JPH0422443B2 - - Google Patents
Info
- Publication number
- JPH0422443B2 JPH0422443B2 JP26854185A JP26854185A JPH0422443B2 JP H0422443 B2 JPH0422443 B2 JP H0422443B2 JP 26854185 A JP26854185 A JP 26854185A JP 26854185 A JP26854185 A JP 26854185A JP H0422443 B2 JPH0422443 B2 JP H0422443B2
- Authority
- JP
- Japan
- Prior art keywords
- measured
- sample
- optical system
- shape measuring
- splitting prism
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000003287 optical effect Effects 0.000 claims description 19
- 238000006073 displacement reaction Methods 0.000 claims description 10
- 230000007547 defect Effects 0.000 claims description 5
- 238000009826 distribution Methods 0.000 claims description 5
- 230000001419 dependent effect Effects 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 3
- 230000003321 amplification Effects 0.000 claims 1
- 238000003199 nucleic acid amplification method Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 description 19
- 238000007689 inspection Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 10
- 230000003746 surface roughness Effects 0.000 description 8
- 238000005520 cutting process Methods 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000000428 dust Substances 0.000 description 5
- 230000002950 deficient Effects 0.000 description 4
- 239000006249 magnetic particle Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Microscoopes, Condenser (AREA)
- Length Measuring Devices By Optical Means (AREA)
Description
【発明の詳細な説明】
〔発明の概要〕
本発明は被測定試料あるいは被加工試料上の表
面のうねり、あるいは表面粗さを測定するための
表面形状測定装置を提供するもので特に被測定
(加工)試料上にレーザ光を照射し、その反射光
をプリズムの頂部に入射させて、その頂部から左
右のプリズムの辺に振り分けられた反射光量を光
検知器で検知して差動増巾器により表面傾きを求
め、この値から高さを求めるようにした表面形状
測定装置に関する。Detailed Description of the Invention [Summary of the Invention] The present invention provides a surface profile measuring device for measuring surface waviness or surface roughness on a sample to be measured or a sample to be processed. Processing) Laser light is irradiated onto the sample, the reflected light is incident on the top of the prism, and the amount of reflected light distributed from the top to the left and right sides of the prism is detected by a photodetector and a differential amplifier is used. The present invention relates to a surface shape measuring device which obtains a surface inclination by using a method, and obtains a height from this value.
本発明は表面形状測定装置に係り、特に光触針
式で表面の粗さあるいはうねり等を測定する表面
形状測定装置に関する。
The present invention relates to a surface shape measuring device, and more particularly to a surface shape measuring device that uses an optical stylus to measure surface roughness, waviness, etc.
磁気デイスク装置においては磁気ヘツドを用い
て情報の書込み、読出しを行つておりデイスク表
面から磁気ヘツドのスライダまでの浮上量は0.2μ
m程度であるが、上記デイスク表面にうねりや粗
い凹凸があると磁気ヘツドを載置したスライダが
うねりの谷間に入つたり山に乗り上げることによ
つて信号が取り出せなくなつたり磁気ヘツドがデ
イスクに当たる等の問題があり、通常では磁気デ
イスクの表面のうねりあるいは粗さを0.05μm以
下に抑える必要がある。このため、磁気デイスク
担体である被測定(加工)試料表面の高さ(うね
りおよび粗さ)を測定して一定の値に保つ必要が
ある。このような試料面の形状測定装置としては
従来から触針式の表面粗さ計が知られている。こ
の表面粗さ計は0.001μm程度までの精度で粗さ測
定を行えるが半径4μ程度の針を被測定試料表面
に当てた状態で上下動を測定するため破壊検査と
なるだけでなく測定速度が遅い(約10秒/mm)欠
点がある。
In a magnetic disk device, a magnetic head is used to write and read information, and the flying height from the disk surface to the slider of the magnetic head is 0.2μ.
However, if there are undulations or rough irregularities on the surface of the disk, the slider on which the magnetic head is mounted may fall into the troughs of the undulations or ride on top of the undulations, making it impossible to extract the signal or causing the magnetic head to hit the disk. Generally, it is necessary to suppress the waviness or roughness of the surface of a magnetic disk to 0.05 μm or less. For this reason, it is necessary to measure the height (waviness and roughness) of the surface of the sample to be measured (processed), which is a magnetic disk carrier, and maintain it at a constant value. A stylus-type surface roughness meter has been known as a device for measuring the shape of a sample surface. This surface roughness meter can measure roughness with an accuracy of about 0.001 μm, but since it measures vertical movement with a needle with a radius of about 4 μm placed on the surface of the sample to be measured, it is not only a destructive test but also slows down the measurement speed. It has the disadvantage of being slow (about 10 seconds/mm).
更にD.J.Whitehouse教授特別講演会資料(主
催、精機学会60年9月)に従来の光学式非接触計
測の例が示されているが、その代表的なものにレ
ーザ等の光スポツトを被測定試料表面に焦点を合
わせて当てることでその反射波のずれによるスポ
ツト径の差を検出する表面形状測定装置が知られ
ている。 Furthermore, examples of conventional optical non-contact measurement are shown in Professor DJ Whitehouse's special lecture materials (sponsored by the Japan Society of Precision Machinery Engineers, September 1960). A surface shape measuring device is known that detects the difference in spot diameter due to the deviation of the reflected wave by focusing on the spot.
この方式では0.001μm程度の精度で表面のうね
りや粗さを検出することができ、かつ非破壊検査
である特徴を有するが測定長が短く、測定時間が
遅い問題があつた。 This method can detect surface waviness and roughness with an accuracy of about 0.001 μm, and has the feature of being a non-destructive test, but it has the problem of short measurement length and slow measurement time.
上述の光スポツト式では一般に分解能が1.6μm
程度に固定されてしまい分解能調整ができない問
題があつた。更にスポツト径は1.6μmφと小さい
ために測定長が長ければ測定点が多くなり、被測
定試料表面に焦点を合せる場合に被測定試料のう
ねりや粗さだけでなく、被測定試料を載置するX
−Yステージに振動などによる上下方向の精度誤
差があると焦点位置が変わるためにステージの精
度を上げなければならないだけでなく駆動系の振
動を振幅1nm以下に遮断することも難しい。ま
た測定時間は3mm/分のオーダで極めて遅い問題
があつた。また、前述の資料の中には、光の反射
角から対象の傾きを検出し、表面変位を検知する
手段も紹介されているが、対象の振動が高精度を
達成する上での問題もあつた。
The optical spot method mentioned above generally has a resolution of 1.6 μm.
