方形(図4)や六角形(図5)のもの等でも
同様に本発明を適用できる。又、図6のように各辺の長
さが不均等である場合にも同様である。当然、傾斜磁場
コイルの外形断面も図4から図6の各図に示した形状と
相似になる。上の図4や図6の様に、開口のある方向(
b)を広く取ると、被検者に開放感を与えられる。 又、被検者収容空間の内部で体を移動させることが出来
るので、関心領域を磁場の中心部分に設定できる利点が
ある。同時に、他方向の開口(a)を従来と同程度の広
さに制限することで、磁気回路の製造原価を抑えること
ができる。
Although FIG. 2 shows an example in which the inner cross section of the magnetic circuit is square, the present invention is not limited thereto and can be applied to any polygonal cross section. That is, the gist of the present invention is to reduce the unnecessary space between the inner cross section of the magnetic circuit and the outer shape of the gradient magnetic field coil, and to make the subject accommodation space as wide as possible. For example, the present invention is similarly applicable to magnetic circuits in which the inner cross section is rectangular (FIG. 4) or hexagonal (FIG. 5). The same applies to the case where the lengths of the sides are unequal as shown in FIG. Naturally, the external cross-section of the gradient magnetic field coil is also similar to the shape shown in each of FIGS. 4 to 6. As shown in Figures 4 and 6 above, the direction of the opening (
If b) is set wide, a sense of openness will be given to the subject. Furthermore, since the body can be moved within the subject accommodation space, there is an advantage that the region of interest can be set at the center of the magnetic field. At the same time, by limiting the opening (a) in the other direction to the same width as the conventional one, the manufacturing cost of the magnetic circuit can be suppressed.

【0020】本発明の別の実施例を図7に示す。この実
施例は図4や図6で示したように、磁気回路の内側断面
のある方向が別の方向に比べて長い場合に適用できる。 この場合には、傾斜磁場コイル30の外形断面を楕円形
にすることができる。すなわち、この形状の磁気回路3
5では、傾斜磁場コイル30の外形を磁気回路に合わせ
た多角形ではなく楕円形としても、傾斜磁場コイルと磁
気回路との間の無駄な空間20が少なくて済む。又、楕
円形とすることで、小さな曲率で曲がる部分がなくなる
ため、製作がしやすく機械的な強度も向上する等の利点
がある。
Another embodiment of the invention is shown in FIG. This embodiment can be applied when the inner cross section of the magnetic circuit is longer in one direction than in another direction, as shown in FIGS. 4 and 6. In this case, the outer cross section of the gradient magnetic field coil 30 can be made elliptical. That is, the magnetic circuit 3 with this shape
5, even if the outer shape of the gradient magnetic field coil 30 is made into an ellipse rather than a polygon that matches the magnetic circuit, the wasted space 20 between the gradient magnetic field coil and the magnetic circuit can be reduced. Furthermore, by making it elliptical, there are no parts that bend with a small curvature, so there are advantages such as ease of manufacturing and improved mechanical strength.

【0021】本発明の更に別の実施例を図8に示す。こ
の実施例では、傾斜磁場コイル30の外形断面を楕円と
せず、上下の部分40を直線とし、左右の部分41を曲
線とし、両者間を滑らかに接続したものである。このよ
うにすることで、無駄な空間20の領域を図7の場合よ
りも更に少なくできる。又、曲線状部分には円弧や放物
線など計算しやすい形状を用いるのが、製作時には便利
である。図7,図8では磁気回路35の内側断面が横方
向に広い場合に付いて示したが、逆に縦方向に長い場合
でも同様である。又、これまでの説明ではトンネル型の
磁気回路6を用いてきたが、当然、図9に示した対向型
磁気回路5の場合にも本発明は適用が可能である。
Still another embodiment of the present invention is shown in FIG. In this embodiment, the external cross section of the gradient magnetic field coil 30 is not an ellipse, but the upper and lower portions 40 are straight lines, the left and right portions 41 are curved lines, and the two are smoothly connected. By doing so, the area of wasted space 20 can be further reduced than in the case of FIG. Furthermore, it is convenient during manufacturing to use a shape that is easy to calculate, such as a circular arc or a parabola, for the curved portion. Although FIGS. 7 and 8 show the case where the inner cross section of the magnetic circuit 35 is wide in the horizontal direction, the same is true even when it is long in the vertical direction. Furthermore, although the tunnel-type magnetic circuit 6 has been used in the explanation so far, the present invention is naturally applicable to the opposed-type magnetic circuit 5 shown in FIG.

