JPH04224569A - Thiazolidine derivative and preparation thereof - Google Patents

Thiazolidine derivative and preparation thereof

Info

Publication number
JPH04224569A
JPH04224569A JP3067755A JP6775591A JPH04224569A JP H04224569 A JPH04224569 A JP H04224569A JP 3067755 A JP3067755 A JP 3067755A JP 6775591 A JP6775591 A JP 6775591A JP H04224569 A JPH04224569 A JP H04224569A
Authority
JP
Japan
Prior art keywords
mol
dithiocarbamate
thiazoline
compound
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3067755A
Other languages
Japanese (ja)
Other versions
JPH0645608B2 (en
Inventor
Ki-Jung Lee
起正 李
Dae-Ok Choe
崔 大玉
Jae U Jeong
鄭 載▲うく▼
Ho-Kun Park
朴 虎君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Advanced Institute of Science and Technology KAIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Publication of JPH04224569A publication Critical patent/JPH04224569A/en
Publication of JPH0645608B2 publication Critical patent/JPH0645608B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/08Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D277/12Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/16Sulfur atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Cephalosporin Compounds (AREA)

Abstract

PURPOSE: To provide a new thiazoline derivative which is useful as an intermediate of a cephalosporin derivative.
CONSTITUTION: A compound of formula (R is H, a 1-6C alkyl, allyl, 2-propynyl, benzyl or 2-pyridylmethyl; R1 is a lower lakyl), e.g. 5-methoxy-2-methylthio-1,3- thiazoline. The compound is prepared by thermal transformation of dithiocarbamate of formula II, or cyclizing reaction of the same in the presence of an acid such as BF3, sulfuric acid, etc.
COPYRIGHT: (C)1992,JPO