There was a problem that the resolution was fixed and the resolution could not be adjusted. Furthermore, since the spot diameter is as small as 1.6 μmφ, the longer the measurement length, the more measurement points will be required. X
- If the Y stage has accuracy errors in the vertical direction due to vibrations, etc., the focus position will change, which not only requires increasing the accuracy of the stage, but also makes it difficult to block the vibrations of the drive system to an amplitude of 1 nm or less. There was also the problem that the measurement time was extremely slow, on the order of 3 mm/minute. In addition, the above-mentioned materials introduce a method of detecting the tilt of an object from the angle of reflection of light and detecting surface displacement, but the vibration of the object also poses a problem in achieving high accuracy. Ta.
本発明は叙上の欠点に鑑みなされたものであ
り、その目的とするところは非接触で高速度に表
面形状検査が行え、測定長も長く測定分解能が可
変できる表面形状測定装置を得んとするもので、
その手段は被測定試料を載置するX−Y方向移動
ステージと、レーザ光源からの平行レーザ光を一
対の反射ミラーの一方の反射ミラー面で反射せし
め、その反射されたレーザ光を前記ステージに載
置された前記被測定試料の被測定面に照射し、該
被測定面からの正反射光を前記一対の反射ミラー
の他方の反射ミラー面で反射せしめて後述の第1
および第2のビーム分割プリズムの各頂部に向か
わせる光学系と、該光学系によつて与えられた光
を前記被測定面における第1の方向と対応する方
向に頂部を境に2分割する第1のビーム分割プリ
ズムと、前記光学系によつて与えられた光を前記
被測定面における前記第1の方向に直交する第2
の方向と対応する方向に頂部を境に2分割する第
2のビーム分割プリズムと、前記第1のビーム分
割プリズムで2分割して得られたそれぞれのビー
ムを受け、前記被測定面における前記第1の方向
に傾きに応じたビームの変位を検知する第1の光
検知器対と、前記第2のビーム分割プリズムで2
分割して得られたそれぞれのビームを受け、前記
被測定面における前記第2の方向の傾きに応じた
ビームの変位を検知する、前記第1の光検知器対
とは直交して配置された第2の光検知器対と、前
記第1および第2の光検知器対でそれぞれ検知さ
れたビームの変位に基づき前記被測定面における
前記第1および第2の方向の傾き値を得る差動増
幅手段と、前記被測定面を前記X−Y方向へ走査
した場合の該走査方向の位置座標を独立変数と
し、該走査に従つて前記差動増幅手段で順次得ら
れる傾き値を従属係数として、該従属変数を前記
独立変数について前記第1と第2の方向でそれぞ
れ独立に積分することで、前記被測定面の高さ分
布を得る演算回路とを有することを特徴とする表
面形状測定装置によつて達成される。
The present invention was made in view of the above-mentioned drawbacks, and its purpose is to provide a surface profile measuring device that can perform non-contact surface profile inspection at high speed, has a long measurement length, and has variable measurement resolution. to do,
The means includes an X-Y direction moving stage on which a sample to be measured is placed, a parallel laser beam from a laser light source is reflected by one reflecting mirror surface of a pair of reflecting mirrors, and the reflected laser beam is directed to the stage. The surface to be measured of the mounted sample to be measured is irradiated with light, and the specularly reflected light from the surface to be measured is reflected by the other reflecting mirror surface of the pair of reflecting mirrors, as described below.
and an optical system that directs the light toward each apex of the second beam splitting prism, and an optical system that splits the light given by the optical system into two parts with the apex as a border in a direction corresponding to the first direction on the surface to be measured. 1 beam splitting prism, and a second beam splitting prism which is orthogonal to the first direction on the surface to be measured, and splits the light given by the optical system into
A second beam splitting prism splits the beam into two with the apex as the border in a direction corresponding to the direction of a first photodetector pair that detects the displacement of the beam according to the inclination in one direction; and the second beam splitting prism.
The first photodetector pair is arranged perpendicularly to the first photodetector pair, which receives each of the divided beams and detects the displacement of the beam according to the inclination of the measured surface in the second direction. a second photodetector pair and a differential sensor for obtaining tilt values in the first and second directions on the surface to be measured based on displacements of beams respectively detected by the first and second photodetector pairs; When the amplifying means and the surface to be measured are scanned in the X-Y direction, the position coordinates in the scanning direction are used as independent variables, and the slope values sequentially obtained by the differential amplifying means according to the scanning are used as dependent coefficients. , an arithmetic circuit that obtains a height distribution of the surface to be measured by independently integrating the dependent variable in the first and second directions with respect to the independent variable. achieved by.
本発明の表面形状測定装置はレーザ光源からの
レーザ光を一対の反射ミラーを介して被測定試料
上に照射し、その反射光をビーム分割プリズムの
頂部に入射させ、頂部から分解プリズムの左右辺
に入射する変位に応じて一対の光検知器でこれを
受け、該一対の光検知器の差出力を基にこれを演
算して試料表面のうねり、粗さ等の高さ成分を検
出するようにしたものである。なお、ビーム分割
プリズムと一対の光検知器を用いる例はすでに知
られている。
The surface profile measuring device of the present invention irradiates a sample to be measured with laser light from a laser light source via a pair of reflecting mirrors, makes the reflected light enter the top of a beam splitting prism, and from the top, the left and right sides of the resolving prism A pair of photodetectors receives the displacement according to the incident displacement, and calculates this based on the difference output between the pair of photodetectors to detect height components such as waviness and roughness on the sample surface. This is what I did. Note that an example using a beam splitting prism and a pair of photodetectors is already known.