【0022】[0022]

【発明の効果】本発明によれば、静磁場印加手段と傾斜
磁場印加手段との間の無駄な空間を削減でき、静磁場印
加手段の開口断面積を生かした広い被検者収容空間が得
られる。このため、被検者に与える圧迫感の少ないMR
I装置が実現できる。しかも、従来技術に対して装置の
原価を上昇させること無く、安価に実現することができ
る。
[Effects of the Invention] According to the present invention, wasted space between the static magnetic field applying means and the gradient magnetic field applying means can be reduced, and a wide subject accommodation space can be obtained by making use of the opening cross-sectional area of the static magnetic field applying means. It will be done. For this reason, MR gives less pressure to the patient.
I device can be realized. Moreover, it can be realized at low cost without increasing the cost of the device compared to the conventional technology.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による傾斜磁場コイルの構造を示す斜視
FIG. 1 is a perspective view showing the structure of a gradient magnetic field coil according to the present invention.

【図2】本発明による傾斜磁場コイルと磁気回路との関
係を示す斜視図
[Fig. 2] A perspective view showing the relationship between a gradient magnetic field coil and a magnetic circuit according to the present invention.

【図3】本発明による傾斜磁場コイルの構造を示す斜視
FIG. 3 is a perspective view showing the structure of a gradient magnetic field coil according to the present invention.

【図4】本発明の適用範囲を示す磁気回路の斜視図[Fig. 4] A perspective view of a magnetic circuit showing the scope of application of the present invention.

【図
5】本発明の適用範囲を示す磁気回路の斜視図
[Fig. 5] A perspective view of a magnetic circuit showing the scope of application of the present invention.

【図6】
本発明の適用範囲を示す磁気回路の斜視図
[Figure 6]
A perspective view of a magnetic circuit showing the scope of application of the present invention

【図7】本発
明の別の実施例を示す傾斜磁場コイルと磁気回の斜視図
FIG. 7 is a perspective view of a gradient magnetic field coil and a magnetic circuit showing another embodiment of the present invention.

【図8】本発明の更に別の実施例を示す傾斜磁場コイル
と磁気回路の斜視図
FIG. 8 is a perspective view of a gradient magnetic field coil and a magnetic circuit showing still another embodiment of the present invention.

【図9】従来技術による磁気回路と傾斜磁場コイルを示
す斜視図
[Fig. 9] A perspective view showing a magnetic circuit and gradient magnetic field coil according to the prior art.

【図10】従来技術による磁気回路と傾斜磁場コイルを
示す縦断面図
[Fig. 10] Longitudinal cross-sectional view showing a magnetic circuit and gradient magnetic field coil according to the prior art

【図11】別の従来技術による磁気回路を示す斜視図FIG. 11 is a perspective view showing a magnetic circuit according to another conventional technology.


図12】従来技術による傾斜磁場コイルを示す斜視図
[
FIG. 12 is a perspective view showing a gradient magnetic field coil according to the prior art.

【符号の説明】[Explanation of symbols]

1  磁極片 2  永久磁石構成体 3  板状継鉄 4  柱状継鉄 5  対向型磁気回路 6  トンネル型磁気回路 9  傾斜磁場コイル群 10  継鉄 11  永久磁石構成体 12  磁極片 20  無駄な空間 30  傾斜磁場コイル 31  無駄な空間 32  傾斜磁場コイルの中心軸 33  傾斜磁場コイルの枠 34  傾斜磁場コイルのパターン 35  磁気回路 36  傾斜磁場コイルを構成する面 37  傾斜磁場コイルを構成する面 38  傾斜磁場コイルを構成する面の接合部分40 
 傾斜磁場コイル外形断面の直線状部分41  傾斜磁
場コイル外形断面の曲線状部分50  直交座標系 51  直交座標系
1 Magnetic pole piece 2 Permanent magnet structure 3 Plate yoke 4 Column yoke 5 Opposed magnetic circuit 6 Tunnel magnetic circuit 9 Gradient magnetic field coil group 10 Yoke 11 Permanent magnet structure 12 Magnetic pole piece 20 Wasted space 30 Gradient magnetic field Coil 31 Wasted space 32 Central axis of gradient magnetic field coil 33 Frame of gradient magnetic field coil 34 Pattern of gradient magnetic field coil 35 Magnetic circuit 36 Surface 37 forming gradient magnetic field coil Surface 38 forming gradient magnetic field coil Surface joint part 40
Straight section 41 of gradient magnetic field coil outline section Curved section 50 of gradient magnetic field coil outline section 50 Orthogonal coordinate system 51 Orthogonal coordinate system