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、セフアロスポリン誘導
体の中間体である新規な5−アルコキシ−2−置換チオ
−1,3−チアゾリン誘導体及びその製造方法に関する
。 【0002】 【従来の技術及び発明が解決しようとする課題】J. 
Org. Chem.,30,491(1965)及び
同誌36,1068(1971)には、一般式 (II
I)のチアゾリン誘導体が、次の反応式で製造されるこ
とが開示されている。 【0003】 【化4】 (式中、Rはメチル基であり、R’及びR”はそれぞれ
水素原子、アルキル基又はフェニル基である)。本発明
者らは、上記の方法により後記一般式(I)のチアゾリ
ン誘導体を製造しようとしたが、一般式(IV)又は(
V)においてR’又はR”がアルコキシ基である原料化
合物を製造することができなかった。 【0004】 【課題を解決するための手段】本発明は、鋭意研究の結
果、ジチオカーバメート(II)を分子内環化反応させ
ることにより、チアゾリン誘導体(I)を製造すること
に成功した。 【0005】本発明は、一般式(I)で示される新規な
チアゾリン誘導体である。 【化5】 (式中、Rは水素原子、炭素数1〜6のアルキル基、ア
リル基、2−プロピニル基、ベンジル基又は2−ピリジ
ルメチル基を表し、R1 はメチル、エチルのような低
級アルキル基を表す)。一般式(I)のチアゾリン誘導
体は、一般式(II)のジチオカーバメート【化6】 (式中、R及びR1 は前述と同じ)を熱転移又は酸の
存在下で環化反応させることによって製造される。 【0006】本発明の製造方法をより詳細に説明すれば
、ジチオカーバメート(II)を5mmHg以下の減圧
で約200±10℃で分子内熱転移反応させることによ
り得られる。 【0007】また、酸の存在下で分子内環化反応させる
には、酸として三フッ化ホウ素、無水マグネシウム・ブ
ロマイド又は濃硫酸等を用いることができ、三フッ化ホ
ウ素が最も好ましい。反応はジクロロメタン、ジクロロ
エタン、クロロホルム、四塩化炭素のようなハロゲン化
炭化水素溶媒中で行うことができ、反応温度は10±5
℃で行うのが好ましい。本発明の方法によれば、容易に
入手し得るジチオカーバメート(II)から95%以上
の高収率で目的のチアゾリン誘導体(I)を得ることが
できる。 【0008】また、ジチオカーバメート(II)は、S
ynthesis,638(1989)に記載された次
の反応式に示すように、アミノアセトアルデヒドジアル
キルアセタール(VII) からトリエチルアミンの存
在下に二硫化炭素と0〜20℃で反応させ、一般式(V
III)の化合物を得、継続してハロゲン化アルキルを
同温度で反応させて容易に製造することができる。 【化7】 【0009】 【発明の効果】本発明のチアゾリン誘導体(I)は、例
えば次の反応式に示す方法によりセフアロスポリン誘導
体に導くことができる。 【化8】 (式中、R2 はカルボキシル基の保護基である)【0
010】 【実施例】以下に本発明の製造例を示し、詳細に説明す
る。ただし、本発明は、実施例にだけ限定されるもので
はなく、本発明の保護範囲内でこの分野の熟練者により
修正及び変更が可能であることを理解しなければならな
い。 【0011】参考例1 メチルN−(2,2−ジメトキシエチル)ジチオカーバ
メート(II,R=R1 =メチル)の製造アミノアセ
トアルデヒドジメチルアセタール21g (0.2モル
)をエタノール150mlと水10mlに溶かした後、
トリエチルアミン24.3g (0.24モル)を加え
、二硫化炭素16.8g (0.22モル)を0〜5℃
で少量ずつ加えた。同じ温度で1時間撹拌反応後、沃化
メチル31.2g (0.22モル)を少量ずつ滴下し
た後、15±5℃で1時間撹拌反応させた。反応液は減
圧(30mmHg)下で溶媒を留去し、水を加えた後、
酢酸エチルで抽出し、無水硫酸ナトリウムで乾燥した後
、ろ過し、減圧(30mmHg)下で溶媒を除去し、目
的の液体化合物36.9g (95%収率)を得た。1
H−NMR  δ (CDCl3):2.31(S, 
3H), 3.11(s, 6H), 3.57(t,
 J=5.1, 2H),4.28(t, J=5.1
, 1H), 7.50(br s, 1H)【001
2】参考例2 メチルN−(2,2−ジエトキシエチル)ジチオカーバ
メート(II,R=メチル、R1 =エチル)の製造ア
ミノアセトアルデヒドジエチルアセタール4g (0.
03モル)をテトラヒドロフラン60mlに溶かした後
、トリエチルアミン3.3g (0.033モル)と二
硫化炭素2.5g (0.033モル)を加え、0〜5
℃で1時間撹拌後、沃化メチル4.7g (0.033
モル)を徐々に加え、15±5℃で1時間撹拌した。反
応液は減圧(30mmHg)下で溶媒を留去し、水を加
えた後、酢酸エチルで抽出し、無水硫酸ナトリウムで乾
燥した後、ろ過し、減圧(30mmHg)下で溶媒を除
去し、目的の液体化合物6.54g (98%収率)を
得た。1H−NMR  δ (CDCl3):1.23
(t, J=7.0, 6H), 2.63(s, 6
H), 3.41 〜4.04(m, 6H), 4.
70(t, J=6.0, 1H), 7.31(br
 s, 1H)  【0013】 【参考例3】エチルN−(2,2−ジメトキシエチル)
ジチオカーバメート(II,R=エチル、R1 =メチ
ル)の製造 アミノアセトアルデヒドジメチルアセタール10.5g
 (0.1モル)を用いて、参考例1の方法に準じてエ
チルブロマイド12g (0.11モル)と2時間反応
させ、目的の液体化合物19.9g (95%収率)を
得た。1H−NMR  δ (CDCl3):1.33
(t, J=7.5, 3H), 3.27(q, J
=7.5, 2H), 3.43(s, 6H), 3
.87(t, J=5.0, 2H), 4.57(t
, J=5.0, 1H), 7.43(br s, 
1H) 【0014】参考例4 アリルN−(2,2−ジメトキシエチル)ジチオカーバ
メート(II,R=アリル、R1 =メチル)の製造ア
ミノアセトアルデヒドジメチルアセタール10.5g 
(0.1モル)を用いて、参考例1の方法に準じてアリ
ルブロマイド13.3g (0.11モル)と30分間
反応させ、目的の液体化合物21.2g (96%収率
)を得た。1H−NMR  δ (CDCl3):3.
43(s, 6H), 3.80 〜4.03(m, 
4H), 4.60(t, J=5.0, 1H), 
5.07 〜5.63(m, 2H), 5.67 〜
6.23(m,1H), 7.43(br s, 1H
) 【0015】参考例5 2−プロピニルN−(2,2−ジメトキシエチル)ジチ
オカーバメート(II,R=2−プロピニル、R1 =
メチル)の製造 アミノアセトアルデヒドジメチルアセタール10.5g
 (0.1モル)をテトラヒドロフラン100mlに溶
かした後、トリエチルアミン12.2g (0.12モ
ル)と二硫化炭素8.4g (0.11モル)を加え、
0〜5℃で1時間撹拌後、反応温度を−78℃に冷却し
た後、2−プロピニルブロマイド13.1g (0.1
1モル)を少量ずつ滴加した。10分後、反応中に析出
したアミン塩をろ過して除去し、ろ液は減圧(30mm
Hg)下で溶媒を留去し、目的の液体化合物20.1g
 (92%収率)を得た。1H−NMR  δ (CD
Cl3):2.29(t, J=2.5, 1H), 
3.47(s, 6H), 3.89(t, J=5.
7, 2H), 4.09(d, J=2.5, 2H
), 4.67(t, J=5.5,1H), 7.4
2(br s, 1H) 【0016】参考例6 ベンジルN−(2,2−ジメトキシエチル)ジチオカー
バメート(II,R=ベンジル、R1 =メチル)の製
造アミノアセトアルデヒドジメチルアセタール10.5
g (0.1モル)を用いて、参考例1の方法に準じて
ベンジルクロライド13.9g (0.11モル)と2
時間反応させ、目的の液体化合物26.3g (97%
収率)を得た。1H−NMR  δ (CDCl3):
3.40(s, 6H), 3.90(t, J=5.
1, 2H), 4.53 〜4.63(m, 3H)
, 7.23 〜7.53(m, 6H)  【0017】参考例7 2−ピリジルメチルN−(2,2−ジメトキシエチル)
ジチオカーバメート(II,R=2−ピリジルメチル、
R1 =メチル)の製造 アミノアセトアルデヒドジメチルアセタール10.5g
 (0.1モル)を用いて、参考例1の方法に準じて2
−クロロメチルピリジン塩酸塩18.0g (0.11
モル)と2時間反応させ、目的の固体化合物25.8g
 (95%収率)を得た。1H−NMR  δ (CD
Cl3):3.44(s, 6H), 3.93(t,
 J=5.5, 2H), 4.30(s, 2H),
5.68(t, J=5.5, 1H), 7.13〜
8.63(m, 4H), 10.83(br s, 
1H) 【0018】参考例8 N−(2,2−ジメトキシエチル)ジチオカーバメート
(II,R=水素、R1 =メチル)の製造アミノアセ
トアルデヒドジメチルアセタール10.5g (0.1
モル)をテトラヒドロフラン100mlに溶かした後、
トリエチルアミン11.1g (0.11モル)と二硫
化炭素7.6g (0.11モル)を加え、0〜5℃で
1時間撹拌した。反応液に濃塩酸9mlを加え、無水硫
酸ナトリウムで乾燥した後、ろ過し、ろ液は減圧(30
mmHg)下で溶媒を留去し、目的の液体化合物13.