以下、本発明の表面形状測定装置を第1図乃至
第4図について詳記する。第1図は本発明の表面
形状測定装置の模式図、第2図は第1図に用いる
ビーム分割プリズムと一対の光検知器の説明に供
する特性図でビーム分割プリズムの頂部に当てた
ビームの移動量に対する一対の光検知器の出力差
を表すものであり、第3図はレーザ光のビーム径
を変えるレンズ系の模式図、第4図はビーム径と
観測される被測定試料表面高さの関係を示す波形
図である。
Hereinafter, the surface profile measuring device of the present invention will be described in detail with reference to FIGS. 1 to 4. Fig. 1 is a schematic diagram of the surface profile measuring device of the present invention, and Fig. 2 is a characteristic diagram for explaining the beam splitting prism and a pair of photodetectors used in Fig. 1. It shows the output difference between a pair of photodetectors with respect to the amount of movement. Figure 3 is a schematic diagram of the lens system that changes the beam diameter of the laser beam, and Figure 4 shows the beam diameter and the observed surface height of the sample to be measured. FIG.
第1図において、1は磁気デイスク等の被測定
試料でアルミニウムデイスクを研削し、磁性粒子
の塗膜がなされている。この被測定試料はX−Y
軸方向に移動可能なX−Yステージ2上に載置さ
れ、例えば5mW程度のHe−Ne(ヘリウム−ネ
オン)レーザを発振するレーザ源3からのレーザ
光は少なくとも2枚の反射ミラーを三角状に形成
した一対の反射ミラーあるいは反射プリズム4の
一方の反射ミラーに入射させ、該反射ミラーで反
射したレーザ光を上記被測定試料1の表面に照射
する。該被測定試料で反射されたレーザビームは
一対の反射ミラー4の他方の反射ミラーを介して
ハーフミラー7に入射される。ハーフミラー7を
通過したレーザビームは被測定試料1のX−Z平
面内で表面の傾きを検出するためビーム分割プリ
ズム5aの頂部(エツジ)5a′に入射され、この
頂部から左右への変位に応じて光量が該ビーム分
割プリズムの左右に配設したホトマルチプライヤ
等からなる光検知器6a,6bに与えられる。ハ
ーフミラー7で反射されたレーザビームは被測定
試料1のZ−Y平面内の表面傾きを検出するため
のビーム分割プリズム5cの頂部(エツジ)5
c′に入射され、この頂部から左右への変位に応じ
た光量が、該ビーム分割プリズムの左右に配設し
たホルマルチプライヤ等からなる光検知器6c,
6dに与えられる。このとき被測定試料1上面で
高さ方向が変化すれば破線で示すように反射され
るレーザビームの反射方向が変化し、ビーム分割
プリズム5a,5cの頂部に対する入射位置が移
動する。この移動量をdとするとレーザビームが
頂部5a′,5c′で分割される割合の変化に伴つて
光検知器6a,6bおよび6c,6dに入射され
る光量が変化する。一対の光検知器6a,6bお
よび6c,6dの出力は2組の差動増幅器8a,
8bからなる増幅手段8に加えられ、積分回路9
a,9bからなる演算回路9に加えられる。な
お、ビーム分割プリズムと一対の光検知器を用い
る例は、前出の特別講演会資料にも記載されてい
る。 In FIG. 1, reference numeral 1 is a sample to be measured such as a magnetic disk, and an aluminum disk is ground and coated with magnetic particles. This sample to be measured is
A laser beam from a laser source 3 placed on an axially movable X-Y stage 2 and emitting a He-Ne (helium-neon) laser of, for example, about 5 mW passes through at least two reflecting mirrors in a triangular shape. The laser beam is made incident on one of the reflecting mirrors of the pair of reflecting mirrors or the reflecting prism 4 formed in the above, and the surface of the sample to be measured 1 is irradiated with the laser beam reflected by the reflecting mirror. The laser beam reflected by the sample to be measured is incident on the half mirror 7 via the other of the pair of reflecting mirrors 4 . The laser beam that has passed through the half mirror 7 is incident on the top (edge) 5a' of the beam splitting prism 5a in order to detect the surface inclination within the X-Z plane of the sample to be measured 1, and is detected by the displacement from the top to the left and right. Accordingly, the amount of light is applied to photodetectors 6a and 6b consisting of photomultipliers and the like arranged on the left and right sides of the beam splitting prism. The laser beam reflected by the half mirror 7 is directed to the top (edge) 5 of a beam splitting prism 5c for detecting the surface inclination in the Z-Y plane of the sample 1 to be measured.
c′, and the amount of light corresponding to the displacement from the top to the left and right is detected by the photodetector 6c, which is composed of Hol multipliers etc. arranged on the left and right sides of the beam splitting prism,
6d. At this time, if the height direction changes on the upper surface of the sample to be measured 1, the reflection direction of the reflected laser beam changes as shown by the broken line, and the incident position with respect to the tops of the beam splitting prisms 5a and 5c moves. If this amount of movement is d, the amount of light incident on the photodetectors 6a, 6b and 6c, 6d changes as the ratio of the laser beam being divided by the apexes 5a', 5c' changes. The outputs of the pair of photodetectors 6a, 6b and 6c, 6d are output by two sets of differential amplifiers 8a,
8b and an integrating circuit 9.
It is added to an arithmetic circuit 9 consisting of a and 9b. Note that an example using a beam splitting prism and a pair of photodetectors is also described in the aforementioned special lecture materials.
第2図はビーム分割プリズム頂部に入射された
レーザビームの移動量dと光検知器6a,6bと
6c,6dの差出力の関係を示すグラフであるが
d=0ではビーム分割プリズムの頂部にレーザビ
ームが当たつた状態を示す。このグラフの直線性
が成り立つ範囲は光検出器に加わる電圧、光源の
強さ等に依存する。 Figure 2 is a graph showing the relationship between the moving amount d of the laser beam incident on the top of the beam splitting prism and the difference output between the photodetectors 6a, 6b and 6c, 6d. Shows the state of being hit by a laser beam. The range in which this graph maintains linearity depends on the voltage applied to the photodetector, the intensity of the light source, etc.