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】検査対象に空間的に一様な静磁場を加える
ための静磁場印加手段と、前記検査対象に互いに直交す
る3方向の傾斜磁場を加えるために前記静磁場印加手段
の内面に配置した傾斜磁場印加手段及び、磁気共鳴イメ
ージングに必要な高周波パルス印加手段,信号検出手段
,画像再構成手段とを備えた磁気共鳴イメージング装置
において、前記傾斜磁場印加手段の外形断面が前記静磁
場印加手段の内側断面形状とほぼ相似形状となるように
構成したことを特徴とする磁気共鳴イメージング装置。
1. A static magnetic field applying means for applying a spatially uniform static magnetic field to an object to be inspected; and an inner surface of the static magnetic field applying means for applying gradient magnetic fields in three mutually orthogonal directions to the object to be inspected. In a magnetic resonance imaging apparatus, the external cross section of the gradient magnetic field applying means is the same as that of the static magnetic field applying means, and a high-frequency pulse applying means, a signal detecting means, and an image reconstruction means necessary for magnetic resonance imaging. A magnetic resonance imaging apparatus characterized in that it is configured to have a shape substantially similar to the inner cross-sectional shape of the means.
【請求項2】検査対象に空間的に一様な静磁場を加える
ための静磁場印加手段と、前記検査対象に互いに直交す
る3方向の傾斜磁場を加えるために前記静磁場印加手段
の内面に配置した傾斜磁場印加手段及び、磁気共鳴イメ
ージングに必要な高周波パルス印加手段,信号検出手段
,画像再構成手段とを備えた磁気共鳴イメージング装置
において、前記傾斜磁場印加手段の外形断面が楕円形と
なるように構成したことを特徴とする磁気共鳴イメージ
ング装置。
2. A static magnetic field applying means for applying a spatially uniform static magnetic field to an object to be inspected; and an inner surface of the static magnetic field applying means for applying gradient magnetic fields in three mutually orthogonal directions to the object to be inspected. In the magnetic resonance imaging apparatus, the gradient magnetic field applying means has an elliptical cross-section. A magnetic resonance imaging apparatus characterized in that it is configured as follows.
【請求項3】前記傾斜磁場印加手段の外形断面を直線状
部分と曲線状部分とを組み合わせて構成したことを特徴
とする請求項2に記載の磁気共鳴イメージング装置。
3. The magnetic resonance imaging apparatus according to claim 2, wherein the external cross-section of the gradient magnetic field applying means is configured by combining a linear portion and a curved portion.
JP02415197A 1990-12-27 1990-12-27 Magnetic resonance imaging equipment Expired - Fee Related JP3098044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02415197A JP3098044B2 (en) 1990-12-27 1990-12-27 Magnetic resonance imaging equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02415197A JP3098044B2 (en) 1990-12-27 1990-12-27 Magnetic resonance imaging equipment

Publications (2)

Publication Number Publication Date
JPH04224734A true JPH04224734A (en) 1992-08-14
JP3098044B2 JP3098044B2 (en) 2000-10-10

Family

ID=18523587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02415197A Expired - Fee Related JP3098044B2 (en) 1990-12-27 1990-12-27 Magnetic resonance imaging equipment

Country Status (1)

Country Link
JP (1) JP3098044B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007159720A (en) * 2005-12-12 2007-06-28 Hitachi Ltd Magnetic resonance imaging apparatus and electromagnetic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007159720A (en) * 2005-12-12 2007-06-28 Hitachi Ltd Magnetic resonance imaging apparatus and electromagnetic device

Also Published As

Publication number Publication date
JP3098044B2 (en) 2000-10-10

Similar Documents

Publication Publication Date Title
US4737716A (en) Self-shielded gradient coils for nuclear magnetic resonance imaging
US4646024A (en) Transverse gradient field coils for nuclear magnetic resonance imaging
US4721914A (en) Apparatus for unilateral generation of a homogeneous magnetic field
US5166619A (en) Gradient coil assembly for a magnetic resonance imaging apparatus
JP2584005B2 (en) Magnetic field gradient coil device and magnetic resonance imaging system using the same
US4398150A (en) Ironless high-homogenety magnet and its application to nuclear magnetic resonance imaging
KR910001860B1 (en) Transverse gradient field coils for nuclear magnetic resonance imaging
US4728895A (en) System of coils for producing additional fields for obtaining polarization fields with constant gradients in a magnet having polarization pole pieces for image production by nuclear magnetic resonance
US5744960A (en) Planar open magnet MRI system
JP4421079B2 (en) MRI gradient coil
EP0307981A1 (en) Magnetic resonance apparatus comprising integrated gradient r.f. coils
JP2023123651A (en) Device, system, and method for obtaining result of magnetic measurement using permanent magnet
JPH11267112A (en) Gradient coil assembly for magnetic resonance imaging system
US6950001B2 (en) Superconducting open MRI magnet with transverse magnetic field
JP2004509721A (en) Vertical magnetic field type MRI apparatus having a conical gradient coil disposed in a main magnet
JPH04224734A (en) Magnetic resonance imaging apparatus
JP3372098B2 (en) Static magnetic field generator for magnetic resonance imaging
JP2838106B2 (en) Nuclear magnetic resonance imaging equipment
Quine et al. Gradient coils
JP4392978B2 (en) Gradient magnetic field coil and magnetic resonance imaging apparatus using the same
JP3189973B2 (en) Magnetic resonance imaging equipment
JPH03210236A (en) Magnetic resonance imaging device
JPH0510334Y2 (en)
JP2022167998A (en) Magnetic resonance imaging using single thick loop
JPH09289984A (en) Static magnetic field generator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees