JPH04224260A - Combustion condition detecting device for internal combustion engine - Google Patents

Combustion condition detecting device for internal combustion engine

Info

Publication number
JPH04224260A
JPH04224260A JP2406994A JP40699490A JPH04224260A JP H04224260 A JPH04224260 A JP H04224260A JP 2406994 A JP2406994 A JP 2406994A JP 40699490 A JP40699490 A JP 40699490A JP H04224260 A JPH04224260 A JP H04224260A
Authority
JP
Japan
Prior art keywords
knock
amplification factor
combustion engine
internal combustion
state detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2406994A
Other languages
Japanese (ja)
Inventor
Yoshihiko Hirata
喜彦 平田
Koji Sakakibara
榊原 浩二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP2406994A priority Critical patent/JPH04224260A/en
Priority to EP91121853A priority patent/EP0494423B1/en
Priority to DE69102262T priority patent/DE69102262T2/en
Priority to US07/812,109 priority patent/US5339245A/en
Publication of JPH04224260A publication Critical patent/JPH04224260A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/22Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines
    • G01L23/221Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines
    • G01L23/225Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines circuit arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/08Testing internal-combustion engines by monitoring pressure in cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/281Interface circuits between sensors and control unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

PURPOSE:To increase detecting accuracy by controlling amplification factor so that as large signal as possible can be inputted within a range where overflowing to an A/D converter is not made. CONSTITUTION:Switch-over of amplification factor in an amplifying circuit 3 is made several times in a knock judgment zone in a knock detecting microcomputer 4 according to the peak value in one cycle of signals detected by a knock sensor 1. Thus optimum detected signal can be inputted into an A/D converter 4a within a limit where overflowing to it is not made, to detect the combustion condition in an internal combustion engine precisely.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は内燃機関の燃焼状態を検
出する内燃機関の燃焼状態検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion state detection device for an internal combustion engine that detects the combustion state of an internal combustion engine.

【0002】0002

【従来の技術】内燃機関の燃焼状態を検出する装置の1
つである内燃機関のノックを検出するノック検出装置の
場合、ノック検出処理は内燃機関に配設されたノックセ
ンサからの信号をA/D変換器によってディジタルデー
タに変換し、このディジタルデータをマイクロコンピュ
ータで処理して、内燃機関のノックの発生を検出するこ
とが知られている。
[Prior Art] 1 of a device for detecting the combustion state of an internal combustion engine
In the case of a knock detection device that detects knocks in an internal combustion engine, the knock detection process involves converting a signal from a knock sensor installed in the internal combustion engine into digital data using an A/D converter, and converting this digital data into a microprocessor. It is known to detect the occurrence of knock in an internal combustion engine using computer processing.

【0003】この場合、ノックセンサからの出力信号を
精度良くマイクロコンピュータに伝達するためには、A
/D変換器にオーバーフローしない範囲内でできるだけ
大きな信号を入力する必要がある。しかしながら、ノッ
クセンサからの出力信号のレベルは、このノックセンサ
の配設されている内燃機関の回転速度に大きく影響され
、例えば内燃機関の回転速度の低い状態ではノックセン
サからの出力信号レベルが極めて小さく、その逆に内燃
機関の回転速度が上昇した際には出力信号レベルが極め
て大きくなるという性質を有する。そこで、ノック検出
装置はこの出力信号を増幅または減衰させる複数の増幅
率を備えた増幅器を設けている。
In this case, in order to accurately transmit the output signal from the knock sensor to the microcomputer, it is necessary to
It is necessary to input as large a signal as possible to the /D converter without overflowing. However, the level of the output signal from the knock sensor is greatly affected by the rotational speed of the internal combustion engine in which the knock sensor is installed. For example, when the rotational speed of the internal combustion engine is low, the output signal level from the knock sensor becomes extremely low. On the other hand, when the rotational speed of the internal combustion engine increases, the output signal level becomes extremely large. Therefore, the knock detection device is provided with an amplifier having a plurality of amplification factors for amplifying or attenuating this output signal.

【0004】従来、この増幅器における増幅率の切り換
え制御は、前回のノック判定区間内でのノックセンサか
らの出力信号の最大値(ノック強度値)に基づいて行わ
れていた(例えば、特開昭64ー45967号公報)。 また、内燃機関の燃焼状態を検出するものとしてその他
に、筒内圧センサを用いて内燃機関の気筒内圧力を検出
し、その筒内圧センサ信号を増幅回路を介して、A/D
変換し、マイクロコンピュータに入力して失火発生を検
出することが知られている(特開昭60ー45750号
公報)。
Conventionally, switching control of the amplification factor in this amplifier has been performed based on the maximum value (knock intensity value) of the output signal from the knock sensor within the previous knock determination period (for example, 64-45967). In addition to detecting the combustion state of an internal combustion engine, an in-cylinder pressure sensor is used to detect the in-cylinder pressure of the internal combustion engine, and the in-cylinder pressure sensor signal is sent to an A/D converter via an amplifier circuit.
It is known to detect the occurrence of a misfire by converting the data and inputting it into a microcomputer (Japanese Unexamined Patent Publication No. 45750/1983).

【0005】[0005]

【発明が解決しようとする課題】ところが、このような
ノック検出装置において、例えば内燃機関の回転速度が
一定状態であるような同一運転条件下でも、ノックセン
サ信号の出力は点火サイクル毎に大きく異なり、これに
従ってノック強度値も不規則に変化する。特に、ノック
発生時のノックセンサ信号出力はノックが発生していな
い時より16倍程度も出力が大きくなり、また同一ノッ
ク判定区間内においても不規則にノックセンサ信号の出
力は大きく変化する。
[Problem to be Solved by the Invention] However, in such a knock detection device, the output of the knock sensor signal varies greatly from ignition cycle to ignition cycle even under the same operating conditions, such as when the rotational speed of the internal combustion engine is constant. , the knock intensity value also changes irregularly accordingly. In particular, the knock sensor signal output when a knock occurs is approximately 16 times larger than when no knock occurs, and the knock sensor signal output varies irregularly and significantly even within the same knock determination section.

【0006】このため、従来の増幅率の切り換え制御装
置においてもオーバーフロー防止のために増幅率を低め
に設定する必要があり、効果的なノック検出をすること
ができなかった。また、内燃機関の気筒内圧力から失火
検出する装置においても、筒内圧センサの信号をA/D
変換器に入力する際、A/D変換器のオーバーフロー防
止のために筒内圧センサの信号の増幅率を低めに設定し
ており、精度上効果的に失火検出ができなかった。
For this reason, even in the conventional amplification factor switching control device, it is necessary to set the amplification factor to a low value to prevent overflow, and effective knock detection has not been possible. Also, in devices that detect misfires from the cylinder pressure of an internal combustion engine, the signal of the cylinder pressure sensor is converted to an A/D converter.
When inputting to the converter, the amplification factor of the in-cylinder pressure sensor signal was set to be low to prevent overflow of the A/D converter, making it impossible to effectively detect a misfire in terms of accuracy.

【0007】本発明は、上記問題点を解決するためにな
されたものであり、A/D変換器にオーバーフローしな
い範囲内でできるだけ大きな信号を入力することが可能
な増幅率切換え装置を備えた内燃機関の燃焼状態検出装
置を提供することを目的とする。
The present invention has been made to solve the above problems, and provides an internal combustion engine equipped with an amplification factor switching device capable of inputting as large a signal as possible within a range without overflowing to an A/D converter. The purpose of the present invention is to provide a combustion state detection device for an engine.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明による内燃機関の燃焼状態検出装置は図1に示
す如く、内燃機関の燃焼状態を検出する燃焼状態検出手
段と、前記燃焼状態検出手段で検出された燃焼信号を増
幅または減衰させる複数の増幅率をもつ増幅手段と、前
記燃焼状態検出手段の検出結果に基づいて、前記増幅手
段の増幅率を1つの燃焼区間内で複数回切換え可能な増
幅率切換え手段と、前記増幅手段の出力により内燃機関
の燃焼状態を判別する燃焼状態判別手段とを備えるとい
う技術的手段を採用する。
[Means for Solving the Problems] In order to achieve the above object, a combustion state detection device for an internal combustion engine according to the present invention, as shown in FIG. an amplification means having a plurality of amplification factors for amplifying or attenuating the combustion signal detected by the detection means; and an amplification means having a plurality of amplification factors that amplify or attenuate the combustion signal detected by the detection means; A technical means is adopted that includes a switchable amplification factor switching means and a combustion state determining means for determining the combustion state of the internal combustion engine based on the output of the amplifying means.

【0009】[0009]

【作用】本発明によれば、内燃機関の燃焼状態を検出し
、その検出結果に基づいて増幅手段の増幅率を1つの燃
焼区間内で複数回切換える。
According to the present invention, the combustion state of the internal combustion engine is detected, and the amplification factor of the amplification means is switched multiple times within one combustion section based on the detection result.