叙上の構成で測定を行う手順はまずX−Yステ
ージ2上に標準となる基準のデイスクを載置して
光検知器6a,6bおよび6c,6dから差動増
幅器8a,8bに与えられる出力差が零となるよ
うにすなわち、差動増幅器8a,8bの出力が零
となるようにビーム分割プリズム位置を予め調整
しておき、次に被測定試料1をX−Yステージ2
上に代えて載置し被測定面に対して座標系(x、
y、z)を第1図に示すように決まる。レーザ光
の試料面上の照射点の位置座標xi(i=1、2、
3…)に対して光検知器6a,6bまたは6c,
6dの各々出力差がvi(i=1、2、3…)であ
れば、照射面のときθiはxz、xy平面内で
θi=di/2l=k/2lvi ……(1)
で表される。 The procedure for measuring with the above configuration is to first place a standard reference disk on the X-Y stage 2, and output the outputs from the photodetectors 6a, 6b and 6c, 6d to the differential amplifiers 8a, 8b. The beam splitting prism position is adjusted in advance so that the difference is zero, that is, the outputs of the differential amplifiers 8a and 8b are zero, and then the sample to be measured 1 is placed on the X-Y stage 2.
The coordinate system (x,
y, z) are determined as shown in FIG. Positional coordinates x i (i=1, 2,
3...) for the photodetector 6a, 6b or 6c,
If the output difference of each of 6d is v i (i=1, 2, 3...), then θ i on the irradiated surface is xz, in the xy plane θ i = d i /2l=k/2lv i ...( 1).
ここでdiはビーム分割プリズム上のレーザビー
ムの移動量、kは第2図で示される較正直線の勾
配、lは被測定試料1の面からビーム分割プリズ
ム5a,5cまでの距離である。いま、x軸方向
のxz面について考えるとθが充分小さい時θi≒
tanθi=dz/dxなので
dz/dxx=xi=k/2lvi ……(2)
によつて被測定試料の傾きが得られる。このよう
にして得られた位置座標の各点を積分回路9a,
9bで積分してやればxz面での高さ分布が求ま
る。つまり
zi=
〓i
(dz/dx)X=xi・Δxi+c
=k/2l
〓i
vi・Δxi+c ……(3)
ここでziはxiにおける表面高さ、ΔxiはΔxi=
xi+1−xiでcは積分定数である。Δxi=Δx=const
にとれば結局
zi=k・Δx/2l
〓i
vi+c ……(4)
となり、この演算は演算回路9内の積分回路9a
で行われる。また被測定試料1のyz平面内表面
傾きdz/dyはビーム分割プリズム5c、光検知器6
c,6dで検知され、高さは上記(2)〜(4)式と同様
に求められる。 Here, d i is the amount of movement of the laser beam on the beam splitting prism, k is the slope of the calibration line shown in FIG. 2, and l is the distance from the surface of the sample 1 to be measured to the beam splitting prisms 5a and 5c. Now, considering the xz plane in the x-axis direction, when θ is sufficiently small, θ i ≒
Since tanθ i =dz/dx, dz/dx x=xi =k/2lv i (2) The slope of the sample to be measured can be obtained. Each point of the position coordinates obtained in this way is integrated into the integrating circuit 9a,
If we integrate using 9b, we can find the height distribution on the xz plane. In other words , z i = 〓 i ( dz / dx) Δx i =
x i+1 −x i, where c is an integral constant. Δx i =Δx=const
In the end, z i =k・Δx/2l 〓 i v i +c ...(4) This calculation is performed by the integrating circuit 9a in the arithmetic circuit 9.
It will be held in Further, the surface inclination dz/dy in the yz plane of the sample 1 to be measured is detected by the beam splitting prism 5c and the photodetectors 6c and 6d, and the height is determined in the same manner as the above equations (2) to (4).
本発明の他の実施例を第1図によつて更に説明
する。すなわち被測定試料を測定するときの分解
能を変化させる手段を示すもので、レーザ源3と
一対の反射ミラー4とのレーザ光路に破線で示す
レンズ系10を設けたものである。このレンズ系
10としては第3図に示すようにレーザ光の通る
径をピンホール10aを通じて変えてやる。この
ピンホール径を大きくすれば試料上での光スポツ
ト径が小さくなり、より細かい被測定試料面が検
出可能である。第3図でレーザ源3から出たレー
ザ光をピンホール等でしぼらない実線で示す光路
では一対の反射ミラー4を通じて試料に入射され
たレーザ光は反射されてビーム分割プリズム5
a、または5bの頂部に投影される際のスポツト
径はD1で示す値であるがピンホール10aを含
むレンズ系でレーザ光をしぼつて破線で示すよう
に試料1に照射し、その反射したレーザビームを
ビーム分割プリズム5aまたは5bに入射したス
ポツト径はD2でD1>D2の関係にある。ビーム径
を変化させる方法は照射距離を変える等の方法を
とつてもよい。被測定試料を測定する時に測定分
解能が被測定面に入射するレーザ光の径に依存す
る様子を第4図に示す。第4図aはレーザ光を試
料面に投影したときの径を0.5mmとした場合の観
測表面高さ(うねり)を縦軸にとり横軸に時間を
とつたものであり、第4図bはレーザ光を試料面
に投影したときの径を0.1mmとし、観察表面高さ
(粗さ)を縦軸にとり横軸に時間をとつたもので
あり、レーザスポツト径を小さくすればより細か
い試料表面構造が検出できる。前記したレンズ系
10のない構成ではレーザビームのスポツト径が
比較的大きくなりこのスポツト径に応じた程度の
ゆるやかな周期の表面構造しか測定できない。す
なわちレーザビーム径が70μmφ程度では140μm
程度の周期の表面粗さを0.01μm精度で検出でき
ているが700μmでは1.4mm程度の周期の表面うね
りを0.01μm精度で検出できている。 Another embodiment of the invention will be further explained with reference to FIG. That is, this shows a means for changing the resolution when measuring a sample to be measured, and a lens system 10 shown by a broken line is provided in the laser optical path between the laser source 3 and the pair of reflection mirrors 4. As shown in FIG. 3, this lens system 10 changes the diameter through which the laser beam passes through a pinhole 10a. If the diameter of the pinhole is increased, the diameter of the light spot on the sample becomes smaller, and a finer surface of the sample to be measured can be detected. In FIG. 3, in the optical path of the laser beam emitted from the laser source 3 shown by the solid line, which is not constricted by a pinhole, the laser beam incident on the sample is reflected by the beam splitting prism 5 through a pair of reflection mirrors 4.