0g (72%収率)を得た。1H−NMR  δ (
CDCl3):3.41(s, 6H), 3.57(
d, J=5.2, 2H), 4.47(t, J=
5.0, 1H), 6.79(br s, 1H)  【0019】実施例1 5−メトキシ−2−メチルチオ−1,3−チアゾリン(
I,R=R1 =メチル)の製造 1)熱転移方法参考例1の方法で得たジチオカーバメー
ト19.5g (0.1モル)を、200±10℃で徐
々に減圧蒸留(1.5mmHg)し、目的のチアゾリン
化合物12.2g (75%収率)を得た。1H−NM
R  δ (CDCl3):2.53(s, 3H),
 3.26(s, 3H), 4.04(dd, J=
16.2, 5.62, 1H), 4.45(d, 
J=16.2, 1H), 5.62(d, J=5.
62, 1H) 【0020】2)BF3 方法参考例1の方法で得たジ
チオカーバメート4.88g (0.025モル)を、
ジクロロメタン50mlに溶かした後、10±5℃で三
フッ化ホウ素・エーテル3.9g (0.0275モル
)を少量ずつ滴加した後、同じ温度で10分間撹拌した
。反応溶液を炭酸水素ナトリウム飽和水溶液で中和して
pH8〜9に調整した後、ジクロロメタン50mlで2
回抽出し、無水硫酸ナトリウムで乾燥した後、減圧(3
0mmHg)下で溶媒を留去し、目的のチアゾリン化合
物4.0g (98%収率)を得た。 【0021】3)MgBr2 方法参考例1の方法で得
たジチオカーバメート4.88g (0.025モル)
をジクロロメタン50mlに溶かした後、10±5℃で
無水マグネシウムブロマイド・エーテル7.1g (0
.0275モル)を加え、同じ温度で20分間撹拌した
後、実施例1−2)の方法と同様に処理して、目的のチ
アゾリン化合物4.0(98%収率)を得た。 【0022】4)H2 SO4 方法参考例1の方法で
得たジチオカーバメート4.88g (0.025モル
)を、四塩化炭素50mlに溶かした後、95%濃硫酸
2.58g (0.025モル)を加え、3時間還流し
た。反応溶液を冷却(〜5℃)して析出する固体をろ過
した後、固体を水に溶かし、5%水酸化ナトリウム水溶
液で中和後、ジクロロメタン50mlで2回抽出し、無
水硫酸ナトリウムで乾燥した後、減圧(30mmHg)
下で溶媒を留去し、目的のチアゾリン化合物3.1g(
76%収率)を得た。 【0023】実施例2 5−メトキシ−2−エチルチオ−1,3−チアゾリン(
I,R=エチル、R1 =メチル)の製造1)熱転移方
法参考例3の方法で得たジチオカーバメート20.9g
 (0.1モル)を、200±10℃で徐々に減圧蒸留
(1〜5mmHg)し、目的のチアゾリン化合物12.
4g (70%収率)を得た。1H−NMR  δ (
CDCl3):1.35(t, J=7.4, 3H)
, 3.10(qd, J=7.4, 3.2, 2H
),3.25(s, 3H), 4.08(dd, J
=16.1, 5.5, 1H), 4.43(d, 
J=16.1, 1H), 5.60(d, J=5.
4, 1H) 【0024】2)BF3 方法参考例3
の方法で得たジチオカーバメート5.23g (0.0
25モル)を、実施例1−2)の方法に準じて反応させ
、目的のチアゾリン化合物4.25g (96%収率)
を得た。 【0025】実施例3 5−メトキシ−2−アリルチオ−1,3−チアゾリン(
I,R=アリル、R1 =メチル)の製造1)熱転移方
法参考例4で得たジチオカーバメート22.1g (0
.1モル)を、200±10℃で徐々に減圧蒸留(1.
5mmHg)し、目的のチアゾリン化合物11.7g 
(62%収率)を得た。1H−NMR  δ (CDC
l3):3.27(s, 3H), 3.75 〜3.
81(m, 2H), 4.11(dd, J=16.
2, 5.6, 1H), 4.47(d, J=16
.2, 1H), 5.14(d, J=8.7, 1
H), 5.28(d, J=17.1, 1H), 
5.62(d, J=5.6, 1H), 6.84〜
6.00(m, 1H)  【0026】2)BF3 方法参考例4で得たジチオカ
ーバメート5.53g (0.025モル)を、実施例
1−2)の方法に準じて反応させ、目的チアゾリン化合
物4.68g (99%収率)を得た。 【0027】実施例4 5−メトキシ−2−(2−プロピニルチオ)−1,3−
チアゾリン(I,R=2−プロピニル、R1 =メチル
)の製造 参考例5で得たジチオカーバメート5.48g (0.
025モル)を、実施例1−2)の方法に準じて反応さ
せ、目的のチアゾリン化合物4.58g (98%収率
)を得た。1H−NMR  δ (CDCl3):2.
27(t, 2.6, 1H), 3.27(s, 3
H), 3.89(dd, J=9.4,2.6, 2
H), 4.11(dd, J=16.3, 5.5,
 1H), 4.48(d, J=16.3, 1H)
, 5.67(d, J=5.4, 1H)  【0028】実施例5 5−メトキシ−2−ベンジルチオ−1,3−チアゾリン
(I,R=ベンジル、R1 =メチル)の製造参考例6
で得たジチオカーバメート6.78g (0.025モ
ル)を、実施例1−2)の方法に準じて反応させ、目的
のチアゾリン化合物5.80g (97%収率)を得た
。1H−NMR  δ (CDCl3):3.20(s
, 3H), 4.05(dd, J=16.2, 5
.4, 1H), 4.30(d, J=13.0, 
1H), 4.39(d, J=13.0, 1H),
 4.45(d, J=16.2, 1H), 5.5
4(d, J=5.4,1H), 7.20 〜7.3
5(m, 5H) 【0029】実施例6 5−メトキシ−2−ピリジルメチルチオ−1,3−チア
ゾリン(I,R=2−ピリジルメチル、R1 =メチル
)の製造 参考例7で得たジチオカーバメート68.1g (0.
025モル)を、三フッ化ホウ素・エーテル8.51g
 (0.06モル)を用いて、実施例1−2)の方法に
準じて反応させ、目的のチアゾリン化合物5.82g 
(97%)を得た。1H−NMR  δ (CDCl3
):3.38(s, 3H),4.23(dd, J=
16.2, 5.5, 1H), 4.60(d, J
=16.2, 1H), 4.64(d, J=4.6
, 2H), 5.75(d, J=5.5, 1H)
, 7.25 〜7.78(m, 3H),5.64 
〜8.67(m, 1H) 【0030】実施例7 5−メトキシ−2−メルカプト−1,3−チアゾリン(
I,R=水素、R1 =メチル)の製造参考例8で得た
ジチオカーバメート4.53g (0.025モル)を
、実施例1−2)の方法に準じて反応させ、固体化合物
を得た。これをエーテルで再結晶し、目的のチアゾリン
化合物2.76g(74%収率)を得た。融点:77℃
1H−NMR  δ (CDCl3):3.40(s,
 3H), 4.05(dd, J=14.0, 0.
9, 1H), 4.19(dd, J=13.0, 
5.2, 1H), 5.54(dd, J=5.0,
 0.9, 1H), 8.79(br s, 1H)
 【0031】実施例8
Description: [0001] The present invention relates to a novel 5-alkoxy-2-substituted thio-1,3-thiazoline derivative, which is an intermediate for cephalosporin derivatives, and a method for producing the same. . [Prior art and problems to be solved by the invention] J.
Org. Chem. , 30, 491 (1965) and the same magazine 36, 1068 (1971), the general formula (II
It is disclosed that the thiazoline derivative of I) is prepared by the following reaction scheme. [0003] In the formula, R is a methyl group, and R' and R'' are each a hydrogen atom, an alkyl group, or a phenyl group. An attempt was made to produce a thiazoline derivative of (I), but the general formula (IV) or (
It has not been possible to produce a raw material compound in which R' or R'' in V) is an alkoxy group. [Means for Solving the Problem] As a result of extensive research, the present invention We succeeded in producing thiazoline derivative (I) by intramolecular cyclization reaction of (In the formula, R represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, a 2-propynyl group, a benzyl group, or a 2-pyridylmethyl group, and R1 represents a lower alkyl group such as methyl or ethyl.) The thiazoline derivative of the general formula (I) can be obtained by subjecting the dithiocarbamate of the general formula (II) to a cyclization reaction in the presence of a thermal transfer or an acid. To explain the production method of the present invention in more detail, it is obtained by subjecting dithiocarbamate (II) to an intramolecular thermal transfer reaction at about 200±10° C. under reduced pressure of 5 mmHg or less. ] Furthermore, to perform an intramolecular cyclization reaction in the presence of an acid, boron trifluoride, anhydrous magnesium bromide, concentrated sulfuric acid, etc. can be used as the acid, and boron trifluoride is most preferred.The reaction is carried out using dichloromethane, It can be carried out in a halogenated hydrocarbon solvent such as dichloroethane, chloroform, or carbon tetrachloride, and the reaction temperature is 10±5
Preferably, it is carried out at .degree. According to the method of the present invention, the desired thiazoline derivative (I) can be obtained from easily available dithiocarbamate (II) in a high yield of 95% or more. Furthermore, dithiocarbamate (II) is S
Synthesis, 638 (1989), aminoacetaldehyde dialkyl acetal (VII) is reacted with carbon disulfide at 0 to 20°C in the presence of triethylamine to form the general formula (V
It can be easily produced by obtaining the compound III) and subsequently reacting an alkyl halide at the same temperature. embedded image The thiazoline derivative (I) of the present invention can be converted into a cephalosporin derivative, for example, by the method shown in the following reaction formula. embedded image (wherein R2 is a carboxyl group protecting group) 0
[Example] Production examples of the present invention will be shown below and explained in detail. However, it should be understood that the present invention is not limited only to the embodiments, but that modifications and changes can be made by those skilled in the art within the protection scope of the present invention. Reference Example 1 Production of methyl N-(2,2-dimethoxyethyl)dithiocarbamate (II, R=R1 = methyl) 21 g (0.2 mol) of aminoacetaldehyde dimethyl acetal was dissolved in 150 ml of ethanol and 10 ml of water. rear,
Add 24.3 g (0.24 mol) of triethylamine and 16.8 g (0.22 mol) of carbon disulfide at 0 to 5°C.
I added it little by little. After the reaction was stirred for 1 hour at the same temperature, 31.2 g (0.22 mol) of methyl iodide was added dropwise little by little, and the reaction was stirred for 1 hour at 15±5°C. After distilling off the solvent from the reaction solution under reduced pressure (30 mmHg) and adding water,
After extraction with ethyl acetate and drying over anhydrous sodium sulfate, the mixture was filtered and the solvent was removed under reduced pressure (30 mmHg) to obtain 36.9 g (95% yield) of the desired liquid compound. 1
H-NMR δ (CDCl3): 2.31 (S,
3H), 3.11(s, 6H), 3.57(t,
J=5.1, 2H), 4.28(t, J=5.1
, 1H), 7.50(br s, 1H) 001
2] Reference Example 2 Production of methyl N-(2,2-diethoxyethyl)dithiocarbamate (II, R = methyl, R1 = ethyl) Aminoacetaldehyde diethyl acetal 4g (0.
After dissolving 0.03 mol) in 60 ml of tetrahydrofuran, 3.3 g (0.033 mol) of triethylamine and 2.5 g (0.033 mol) of carbon disulfide were added.
After stirring for 1 hour at ℃, 4.7 g of methyl iodide (0.033
mol) was gradually added and stirred at 15±5°C for 1 hour. The solvent of the reaction solution was distilled off under reduced pressure (30 mmHg), water was added, extracted with ethyl acetate, dried over anhydrous sodium sulfate, filtered, and the solvent was removed under reduced pressure (30 mmHg). 6.54 g (98% yield) of a liquid compound was obtained. 1H-NMR δ (CDCl3): 1.23
(t, J=7.0, 6H), 2.63(s, 6
H), 3.41 to 4.04 (m, 6H), 4.
70 (t, J=6.0, 1H), 7.31 (br
s, 1H) [Reference Example 3] Ethyl N-(2,2-dimethoxyethyl)
Production of dithiocarbamate (II, R = ethyl, R1 = methyl) Aminoacetaldehyde dimethyl acetal 10.5g
(0.1 mol) was reacted with 12 g (0.11 mol) of ethyl bromide for 2 hours according to the method of Reference Example 1 to obtain 19.9 g (95% yield) of the target liquid compound. 1H-NMR δ (CDCl3): 1.33