【0010】0010

【実施例】以下、本発明を図に示す実施例に基づいて詳
細に説明する。図2は本実施例の装置の構成を示す全体
構成図である。図2において、1は図示しない内燃機関
のシリンダブロックに配設され、内燃機関のノックによ
る振動を検出し、燃焼状態検出手段をなすノックセンサ
であり、2はノックセンサ1の検出信号のうちノイズ成
分を除去して、ノック発生時に生じるノック特有の周波
数成分の信号のみを抽出するフィルタである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail below based on embodiments shown in the drawings. FIG. 2 is an overall configuration diagram showing the configuration of the apparatus of this embodiment. In FIG. 2, reference numeral 1 denotes a knock sensor that is disposed in a cylinder block of an internal combustion engine (not shown) and serves as a combustion state detection means by detecting vibrations caused by knocking of the internal combustion engine. This is a filter that removes the components and extracts only the signal of the frequency component peculiar to the knock that occurs when a knock occurs.

【0011】3はフィルタ2で抽出された信号を増幅す
る増幅手段をなす増幅回路であり、増幅回路3は第1の
増幅器3aおよび第2の増幅器3bによって構成されも
ので、第1の増幅器3aのみで増幅された第1のノック
信号、第1および第2の増幅器3a、3bで共に増幅さ
れた第2のノック信号が得られるようになっている。な
お、本実施例においては、上記第2のノック信号が得ら
れる回路の増幅率が、第1のノック信号を得る第1の増
幅器3aの増幅率の4倍となるように設定されている。 そして、増幅回路3で得られた第1および第2のノック
信号は、それぞれ後述するノック検出用マイクロコンピ
ュータ4のA/D変換器の入力ポートYG1およびYG
4に入力される。
Reference numeral 3 denotes an amplifying circuit serving as an amplifying means for amplifying the signal extracted by the filter 2. The amplifying circuit 3 is composed of a first amplifier 3a and a second amplifier 3b. A first knock signal is amplified only by the first knock signal, and a second knock signal is amplified by both the first and second amplifiers 3a and 3b. In this embodiment, the amplification factor of the circuit from which the second knock signal is obtained is set to be four times the amplification factor of the first amplifier 3a from which the first knock signal is obtained. The first and second knock signals obtained by the amplifier circuit 3 are transmitted to input ports YG1 and YG of an A/D converter of a knock detection microcomputer 4, which will be described later.
4 is input.

【0012】4は増幅率切換え手段および燃焼状態判別
手段をなすノック検出用マイクロコンピュータ(以下、
ノック用ECUという)であり、上記の入力ポートYG
1およびYG4で入力したノック信号をアナログ信号か
らディジタル信号に変換するA/D変換器4a、A/D
変換器4aの出力信号に基づいてノック判定するための
演算処理を行うCPU4b、制御プログラムおよび演算
に必要な制御定数を記憶しておくための読み出し専用の
記憶ユニットROM4c、CPU4b動作中に演算デー
タを一時記憶するための一時記憶ユニットRAM4dを
有する。
Reference numeral 4 denotes a knock detection microcomputer (hereinafter referred to as
(referred to as knock ECU), and the above input port YG
A/D converter 4a, A/D converting the knock signal inputted at YG1 and YG4 from an analog signal to a digital signal.
A CPU 4b performs arithmetic processing for knock determination based on the output signal of the converter 4a, a read-only storage unit ROM4c stores control programs and control constants necessary for the calculation, and a read-only storage unit ROM4c stores calculation data during operation of the CPU 4b. It has a temporary storage unit RAM4d for temporary storage.

【0013】5はクランク角センサ、圧力センサ、水温
センサ等の内燃機関状態および車両状態を検出する各種
センサであり、6は上記ノック用ECU4からのノック
判定信号および各種センサ5の検出信号に基づいて、燃
料噴射量と点火時期を制御するための演算処理を行う内
燃機関制御用マイクロコンピュータ(以下、内燃機関用
ECUという)である。
Reference numeral 5 denotes various sensors for detecting the state of the internal combustion engine and the vehicle, such as a crank angle sensor, a pressure sensor, and a water temperature sensor. Reference numeral 6 indicates a knock determination signal from the knock ECU 4 and a detection signal from the various sensors 5. This is an internal combustion engine control microcomputer (hereinafter referred to as internal combustion engine ECU) that performs arithmetic processing to control fuel injection amount and ignition timing.