The spot diameter when projected onto the top of a or 5b is the value shown by D 1 , but the laser beam is focused through a lens system including a pinhole 10a and irradiated onto the sample 1 as shown by the broken line, and its reflection is The spot diameter of the laser beam incident on the beam splitting prism 5a or 5b is D2 , and the relationship D1 > D2 holds. The beam diameter may be changed by changing the irradiation distance. FIG. 4 shows how the measurement resolution depends on the diameter of the laser beam incident on the surface to be measured when measuring the surface to be measured. Figure 4a shows the observation surface height (waviness) on the vertical axis when the diameter of the laser beam projected onto the sample surface is 0.5 mm, and time on the horizontal axis, and Figure 4b shows The diameter of the laser beam projected onto the sample surface is 0.1 mm, the vertical axis is the observation surface height (roughness), and the horizontal axis is time.If the laser spot diameter is made smaller, the sample surface becomes finer. structure can be detected. In a configuration without the lens system 10 described above, the spot diameter of the laser beam becomes relatively large, and only a surface structure with a gentle periodicity corresponding to this spot diameter can be measured. In other words, when the laser beam diameter is about 70μmφ, it is 140μm.
At 700 μm, surface roughness with a period of approximately 1.4 mm can be detected with an accuracy of 0.01 μm.
本装置の特徴は、試料1が振動などで1〜2μ
m上下動してもレーザ光の反射角度は変化せず、
表面うねり試料精度0.01μmが得られることを実
測によつて確認した。これは試料面でのビーム反
射角度が2°に設定しておいた場合、2μm程度の上
下動は光分割プリズム頂部位置でのビーム位置変
化0.07μmに相当し、試料誤差以内であるためで
ある。 The feature of this device is that the sample 1 can be heated by 1 to 2 μm due to vibration etc.
The reflection angle of the laser beam does not change even if it moves up and down.
It was confirmed through actual measurements that a surface waviness sample accuracy of 0.01 μm could be obtained. This is because when the beam reflection angle at the sample surface is set to 2°, a vertical movement of about 2 μm corresponds to a beam position change of 0.07 μm at the top position of the light splitting prism, which is within the sample error. .
第5図に本発明の表面形状測定装置の他の実施
例を示す。第6図は第5図の波形説明図である。
第5図で第1図と同一部分には同一符号を付して
重複説明を省略するも、一対の光検知器6a,6
bおよび6c,6dの各々の出力a,bとc,d
を8d,8cと8f,8eで示す前置増幅器を介
して差動増幅器8a,8bに加えると供に和をと
る増幅器、すなわち加算回路8g,8hでa+b
とc+dの出力をとつてこの出力をゲート回路等
の論理回路8i,8jを通じて積分回路9a,9
bにも加える。このように構成しておくと、第6
図aに示すように被測定試料の表面1aに塵埃1
1または傷12がついている場合に差動増幅器8
a,8bの出力は第6図bのように被測定試料1
の傾きに関するデータを与えるが、加算回路8
g,8hの出力は第6図cに示すように塵埃11
や傷のついた被測定試料上で入射されたレーザ光
は散乱され検知出力レベルは減少する。このため
予め所定のスライスレベル13以下になつた出力
を取り出して第6図dに示すように塵埃、傷等の
欠陥検出判定用の欠陥判定パルス14を積分回路
9a,9bに入れて、この部分の測定等を行わな
いようにする。 FIG. 5 shows another embodiment of the surface profile measuring device of the present invention. FIG. 6 is a waveform explanatory diagram of FIG. 5.
In FIG. 5, parts that are the same as those in FIG.
Outputs a, b and c, d of b, 6c, 6d, respectively
are added to differential amplifiers 8a and 8b via preamplifiers 8d, 8c and 8f and 8e, and summation amplifiers, that is, adder circuits 8g and 8h, add a+b.
and c+d, and the outputs are passed through logic circuits 8i and 8j such as gate circuits to integrator circuits 9a and 9.
Add to b. With this configuration, the sixth
As shown in Figure a, there is dust 1 on the surface 1a of the sample to be measured.
1 or scratch 12, the differential amplifier 8
The outputs of a and 8b are as shown in Figure 6b.
gives data regarding the slope of the adder circuit 8.
The output of g, 8h is the dust 11 as shown in Figure 6c.
Laser light incident on a sample to be measured that is scratched or scratched is scattered and the detection output level decreases. For this reason, the output that has become below a predetermined slice level 13 is taken out in advance, and a defect determination pulse 14 for detecting and determining defects such as dust and scratches is input into the integrating circuits 9a and 9b as shown in FIG. 6d. Do not perform measurements, etc.
第7図a,bおよび第8図は本発明の他の実施
例を示す。第7図は従来の磁気デイスクの製造工
程を示すフローチヤートであり、第7図bは本発
明の磁気デイスクの製造工程を示すフローチヤー
トである。第8図は本発明の表面形状測定装置を
用いて被加工試料(磁気デイスク)を加工、測定
する場合の系統図を示すものであり、本実施例で
は加工と測定を同時に行うようにして製品に付加
価値を付与しない前に検査を行うようにしたもの
である。 Figures 7a, b and 8 show other embodiments of the invention. FIG. 7 is a flowchart showing the manufacturing process of a conventional magnetic disk, and FIG. 7b is a flowchart showing the manufacturing process of the magnetic disk of the present invention. Figure 8 shows a system diagram when processing and measuring a workpiece (magnetic disk) using the surface profile measuring device of the present invention. The system is designed to conduct an inspection before adding value to the product.