(t, J=7.5, 3H), 3.27(q, J
=7.5, 2H), 3.43(s, 6H), 3
.. 87 (t, J=5.0, 2H), 4.57 (t
, J=5.0, 1H), 7.43(br s,
1H) Reference Example 4 Production of allyl N-(2,2-dimethoxyethyl)dithiocarbamate (II, R = allyl, R1 = methyl) Aminoacetaldehyde dimethyl acetal 10.5 g
(0.1 mol) was reacted with 13.3 g (0.11 mol) of allyl bromide for 30 minutes according to the method of Reference Example 1 to obtain 21.2 g (96% yield) of the target liquid compound. Ta. 1H-NMR δ (CDCl3): 3.
43 (s, 6H), 3.80 ~ 4.03 (m,
4H), 4.60 (t, J=5.0, 1H),
5.07 ~5.63 (m, 2H), 5.67 ~
6.23 (m, 1H), 7.43 (br s, 1H
) Reference Example 5 2-Propynyl N-(2,2-dimethoxyethyl)dithiocarbamate (II, R=2-propynyl, R1=
10.5g of aminoacetaldehyde dimethyl acetal
(0.1 mol) was dissolved in 100 ml of tetrahydrofuran, then 12.2 g (0.12 mol) of triethylamine and 8.4 g (0.11 mol) of carbon disulfide were added.
After stirring at 0 to 5°C for 1 hour, the reaction temperature was cooled to -78°C, and 13.1 g of 2-propynyl bromide (0.1
1 mol) was added dropwise little by little. After 10 minutes, the amine salt precipitated during the reaction was removed by filtration, and the filtrate was placed under reduced pressure (30 mm
The solvent was distilled off under Hg) to obtain 20.1 g of the desired liquid compound.
(92% yield). 1H-NMR δ (CD
Cl3): 2.29 (t, J=2.5, 1H),
3.47 (s, 6H), 3.89 (t, J=5.
7, 2H), 4.09(d, J=2.5, 2H
), 4.67 (t, J=5.5, 1H), 7.4
2(br s, 1H) Reference Example 6 Production of benzyl N-(2,2-dimethoxyethyl)dithiocarbamate (II, R=benzyl, R1=methyl) Aminoacetaldehyde dimethyl acetal 10.5
g (0.1 mol), 13.9 g (0.11 mol) of benzyl chloride and 2
26.3 g (97%
Yield) was obtained. 1H-NMR δ (CDCl3):
3.40 (s, 6H), 3.90 (t, J=5.
1, 2H), 4.53 ~ 4.63 (m, 3H)
, 7.23 to 7.53 (m, 6H) Reference Example 7 2-pyridylmethyl N-(2,2-dimethoxyethyl)
dithiocarbamate (II, R=2-pyridylmethyl,
Production of R1 = methyl) 10.5 g of aminoacetaldehyde dimethyl acetal
(0.1 mol) according to the method of Reference Example 1.
-Chloromethylpyridine hydrochloride 18.0g (0.11
mol) for 2 hours to obtain 25.8 g of the desired solid compound.
(95% yield). 1H-NMR δ (CD
Cl3): 3.44 (s, 6H), 3.93 (t,
J=5.5, 2H), 4.30(s, 2H),
5.68 (t, J=5.5, 1H), 7.13~
8.63 (m, 4H), 10.83 (br s,
1H) Reference Example 8 Production of N-(2,2-dimethoxyethyl)dithiocarbamate (II, R=hydrogen, R1=methyl) Aminoacetaldehyde dimethyl acetal 10.5g (0.1
After dissolving mol) in 100 ml of tetrahydrofuran,
11.1 g (0.11 mol) of triethylamine and 7.6 g (0.11 mol) of carbon disulfide were added, and the mixture was stirred at 0 to 5°C for 1 hour. 9 ml of concentrated hydrochloric acid was added to the reaction solution, dried over anhydrous sodium sulfate, filtered, and the filtrate was heated under reduced pressure (30
The solvent was distilled off under 13.mmHg) to obtain the desired liquid compound 13.
0 g (72% yield) was obtained. 1H-NMR δ (
CDCl3): 3.41 (s, 6H), 3.57 (
d, J=5.2, 2H), 4.47(t, J=
5.0, 1H), 6.79 (br s, 1H) Example 1 5-Methoxy-2-methylthio-1,3-thiazoline (
1) Heat transfer method 19.5 g (0.1 mol) of the dithiocarbamate obtained by the method of Reference Example 1 was gradually distilled under reduced pressure (1.5 mmHg) at 200±10°C. 12.2 g (75% yield) of the desired thiazoline compound was obtained. 1H-NM
R δ (CDCl3): 2.53 (s, 3H),
3.26 (s, 3H), 4.04 (dd, J=
16.2, 5.62, 1H), 4.45(d,
J=16.2, 1H), 5.62(d, J=5.
62, 1H) 2) BF3 4.88 g (0.025 mol) of dithiocarbamate obtained by the method of Method Reference Example 1,
After dissolving in 50 ml of dichloromethane, 3.9 g (0.0275 mol) of boron trifluoride ether was added dropwise little by little at 10±5° C., followed by stirring at the same temperature for 10 minutes. The reaction solution was neutralized with a saturated aqueous solution of sodium hydrogen carbonate to adjust the pH to 8 to 9, and then diluted with 50 ml of dichloromethane.
After extracting twice and drying with anhydrous sodium sulfate, the mixture was extracted under reduced pressure (3
The solvent was distilled off under 0 mmHg) to obtain 4.0 g (98% yield) of the desired thiazoline compound. 3) MgBr2 4.88 g (0.025 mol) of dithiocarbamate obtained by the method of Method Reference Example 1