【0014】7は内燃機関用ECU6からの信号に基づ
き最適な点火タイミングで高電圧を発生させ、図示しな
い内燃機関の点火プラグに高電圧を供給する点火装置で
あり、8は同じく内燃機関用ECU6からの信号に基づ
き最適な燃料噴射量で内燃機関に燃料を供給するインジ
ェクタである。なお、本実施例では増幅回路3において
上記第2のノック信号が得られる回路の増幅率が、第1
のノック信号を得る増幅率の4倍となるように増幅器3
bの増幅率を設定したが、特に4倍である必要はない。
Reference numeral 7 denotes an ignition device that generates high voltage at optimal ignition timing based on a signal from the internal combustion engine ECU 6, and supplies the high voltage to a spark plug of the internal combustion engine (not shown); 8 also the internal combustion engine ECU 6. This is an injector that supplies fuel to the internal combustion engine at the optimal fuel injection amount based on signals from the internal combustion engine. In addition, in this embodiment, the amplification factor of the circuit from which the second knock signal is obtained in the amplifier circuit 3 is the first knock signal.
Amplifier 3
Although the amplification factor b is set, it does not particularly need to be 4 times.

【0015】また、本実施例では2段階に増幅率を切換
え可能な増幅回路3を設定したが、もちろん3段階以上
の複数階切換え可能な増幅回路でもよい。図3は外部割
込みルーチンを示すもので、例えば内燃機関のBTDC
(上死点前)10℃Aでこの割込みタイミングが設定さ
れ、この割込みルーチンはステップN00からスタート
する。
Further, in this embodiment, the amplification circuit 3 which can switch the amplification factor into two stages is provided, but of course, it is also possible to use an amplifier circuit whose amplification factor can be switched in three or more stages. FIG. 3 shows an external interrupt routine, for example, the BTDC of an internal combustion engine.
This interrupt timing is set at 10°C (before top dead center), and this interrupt routine starts from step N00.

【0016】ステップN10で前回の割込みから今回の
割込みまでの時間から内燃機関の回転数を算出し、ステ
ップN20ではステップN10で算出された回転数情報
に基づいて適切なノック判定区間、例えばBTDC10
℃A〜90℃Aが算出され、ステップN30でステップ
N20で算出したノック判定区間の開始時刻にタイマー
割込みがかかるようにタイマーをセットする。
In step N10, the rotational speed of the internal combustion engine is calculated from the time from the previous interruption to the current interruption, and in step N20, an appropriate knock determination interval, for example BTDC10, is determined based on the rotational speed information calculated in step N10.
C.A to 90.degree. C.A is calculated, and in step N30, a timer is set so that a timer interrupt occurs at the start time of the knock determination section calculated in step N20.

【0017】ステップN40では気筒カウントがノック
判定の対象となる気筒にセットされるための処理を実行
してステップN50に進み、、ステップN50で後述す
るメインルーチンにリターンする。図4はタイマー割込
みルーチンを示し、図3のルーチンで設定された割込み
時間に対応してステップT00からスタートして、図3
のルーチンで設定されたノック判定区間内で繰り返し実
行される(例えば、ノック信号波形が−側から+側に移
行してから4分の1波長経過した時点毎)。
In step N40, processing is executed to set the cylinder count to the cylinder to be subjected to knock determination, and the process proceeds to step N50. In step N50, the process returns to the main routine described later. FIG. 4 shows a timer interrupt routine, which starts from step T00 corresponding to the interrupt time set in the routine of FIG.
This routine is repeatedly executed within the knock determination interval set by the routine (for example, every time a quarter wavelength has passed after the knock signal waveform transitions from the - side to the + side).

【0018】ステップT10でA/D変換器4aのポー
トがセットされ、ステップT20では増幅回路3の初期
増幅率を設定する。なお、ステップT20での初期増幅
率の設定方法は後で詳細に説明する。ステップT30で
はノック強度値Vが検出される。このノック強度値Vと
は、例えば図5に示すようなノックセンサ信号の極大値
Vadj (j=1、2、・・・n)とその中の最大値
Vpeakである。
In step T10, the port of the A/D converter 4a is set, and in step T20, the initial amplification factor of the amplifier circuit 3 is set. Note that the method for setting the initial amplification factor in step T20 will be explained in detail later. In step T30, the knock intensity value V is detected. The knock intensity value V is, for example, the maximum value Vadj (j=1, 2, . . . n) of the knock sensor signal as shown in FIG. 5, and the maximum value Vpeak therein.