すなわち従来、例えば磁気デイスク等の被測定
(加工)試料を加工、測定するには第7図aに示
すようにアルミニウムデイスクの表面研削15が
行われ、第2の工程で磁性粒子を含む被膜の塗布
16がなされ、次の第3の工程で製品としての電
気的な書き込み、読み取り検査と表面検査17が
行われて、ここで不良の場合は廃棄19または再
研削、再塗膜等の工程が行われ良品は製品18と
して出荷される。しかし、不良とされた磁気デイ
スクはそのまま廃棄されることが多くこのために
磁性粒子の塗膜によて付加価値が付与された第2
の工程が全く無駄になる。そこで本発明では第7
図bに示すようにアルミデイスクの研磨15の後
に表面検査17aを本発明の表面形状測定装置で
行い、不良品は再研削を直ちに行い得る、また良
品は次の第3の工程である磁性粒子の塗膜16が
行われ、再び電気的な検査17bが行われる。こ
れで不良であれば再塗膜を行い、良品であれば製
品19として出荷されるめに未だ付加価値の付与
されないプロセス以前に表面検査が行われるため
大幅な歩留り向上となり、また研削と表面検査が
同時に行えるので全数検査および検査時間の節約
に大きく役立つと考えられる。 That is, conventionally, in order to process and measure a sample to be measured (processed) such as a magnetic disk, the surface of the aluminum disk is ground 15 as shown in FIG. Coating 16 is performed, and in the next third step, the product is subjected to electrical writing, reading inspection and surface inspection 17, and if it is found to be defective, it is discarded 19 or undergoes processes such as re-grinding and re-coating. Good products are shipped as products 18. However, magnetic disks that are found to be defective are often discarded as is, and for this reason, a second disk with added value added by a coating film of magnetic particles is used.
The entire process is wasted. Therefore, in the present invention, the seventh
As shown in FIG. b, after polishing 15 of the aluminum disk, a surface inspection 17a is performed using the surface shape measuring device of the present invention, and defective products can be re-ground immediately, while good products can undergo the next third step of magnetic particles. The coating film 16 is applied, and the electrical inspection 17b is performed again. If the product is defective, it will be recoated, and if it is good, it will be shipped as product 19. Surface inspection is performed before the process that does not add value yet, resulting in a significant yield improvement, and grinding and surface inspection. Since these can be performed simultaneously, it is considered to be of great help in 100% inspection and in saving inspection time.
上述の具体的構成を第8図に詳記する。 The above-described specific configuration is detailed in FIG.
第8図では上述のような工業製品の加工および
検査を各々個別に行うことなく、加工と検査を同
時に行うことで検査時間の節約と加工過程の常時
チエツクを行い、歩留りを向上させるようにした
ものであり、20は施盤で被測定(加工)試料1
は試料支持台21に取り付けられている。22は
バイト等の研削用の工具を示し、アルミニウムデ
イスク等の被測定試料表面の仕上げ加工を行う。
このような加工を行つた直後に被測定試料1を取
り付けたまま表面の検査を行う。この検査装置2
3は上記した第1図の表面形状測定装置を用いる
を可とするも、市販の非接触表面粗さ計(小坂研
究所HIPOS−ET10)等を用いてもよい。 In Figure 8, instead of processing and inspecting industrial products separately as described above, processing and inspection are performed simultaneously to save inspection time, constantly check the processing process, and improve yield. 20 is the sample 1 to be measured (processed) on the lathe.
is attached to the sample support stand 21. Reference numeral 22 denotes a grinding tool such as a cutting tool, which is used to finish the surface of a sample to be measured such as an aluminum disk.
Immediately after performing such processing, the surface is inspected with the sample 1 still attached. This inspection device 2
3 can use the above-mentioned surface profile measuring device shown in FIG. 1, but a commercially available non-contact surface roughness meter (Kosaka Institute HIPOS-ET10) or the like may also be used.
検査装置23の出力は信号処理回路24に与え
られて、磁気デイスクすなわち被測定試料1の半
径および円周方向(第1図ではXおよびY方向だ
けを示したが円周方向の測定も可能)の表面粗さ
やうねりの情報が測定データ25として得られ
る。この測定データ25と予め決めて置いた粗さ
の許容度(レベル1およびレベル2)を有する参
照データ26を比較回路27で比較する。すなわ
ち信号レベルがレベル1より小さい時には正常で
あると判断する。もし、スライスレベルを越える
表面粗さ或いはうねりに異常が現れたならば、そ
の度合によつて制御回路28によつて駆動回路2
9或いは警報発生器30に命令が送られ、駆動回
路29では工具(バイト)22の刃先の当たる位
置を動かしてバイトの刃先の摩耗による劣化に対
処する。また、レベル2を越える時には警報発生
器30工具交換指令を出し、工具22の交換を行
う(自動的に変換してもよい。例えば複数バイト
を回転させて加工面に対接させる)。 The output of the inspection device 23 is given to a signal processing circuit 24 to measure the magnetic disk, that is, the sample 1 to be measured in the radial and circumferential directions (only the X and Y directions are shown in FIG. 1, but measurement in the circumferential direction is also possible). Information on surface roughness and waviness is obtained as measurement data 25. A comparing circuit 27 compares this measurement data 25 with reference data 26 having predetermined roughness tolerances (level 1 and level 2). That is, when the signal level is lower than level 1, it is determined to be normal. If an abnormality appears in the surface roughness or waviness that exceeds the slice level, the control circuit 28 controls the drive circuit 2 depending on the degree of abnormality.
9 or the alarm generator 30, and the drive circuit 29 moves the position of the cutting edge of the tool (bite) 22 to cope with deterioration due to wear of the cutting edge of the cutting tool. Moreover, when level 2 is exceeded, the alarm generator 30 issues a tool exchange command and the tool 22 is exchanged (conversion may be performed automatically; for example, a plurality of cutting tools are rotated and brought into contact with the machined surface).
このようにすれば切削状態は常時把握可能で、
従来、確たる理由もなく定期的に行つていた工具
の交換も切削データに基づいて行うことができ
る。 In this way, the cutting status can be checked at all times,
Tool replacement, which was conventionally done periodically without any solid reason, can now be done based on cutting data.
本発明は叙上の如く構成し、かつ動作させたの
で非接触で高速度に表面形状検査が行え、測定長
も長く測定分解能も簡単に可変できる。また、表
面上の傷、塵埃等の検査ができる表面形状測定装
置が得られる特徴を有する。
Since the present invention is constructed and operated as described above, the surface shape can be inspected at high speed in a non-contact manner, and the measurement length is long and the measurement resolution can be easily varied. Furthermore, the present invention has the feature that a surface shape measuring device capable of inspecting scratches, dust, etc. on the surface can be obtained.