was dissolved in 50 ml of dichloromethane, and then 7.1 g of anhydrous magnesium bromide ether (0
.. After stirring at the same temperature for 20 minutes, the mixture was treated in the same manner as in Example 1-2) to obtain the desired thiazoline compound 4.0 (98% yield). 4) H2 SO4 Method 4.88 g (0.025 mol) of the dithiocarbamate obtained by the method of Reference Example 1 was dissolved in 50 ml of carbon tetrachloride, and then 2.58 g (0.025 mol) of 95% concentrated sulfuric acid was added. ) and refluxed for 3 hours. After cooling the reaction solution (~5°C) and filtering the precipitated solid, the solid was dissolved in water, neutralized with a 5% aqueous sodium hydroxide solution, extracted twice with 50 ml of dichloromethane, and dried over anhydrous sodium sulfate. After that, reduce the pressure (30mmHg)
The solvent was distilled off and 3.1 g of the desired thiazoline compound (
76% yield) was obtained. Example 2 5-methoxy-2-ethylthio-1,3-thiazoline (
Production of I, R = ethyl, R1 = methyl) 1) Heat transfer method 20.9 g of dithiocarbamate obtained by the method of Reference Example 3
(0.1 mol) was gradually distilled under reduced pressure (1 to 5 mmHg) at 200±10°C to obtain the desired thiazoline compound 12.
4g (70% yield) was obtained. 1H-NMR δ (
CDCl3): 1.35 (t, J=7.4, 3H)
, 3.10 (qd, J=7.4, 3.2, 2H
), 3.25 (s, 3H), 4.08 (dd, J
=16.1, 5.5, 1H), 4.43(d,
J=16.1, 1H), 5.60(d, J=5.
4, 1H) 2) BF3 Method Reference Example 3
Dithiocarbamate 5.23g (0.0
25 mol) was reacted according to the method of Example 1-2) to obtain 4.25 g (96% yield) of the desired thiazoline compound.
I got it. Example 3 5-methoxy-2-allylthio-1,3-thiazoline (
Production of I,R=allyl, R1=methyl) 1) Heat transfer method 22.1 g of dithiocarbamate obtained in Reference Example 4 (0
.. 1 mol) was gradually distilled under reduced pressure (1.
5 mmHg) and 11.7 g of the desired thiazoline compound.
(62% yield). 1H-NMR δ (CDC
l3): 3.27 (s, 3H), 3.75 to 3.
81 (m, 2H), 4.11 (dd, J=16.
2, 5.6, 1H), 4.47(d, J=16
.. 2, 1H), 5.14 (d, J=8.7, 1
H), 5.28 (d, J=17.1, 1H),
5.62 (d, J=5.6, 1H), 6.84~
6.00 (m, 1H) 2) BF3 Method 5.53 g (0.025 mol) of the dithiocarbamate obtained in Reference Example 4 was reacted according to the method of Example 1-2) to obtain the desired thiazoline. 4.68 g (99% yield) of the compound was obtained. Example 4 5-methoxy-2-(2-propynylthio)-1,3-
Production of thiazoline (I, R = 2-propynyl, R1 = methyl) 5.48 g of dithiocarbamate obtained in Reference Example 5 (0.
025 mol) was reacted according to the method of Example 1-2) to obtain 4.58 g (98% yield) of the desired thiazoline compound. 1H-NMR δ (CDCl3):2.
27(t, 2.6, 1H), 3.27(s, 3
H), 3.89 (dd, J=9.4, 2.6, 2
H), 4.11(dd, J=16.3, 5.5,
1H), 4.48 (d, J=16.3, 1H)
, 5.67 (d, J=5.4, 1H) Example 5 Reference Example 6 for the production of 5-methoxy-2-benzylthio-1,3-thiazoline (I,R=benzyl, R1=methyl)
6.78 g (0.025 mol) of the dithiocarbamate obtained in Example 1-2) was reacted to obtain 5.80 g (97% yield) of the desired thiazoline compound. 1H-NMR δ (CDCl3): 3.20 (s
, 3H), 4.05(dd, J=16.2, 5
.. 4, 1H), 4.30(d, J=13.0,
1H), 4.39(d, J=13.0, 1H),
4.45 (d, J=16.2, 1H), 5.5
4 (d, J=5.4, 1H), 7.20 ~ 7.3
5(m, 5H) Example 6 Production of 5-methoxy-2-pyridylmethylthio-1,3-thiazoline (I,R=2-pyridylmethyl, R1=methyl) Dithiocarbamate obtained in Reference Example 7 68.1g (0.
025 mol), 8.51 g of boron trifluoride ether
(0.06 mol) was reacted according to the method of Example 1-2) to obtain 5.82 g of the desired thiazoline compound.
(97%). 1H-NMR δ (CDCl3
): 3.38 (s, 3H), 4.23 (dd, J=
16.2, 5.5, 1H), 4.60(d, J
=16.2, 1H), 4.64(d, J=4.6
, 2H), 5.75 (d, J=5.5, 1H)
, 7.25 ~ 7.78 (m, 3H), 5.64
~8.67 (m, 1H) Example 7 5-methoxy-2-mercapto-1,3-thiazoline (
4.53 g (0.025 mol) of the dithiocarbamate obtained in Reference Example 8 was reacted according to the method of Example 1-2) to obtain a solid compound. . This was recrystallized from ether to obtain 2.76 g (74% yield) of the desired thiazoline compound. Melting point: 77℃
1H-NMR δ (CDCl3): 3.40 (s,
3H), 4.05(dd, J=14.0, 0.
9, 1H), 4.19(dd, J=13.0,
5.2, 1H), 5.54(dd, J=5.0,
0.9, 1H), 8.79(br s, 1H)
Example 8