【0019】ステップT40ではノックが発生したか否
かを判定する。ここでは、例えば図示しないルーチンに
よってノックセンサ信号の極大値Vadとノック判定値
Vref とを比較し、Vad≧Vrefとなった数C
PLSをカウントして、CPLSが所定値以上の時、ノ
ック有りと判定されるものである。ステップT50では
ステップT30で検出したVadの1回目のなまし処理
と増幅回路3の増幅率の切換え処理を実行する。なお、
ステップT50の処理については後で詳細に説明する。
In step T40, it is determined whether knocking has occurred. Here, for example, the local maximum value Vad of the knock sensor signal and the knock judgment value Vref are compared by a routine not shown, and the number C that satisfies Vad≧Vref is calculated.
PLS is counted and when CPLS is equal to or greater than a predetermined value, it is determined that there is a knock. In step T50, the first rounding process of Vad detected in step T30 and the switching process of the amplification factor of the amplifier circuit 3 are executed. In addition,
The process of step T50 will be explained in detail later.

【0020】ステップT60ではノック判定区間が終了
したか否かを判別して、ノック判定区間が終了していな
ければステップT30に戻り、ノック判定区間が終了し
たと判断されたならばステップT70に進み、ステップ
T70ではノック判定結果を内燃機関用ECU6に入力
する。ステップT80で2回目のVadのなまし処理を
次式に基づいて実行する。
In step T60, it is determined whether or not the knock determination period has ended. If the knock determination period has not ended, the process returns to step T30, and if it is determined that the knock determination period has ended, the process advances to step T70. , In step T70, the knock determination result is input to the internal combustion engine ECU 6. In step T80, a second Vad smoothing process is performed based on the following equation.

【0021】[0021]

【数1】 Vmean=Vmeanj−1 +(Vmad −Vm
eanj−1 )/4なお、Vmad は後述する1回
目のなまし処理によって算出される値である。次のステ
ップT90ではノック状態の検出処理が行われ、ステッ
プT100でメインルーチンにリターンする。なお、ス
テップT90ではノック判定レベルを更新するための処
理であるが、この処理方法は特開昭64ー45967号
公報に詳しく述べており、また本発明の主旨とは関係が
うすいのでここでの説明は省略する。
[Formula 1] Vmean=Vmeanj-1 + (Vmad -Vm
eanj-1 )/4 Note that Vmad is a value calculated by the first rounding process described later. In the next step T90, a knock state detection process is performed, and in step T100, the process returns to the main routine. Note that step T90 is a process for updating the knock determination level, but this process method is described in detail in Japanese Patent Laid-Open No. 64-45967, and since it has little relation to the gist of the present invention, it will not be described here. Explanation will be omitted.

【0022】図6は図4のステップT20の処理を詳細
に示したもので、今回のノック検出区間のノックセンサ
信号の初期増幅率を設定するルーチンであり、ステップ
T200からスタートされる。ステップT210ではR
AM4dから今回の制御対象となる気筒の前回のノック
判定区間での最終的な2回目のなまし値Vmeanを読
み込み、ステップT220ではこのVmeanと増幅率
を切換えるための基準レベルとなる所定値VG4 とを
比較して、Vmeanが所定値VG4 以上であると判
定されたならばステップT230に進み、Vmeanが
所定値VG4 以上でないと判定されたならステップT
250に進む。
FIG. 6 shows in detail the process of step T20 in FIG. 4, which is a routine for setting the initial amplification factor of the knock sensor signal for the current knock detection period, and starts from step T200. In step T210, R
The final second rounded value Vmean in the previous knock determination section of the cylinder to be controlled this time is read from AM4d, and in step T220, this Vmean is combined with a predetermined value VG4 that is a reference level for switching the amplification factor. If it is determined that Vmean is greater than or equal to the predetermined value VG4, the process proceeds to step T230, and if it is determined that Vmean is not greater than or equal to the predetermined value VG4, the process proceeds to step T.
Proceed to 250.

【0023】ステップT230ではA/D変換器4aの
入力ポートをYG1側にセットして、ステップT240
では入力ポートのYG1側にセットしたことを示す気筒
別のA/DフラグXG1を1としてステップT270に
進み本ルーチンを終了する。一方、ステップT250で
はA/D変換器4aの入力ポートをYG4側にセットし
て、ステップT260では気筒別のA/DフラグXG1
を0としてステップT270に進み本ルーチンを終了す
る。
In step T230, the input port of the A/D converter 4a is set to the YG1 side, and in step T240
Then, the cylinder-specific A/D flag XG1 indicating that it is set to the YG1 side of the input port is set to 1, and the process advances to step T270 to end this routine. On the other hand, in step T250, the input port of the A/D converter 4a is set to the YG4 side, and in step T260, the A/D flag for each cylinder
is set to 0, and the process proceeds to step T270, where this routine ends.