第1図は本発明の表面形状測定装置の模式図、
第2図はビーム分割プリズム頂部に対する移動量
対光検知器出力差を表す図、第3図は測定分解能
を可変にするための光学系の模式図、第4図a,
bはスポツト径と観測される表面高さの関係を表
す波形図、第5図は本発明の表面形状測定装置の
他の実施例を示す模式図、第6図は光検知器を用
いた塵埃、傷検出波形図、第7図a,bは磁気デ
イスク製造工程図、第8図は本発明の更に他の実
施例を示す表面形状測定装置の系統図である。
1……被測定試料、2……X−Yステージ、3
……レーザ源、4……一対の反射ミラー、5a,
5b……ビーム分割プリズム、5a′,5b′……頂
部、6a,6b,6c,6d……光検知器、7…
…ハーフミラー、8……増幅手段、8a,8b…
…差動増幅器、8c〜8f……前置増幅器、8
b,8h……加算回路、8i,8j……論理回
路、9……演算回路、9a,9b……積分回路、
10……レンズ系、10a……ピンホール、11
……塵埃、12……傷、13……スライスレベ
ル、14……欠陥判定パルス、15……アルミニ
ウムデイスクの研削、16……磁性粒子の塗膜、
17……検査(電気的、表面)、17a……表面
検査、17b……検査(電気的)、18……製品、
19……廃棄、20……施盤、21……試料支持
台、22……工具、23……検査装置、24……
信号処理回路、25……測定データ、26……参
照データ、27……比較回路、28……制御回
路、29……駆動回路、30……警報装置。
FIG. 1 is a schematic diagram of the surface shape measuring device of the present invention,
Figure 2 is a diagram showing the amount of movement of the top of the beam splitting prism versus the output difference of the photodetector, Figure 3 is a schematic diagram of the optical system for varying the measurement resolution, Figure 4 a,
b is a waveform diagram showing the relationship between the spot diameter and the observed surface height, FIG. 5 is a schematic diagram showing another embodiment of the surface shape measuring device of the present invention, and FIG. , a flaw detection waveform diagram, FIGS. 7a and 7b are magnetic disk manufacturing process diagrams, and FIG. 8 is a system diagram of a surface profile measuring apparatus showing still another embodiment of the present invention. 1... Sample to be measured, 2... X-Y stage, 3
...Laser source, 4...Pair of reflection mirrors, 5a,
5b...beam splitting prism, 5a', 5b'...top, 6a, 6b, 6c, 6d...photodetector, 7...
...Half mirror, 8...Amplifying means, 8a, 8b...
... Differential amplifier, 8c to 8f ... Preamplifier, 8
b, 8h...Addition circuit, 8i, 8j...Logic circuit, 9...Arithmetic circuit, 9a, 9b...Integrator circuit,
10... Lens system, 10a... Pinhole, 11
... Dust, 12 ... Scratch, 13 ... Slice level, 14 ... Defect determination pulse, 15 ... Grinding of aluminum disk, 16 ... Coating film of magnetic particles,
17... Inspection (electrical, surface), 17a... Surface inspection, 17b... Inspection (electrical), 18... Product,
19...Disposal, 20...Lathe, 21...Sample support stand, 22...Tool, 23...Inspection device, 24...
Signal processing circuit, 25...Measurement data, 26...Reference data, 27...Comparison circuit, 28...Control circuit, 29...Drive circuit, 30...Alarm device.
Claims (1)
ジと、 レーザ光源からの平行レーザ光を一対の反射ミ
ラーの一方の反射ミラー面で反射せしめ、その反
射されたレーザ光を前記ステージに載置された前
記被測定試料の被測定面に照射し、該被測定面か
らの正反射光を前記一対の反射ミラーの他方の反
射ミラー面で反射せしめて後述の第1および第2
のビーム分割プリズムの各頂部に向かわせる光学
系と、 該光学系によつて与えられた光を前記被測定面
における第1の方向と対応する方向に頂部を境に
2分割する第1のビーム分割プリズムと、 前記光学系によつて与えられた光を前記被測定
面における前記第1の方向に直交する第2の方向
と対応する方向に頂部を境に2分割する第2のビ
ーム分割プリズムと、 前記第1のビーム分割プリズムで2分割して得
られたそれぞれのビームを受け、前記被測定面に
おける前記第1の方向に傾きに応じたビームの変
位を検知する第1の光検知器対と、 前記第2のビーム分割プリズムで2分割して得
られたそれぞれのビームを受け、前記被測定面に
おける前記第2の方向の傾きに応じたビームの変
位を検知する、前記第1の光検知器対とは直交し
て配置された第2の光検知器対と、 前記第1および第2の光検知器対でそれぞれ検
知されたビームの変位に基づき前記被測定面にお
ける前記第1および第2の方向の傾き値を得る差
動増幅手段と、 前記被測定面を前記X−Y方向へ走査した場合
の該走査方向の位置座標を独立変数とし、該走査
に従つて前記差動増幅手段で順次得られる傾き値
を従属係数として、該従属変数を前記独立変数に
ついて前記第1と第2の方向でそれぞれ独立に積
分することで、前記被測定面の高さ分布を得る演
算回路とを有することを特徴とする表面形状測定
装置。 2 前記光学系中にレーザ光源からのレーザ光の
径を調整するレーザ光径調整手段を配設し、前記
ビーム分割プリズムに与える反射光径を調整する
ようにしてなることを特徴とする特許請求の範囲
第1項記載の表面形状測定装置。 3 前記第1の光検知器対のそれぞれの出力の和
をとると共に前記第2の光検知器対のそれぞれの
出力の和をとる和出力検知手段と、該和出力検知
手段の出力に基づき前記被測定試料上に欠陥を判
定する欠陥判定手段とを具備することを特徴とす
る特許請求の範囲第1項記載の表面形状測定装
置。 4 前記光学系の一対の反射ミラーがプリズムで
あることを特徴とする特許請求の範囲第1項記載
の表面形状測定装置。 5 前記表面形状測定手段の光学系を被加工試料
近傍に設け、該光学系と光検出器から得られる高
さ分布出力を基準参照レベルと比較した出力に基
づいて上記被加工試料の加工具を制御してなるこ
とを特徴とする特許請求の範囲第1項記載の表面
形状測定装置。 6 前記表面形状測定手段の光学系を被加工試料
近傍に設け、該光学系と光検出器から得られる高
さ分布出力を基準参照レベルと比較した出力に基
づいて上記被加工試料の加工具の交換時期を知ら
せる警報手段を制御してなることを特徴とする特
許請求の範囲第1項記載の表面形状測定装置。[Claims] 1. An X-Y direction moving stage on which a sample to be measured is placed; a parallel laser beam from a laser light source is reflected by one reflecting mirror surface of a pair of reflecting mirrors, and the reflected laser beam is is irradiated onto the surface to be measured of the sample to be measured placed on the stage, and the specularly reflected light from the surface to be measured is reflected by the other reflecting mirror surface of the pair of reflecting mirrors to perform the first and second steps described below. Second
an optical system that directs the light toward each top of the beam splitting prism, and a first beam that splits the light given by the optical system into two in a direction corresponding to the first direction on the surface to be measured, with the top as the border. a splitting prism; a second beam splitting prism that splits the light provided by the optical system into two parts at the top in a direction corresponding to a second direction perpendicular to the first direction on the surface to be measured; and a first photodetector that receives each of the beams obtained by dividing into two by the first beam splitting prism and detects the displacement of the beam in the first direction on the surface to be measured according to the inclination. and the first beam splitting prism receives each of the beams obtained by dividing into two by the second beam splitting prism, and detects the displacement of the beam according to the inclination of the measured surface in the second direction. a second photodetector pair disposed perpendicularly to the photodetector pair; and a second photodetector pair arranged at right angles to the photodetector pair; and a differential amplifying means for obtaining a tilt value in a second direction; when the surface to be measured is scanned in the X-Y direction, position coordinates in the scanning direction are taken as independent variables; an arithmetic circuit that obtains the height distribution of the surface to be measured by independently integrating the dependent variable in the first and second directions with respect to the independent variable, using slope values sequentially obtained by the amplification means as dependent coefficients; A surface shape measuring device comprising: 2. A patent claim characterized in that a laser beam diameter adjusting means for adjusting the diameter of the laser beam from the laser light source is disposed in the optical system to adjust the diameter of the reflected light given to the beam splitting prism. The surface shape measuring device according to item 1. 