Claims (1)

【特許請求の範囲】 【請求項1】  一般式(I)で示されるチアゾリン誘
導体。 【化1】 (式中、Rは水素原子、炭素数1〜6のアルキル基、ア
リル基、2−プロピニル基、ベンジル基又は2−ピリジ
ルメチル基を表し、R1 は低級アルキル基を表す)【
請求項2】  一般式 (II) のジチオカーバメー
ト【化2】 (式中、R及びR1 は請求項1と同じ)を熱転移又は
酸の存在下で環化反応させることを特徴とする一般式(
I)のチアゾリン誘導体の製造方法。 【化3】 (式中、R及びR1 は請求項1と同じ)【請求項3】
  酸が三フッ化ホウ素、無水マグネシウム・ブロマイ
ド又は濃硫酸である請求項2の製造方法。
[Scope of Claims] [Claim 1] A thiazoline derivative represented by general formula (I). [Formula, R represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, a 2-propynyl group, a benzyl group, or a 2-pyridylmethyl group, and R1 represents a lower alkyl group]
[Claim 2] A dithiocarbamate of the general formula (II) [Chemical formula 2] (wherein R and R1 are the same as those in claim 1) is subjected to a cyclization reaction in the presence of a thermal transition or an acid. (
I) Method for producing a thiazoline derivative. [Claim 3] (In the formula, R and R1 are the same as in Claim 1) [Claim 3]
3. The method of claim 2, wherein the acid is boron trifluoride, anhydrous magnesium bromide or concentrated sulfuric acid.
JP3067755A 1990-07-14 1991-03-08 Thiazoline derivative and method for producing the same Expired - Lifetime JPH0645608B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019900010721A KR920008615B1 (en) 1990-07-14 1990-07-14 Thiazoline derivatives and its method
KR10721/1990 1990-07-14