【0024】図7は図4のステップT50の処理を示し
たもので、本発明に関係する処理の主要部をなし、ステ
ップT500からスタートする。ステップT510では
図6に示した処理によってセットされたXG1フラグを
検出して、増幅率が1倍であるか否か(A/Dポートが
YG1にセットされているか)を判別するものであり、
XG1フラグが1であるなら増幅率が1倍であると判断
されてステップT520に進み、XG1フラグが0であ
るなら増幅率が4倍であると判断されてステップT56
0に進む。
FIG. 7 shows the process of step T50 in FIG. 4, which constitutes the main part of the process related to the present invention, and starts from step T500. In step T510, the XG1 flag set by the process shown in FIG. 6 is detected, and it is determined whether the amplification factor is 1x (whether the A/D port is set to YG1),
If the XG1 flag is 1, it is determined that the amplification factor is 1 times, and the process proceeds to step T520, and if the XG1 flag is 0, it is determined that the amplification factor is 4 times, and the process proceeds to step T56.
Go to 0.

【0025】ステップT520では次式を用いて1回目
のなまし処理を行う。
In step T520, the first rounding process is performed using the following equation.

【0026】[0026]

【数2】 Vmadj=Vmadj−1+(Vad×4−Vmad
j)/16なお、ステップT520ではノックセンサ信
号を増幅する増幅率が1倍であるため、上記した式にお
いてノック強度値Vadを4倍してから平均化処理を実
行する。
[Formula 2] Vmadj=Vmadj-1+(Vad×4-Vmad
j)/16 Note that in step T520, since the amplification factor for amplifying the knock sensor signal is 1, the knock intensity value Vad is multiplied by 4 in the above equation before the averaging process is executed.

【0027】次のステップT530ではノック強度値V
adと所定値VG1 と比較して、ノック強度値Vad
が所定値VG1 以下であるならステップT540に進
み、ステップT540でA/D変換器4aの入力ポート
をYG4側にセットし、ステップT550に進んでXG
1フラグを0にセットしてステップT600に進み終了
する。一方、ノック強度値Vadが所定値VG1 以下
でないならそのままステップT600に進み終了する。
In the next step T530, the knock intensity value V
ad and a predetermined value VG1, the knock strength value Vad
is less than the predetermined value VG1, the process proceeds to step T540, in which the input port of the A/D converter 4a is set to the YG4 side, and the process proceeds to step T550, in which the input port of the A/D converter 4a is set to the YG4 side.
1 flag is set to 0, the process proceeds to step T600, and the process ends. On the other hand, if the knock strength value Vad is not less than the predetermined value VG1, the process directly proceeds to step T600 and ends.

【0028】また、ステップT510でXG1フラグが
1でないと判断されるとステップT560に進み、ステ
ップT560においても次式を用いて2回目の平均化処
理が行われる。
Further, if it is determined in step T510 that the XG1 flag is not 1, the process advances to step T560, and in step T560, a second averaging process is also performed using the following equation.

【0029】[0029]

【数3】 Vmadj=Vmadj−1+(Vad−Vmadj)
/16次のステップT570ではノック強度値Vadと
VG1 と同様に増幅率を切換えるための基準レベルと
なる所定値VG4 と比較して、ノック強度値Vadが
所定値VG4 以上であるならステップT580に進み
、ステップT580でA/D変換器4aの入力ポートを
YG1側にセットし、ステップT590に進んでXG1
フラグを0にセットしてステップT600に進み終了す
る。一方、ノック強度値Vadが所定値VG4 以上で
ないならそのままステップT600に進み終了する。
[Math. 3] Vmadj=Vmadj-1+(Vad-Vmadj)
/16 In the next step T570, the knock strength value Vad is compared with a predetermined value VG4 which is a reference level for switching the amplification factor in the same way as VG1, and if the knock strength value Vad is equal to or higher than the predetermined value VG4, the process proceeds to step T580. , In step T580, the input port of the A/D converter 4a is set to the YG1 side, and the process proceeds to step T590, where the input port of the A/D converter 4a is set to the XG1 side.
The flag is set to 0 and the process proceeds to step T600 to end. On the other hand, if the knock strength value Vad is not equal to or greater than the predetermined value VG4, the process directly proceeds to step T600 and ends.