3 sum output detection means for calculating the sum of the respective outputs of the first photodetector pair and the sum of the respective outputs of the second photodetector pair; 2. The surface shape measuring device according to claim 1, further comprising a defect determining means for determining defects on a sample to be measured. 4. The surface shape measuring device according to claim 1, wherein the pair of reflecting mirrors of the optical system are prisms. 5. An optical system of the surface shape measuring means is provided near the sample to be processed, and the processing tool for the sample to be processed is determined based on the output obtained by comparing the height distribution output obtained from the optical system and the photodetector with a standard reference level. The surface shape measuring device according to claim 1, characterized in that the surface shape measuring device is controlled. 6. An optical system of the surface shape measuring means is provided near the sample to be processed, and the height distribution output obtained from the optical system and the photodetector is compared with a standard reference level. The surface shape measuring device according to claim 1, characterized in that the device is configured to control an alarm means for notifying the time of replacement.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26854185A JPS62127618A (en) | 1985-11-29 | 1985-11-29 | Measuring instrument for surface shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26854185A JPS62127618A (en) | 1985-11-29 | 1985-11-29 | Measuring instrument for surface shape |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62127618A JPS62127618A (en) | 1987-06-09 |
JPH0422443B2 true JPH0422443B2 (en) | 1992-04-17 |
Family
ID=17459957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26854185A Granted JPS62127618A (en) | 1985-11-29 | 1985-11-29 | Measuring instrument for surface shape |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62127618A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6416904A (en) * | 1987-07-10 | 1989-01-20 | Fujitsu Ltd | Inspection instrument for surface waviness |
JPH02140608A (en) * | 1988-11-21 | 1990-05-30 | Fujitsu Ltd | Measuring instrument for surface shape |
US5278635A (en) * | 1990-03-28 | 1994-01-11 | Konica Corporation | Surface defect detection apparatus |
KR100488305B1 (en) * | 2002-03-21 | 2005-05-11 | 주식회사 새 미 | A non-contact and portable surface roughness measuring device |
-
1985
- 1985-11-29 JP JP26854185A patent/JPS62127618A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS62127618A (en) | 1987-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5875029A (en) | Apparatus and method for surface inspection by specular interferometric and diffuse light detection | |
US3749500A (en) | Optical caliper and edge detector-follower for automatic gaging | |
US6603542B1 (en) | High sensitivity optical inspection system and method for detecting flaws on a diffractive surface | |
Shiraishi | Scope of in-process measurement, monitoring and control techniques in machining processes—Part 2: In-process techniques for workpieces | |
JP5027775B2 (en) | Substrate surface shape detection method and apparatus | |
JPH07509785A (en) | Surface pit and mound detection and identification devices and methods | |
CN1047439C (en) | Searching unit for three dimensional measurement | |
US5978091A (en) | Laser-bump sensor method and apparatus | |
Wang et al. | Development of a laser-scattering-based probe for on-line measurement of surface roughness | |
CN110702026A (en) | Flatness three-dimensional shape detection device based on complex beam angle adaptive optics and processing method thereof | |
Mitsui et al. | Development of a high resolution sensor for surface roughness | |
US5459576A (en) | Differential phase contrast inspection system | |
US7724375B1 (en) | Method and apparatus for increasing metrology or inspection tool throughput | |
Elmas et al. | Analysis of profile measurement techniques employed to surfaces planed by an active machining system | |
JPH0422443B2 (en) | ||
Yoo et al. | Analysis and modeling of laser measurement system performance for wood surface | |
Islam et al. | Development of a novel profile measurement system for actively planed surfaces | |
EP1413852A1 (en) | Composite optical sensor unit and optical disk inspection device using it | |
US5638175A (en) | Differential phase contrast inspection system with multiple detectors | |
Ennos et al. | Precision measurement of surface form by laser profilometry | |
JPH02140608A (en) | Measuring instrument for surface shape | |
JPH03186739A (en) | Detecting circuit for damage of outside peripheral end part of magnetic disk substrate | |
Brown et al. | Industrial applications of an optical profilometer | |
JP2861927B2 (en) | Method and apparatus for detecting inclination or height of optical multilayer object | |
JP3003671B2 (en) | Method and apparatus for detecting height of sample surface |