Publications (2)

Publication Number Publication Date
JPH04224569A true JPH04224569A (en) 1992-08-13
JPH0645608B2 JPH0645608B2 (en) 1994-06-15

Family

ID=19301278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3067755A Expired - Lifetime JPH0645608B2 (en) 1990-07-14 1991-03-08 Thiazoline derivative and method for producing the same

Country Status (2)

Country Link
JP (1) JPH0645608B2 (en)
KR (1) KR920008615B1 (en)

Also Published As

Publication number Publication date
KR920008615B1 (en) 1992-10-02
KR920002563A (en) 1992-02-28
JPH0645608B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
JP4048119B2 (en) Process for producing 2- (4-chlorobenzoylamino) -3- [2 (1H) -quinollinon-4-yl] propionic acid
BG108090A (en) Process for the preparation of mesylates of piperazine derivatives
EP0002978A2 (en) Thiazolidinedione-2,4 derivatives, their preparation and pharmaceutical applications
KR102362551B1 (en) Process for Preparing Lifitegrast
JPH04224569A (en) Thiazolidine derivative and preparation thereof
JPS63145286A (en) Bicyclic imidazole derivative
US5162534A (en) Process for the preparation of thiazoline derivatives
JPH04330070A (en) Preparation of labdane compound
JP2001521498A (en) Method for producing O- (3-amino-2-hydroxy-propyl) -hydroxymic acid halide
JP2595605B2 (en) Method for producing 2-substituted oxyimino-3-oxobutyric acid
JP2769058B2 (en) Preparation of cyclopropane derivatives
JP3149279B2 (en) Cyclopropenone derivative
EP1471058B1 (en) Process for producing 1,2,3-triazole compound
JP4673313B2 (en) Process for producing 1,2,3,9-tetrahydro-9-methyl-3-[(2-methyl-1H-imidazol-1-yl) methyl] -4H-carbazol-4-one or a salt thereof
JP3006904B2 (en) Method for producing 1,4-dihydropyridine derivative and intermediate thereof
JP2953653B2 (en) Method for producing piperidine derivative
JP2004002206A (en) Method for producing optically active thiazolidinone derivative
KR100208297B1 (en) Novel process for preparing cephem derivatives
JPS59134796A (en) Preparation of 6-aminopenicillanic acid ester using tetraalkylammonium salt of 6-aminopenicillanic acid
JP2500316B2 (en) 1,4,5,8-Tetrakis (halogenomethyl) naphthalene derivative and method for producing the same
JP2004149412A (en) Method for producing 7-[2-(2-aminothiazol-4-yl)-2-lower alkoxycarbonylmethoxyiminoacetamido]-3-cephem compound
JPH0558977A (en) Novel intermediate compound for producing indolealkaloid derivative
JP3168563B2 (en) N-Tritylaspartic acid derivatives for the preparation of phosphonate NMDA antagonists
JP4031156B2 (en) Preferential production method of Z form of 2-aminothiazole derivative
JPH01104041A (en) N-((2-oxo-1-pyrrolidinyl)acetyl)piperazine derivative, production thereof and remedy for senile dementia