【0030】なお、本実施例ではA/DポートがYG4
の時、つまり増幅回路3の増幅率が4倍の時を基準とし
たため、ステップT520でノック強度値Vadを4倍
してからなまし処理を実行したが、A/DポートがYG
1の時を基準として、ステップT560でノック強度値
Vadを1/4倍してからなまし処理を実行してもよい
。図8はノック用ECU4において実行される作動のメ
インルーチンを示すフローチャートであり、ステップM
00からスタートする。
[0030] In this embodiment, the A/D port is YG4.
, that is, when the amplification factor of the amplifier circuit 3 is 4 times, the knock strength value Vad was multiplied by 4 in step T520 and then the smoothing process was executed.
The smoothing process may be performed after the knock intensity value Vad is multiplied by 1/4 in step T560 based on the time of 1. FIG. 8 is a flowchart showing the main routine of the operation executed in the knock ECU 4, in which step M
Start from 00.

【0031】ステップM10ではノック用ECU4のR
AM4d等の初期化が実行され、ステップM20では次
式を用いてノック判定レベルVref を算出する。
In step M10, the R of the knock ECU 4 is
Initialization of AM4d, etc. is executed, and in step M20, a knock determination level Vref is calculated using the following equation.

【0032】[0032]

【数4】 Vref =(K+KC)×(Vmean+Vmos 
)ここで、Kは内燃機関の運転条件に基づき設定される
定数、KCはノック判定レベルVref を補正する変
数であり、後述するステップM40において求まる。ま
た、Vmeanは図4のステップT80で求まるノック
強度値Vの2回目のなまし値、Vmos はA/D変換
誤差を吸収するための定数であり、Vmos の値は0
でもよい。
[Formula 4] Vref = (K+KC)×(Vmean+Vmos
) Here, K is a constant set based on the operating conditions of the internal combustion engine, and KC is a variable for correcting the knock determination level Vref, which is determined in step M40, which will be described later. Further, Vmean is the second rounded value of the knock intensity value V determined in step T80 in FIG. 4, Vmos is a constant for absorbing A/D conversion errors, and the value of Vmos is 0.
But that's fine.

【0033】ステップM30ではノックセンサ1のフェ
イルを検出し、ステップM40ではノック判定レベルV
ref を補正する変数KCを設定する。次のステップ
M50でメインルーチン用気筒カウンタの更新を実行し
て、ステップM20にリターンする。なお、ステップM
40における処理方法は特開昭64ー45967号公報
に詳しく述べてあり、本発明との関連も少ないのでここ
での説明は省略する。
In step M30, a failure of the knock sensor 1 is detected, and in step M40, the knock judgment level V is detected.
Set a variable KC to correct ref. In the next step M50, the main routine cylinder counter is updated, and the process returns to step M20. In addition, step M
The processing method in No. 40 is described in detail in Japanese Unexamined Patent Publication No. 45967/1983, and since it has little relevance to the present invention, the explanation thereof will be omitted here.

【0034】図9は本実施例の装置によって処理された
ノックセンサ信号特性を図示したものである。なお、1
倍と4倍の2通りに増幅された信号は、常時YG1とY
G4のポートにそれぞれ入力している。図9の実線は本
実施例の動作説明するための特性図であり、ノック用E
CUがこの2通りの増幅率の異なるノックセンサ信号を
切換えて処理するときの特性を示す。破線は4倍の増幅
率で一定に増幅させた時のノックセンサ信号の特性を示
す。
FIG. 9 illustrates the knock sensor signal characteristics processed by the apparatus of this embodiment. In addition, 1
The signals amplified in two ways, double and quadruple, are always YG1 and Y
Each is input to the G4 port. The solid line in FIG. 9 is a characteristic diagram for explaining the operation of this embodiment.
The characteristics when the CU switches and processes these two knock sensor signals with different amplification factors are shown. The broken line shows the characteristics of the knock sensor signal when amplified at a constant amplification rate of 4 times.

【0035】図9において、初期増幅率は4倍に設定さ
れており、図7で示した如くノック強度値Vad1 〜
Vad3 は所定値VG4より小さいので増幅率は4倍
に保持される。次のノック強度値Vad4ではじめて所
定値VG4 より大きくなるため、ノック強度値Vad
4 で増幅率を1倍に切換え、所定値VG1 より小さ
くなるノック強度値Vad8 まで増幅率を1倍に保持
される。次に、ノック強度値Vad9 では前回のノッ
ク強度値Vad8 が所定値VG1 以下であるため、
増幅率を4倍に切換えられる。
In FIG. 9, the initial amplification factor is set to 4 times, and as shown in FIG. 7, the knock strength values Vad1 to
Since Vad3 is smaller than the predetermined value VG4, the amplification factor is maintained at 4 times. Since the next knock intensity value Vad4 becomes larger than the predetermined value VG4, the knock intensity value Vad
4, the amplification factor is switched to 1.times., and the amplification factor is maintained at 1.times. until the knock strength value Vad8 becomes smaller than the predetermined value VG1. Next, at the knock strength value Vad9, since the previous knock strength value Vad8 is less than the predetermined value VG1,
The amplification factor can be switched to 4x.

【0036】したがって、直前のノック強度値Vadに
基づいて増幅率を設定することで、同一のノック判定区
間内において複数回増幅率を切換えることが可能になり
、燃焼状態の変化や失火およびノック発生の有無等によ
るノックセンサ信号の不規則な変動に拘わらず確実にオ
ーバーフローを防止することができる。また所定値VG
1 およびVG4 を的確に設定することで、ノックセ
ンサ信号を効果的に増幅することができ、各気筒のダイ
ナミックレンジを最大限活用できるためノック検出精度
を向上することができる。
Therefore, by setting the amplification factor based on the immediately preceding knock intensity value Vad, it is possible to switch the amplification factor multiple times within the same knock determination section, thereby preventing changes in combustion conditions, misfires, and knock occurrences. Overflow can be reliably prevented regardless of irregular fluctuations in the knock sensor signal due to the presence or absence of the knock sensor. Also, the predetermined value VG
By appropriately setting 1 and VG4, the knock sensor signal can be effectively amplified, and the dynamic range of each cylinder can be utilized to the fullest, so knock detection accuracy can be improved.

【0037】次に図10は図4のステップT50の処理
における他の実施例を示すものであり、ステップT50
1からスタートする。ステップT510とステップT5
20およびステップT560は図7で示したルーチンの
同符号を付した処理と同様であるので説明は省略する。 ステップT510で増幅回路3の増幅率が1倍と判断さ
れ、1回目の平均化処理をされた後ステップT521に
進み、ステップT521ですでに述べた理由からノック
強度値Vadを4倍した値とステップT520で求めた
Vmadjとの偏差ΔVを算出する。この偏差ΔVはノ
ックセンサ信号が現在増加傾向か減少傾向かを表す値で
ある。
Next, FIG. 10 shows another embodiment of the process of step T50 in FIG.
Start from 1. Step T510 and Step T5
20 and step T560 are the same as the processes with the same reference numerals in the routine shown in FIG. 7, so their explanation will be omitted. In step T510, the amplification factor of the amplifier circuit 3 is determined to be 1, and after the first averaging process, the process proceeds to step T521, and in step T521, the knock intensity value Vad is determined to be 4 times the value for the reason already stated. A deviation ΔV from Vmadj determined in step T520 is calculated. This deviation ΔV is a value indicating whether the knock sensor signal is currently increasing or decreasing.

【0038】ステップT522でノック強度値Vadを
4倍した値とステップT521で求めた偏差ΔVを加算
してVthを算出し、ステップT525ではこのVth
と増幅率を切換えるための判定値VG10と比較して、
VthがVG10より小さい場合は増幅率を4倍に切換
えるための処理をステップT540およびステップT5
50で実行して、ステップT601に進み終了する。一
方、ステップT525でVthがVG10より大きい場
合はそのままステップT601に進み終了する。
In step T522, Vth is calculated by adding the value obtained by multiplying the knock intensity value Vad by 4 and the deviation ΔV obtained in step T521, and in step T525, this Vth
compared with the judgment value VG10 for switching the amplification factor,
If Vth is smaller than VG10, processing for switching the amplification factor to 4 times is performed in step T540 and step T5.
50, and proceeds to step T601 to end. On the other hand, if Vth is larger than VG10 in step T525, the process directly advances to step T601 and ends.

【0039】なお、ステップT540およびステップT
550は図7で示したルーチンの同符号を付した処理と
同様であるので説明は省略する。また、ステップT51
0で増幅回路3の増幅率が4倍と判断され、ステップT
520と同様に1回目の平均化処理をされた後ステップ
T561に進み、ステップT561でノック強度値Va
dとステップT560で求めたVmadjとの偏差ΔV
を算出する。
Note that step T540 and step T
550 is the same as the process with the same reference numeral in the routine shown in FIG. 7, so the explanation will be omitted. Also, step T51
0, it is determined that the amplification factor of the amplifier circuit 3 is 4 times, and step T
After the first averaging process is performed in the same manner as in step 520, the process proceeds to step T561, and in step T561, the knock intensity value Va is
Deviation ΔV between d and Vmadj found in step T560
Calculate.

【0040】ステップT562でノック強度値Vadと
ステップT561で求めた偏差ΔVを加算してVthを
算出し、ステップT565ではこのVthと増幅率を切
換えるための判定値VG40と比較して、VthがVG
10以上の場合は増幅率を1倍に切換えるための処理を
ステップT580およびステップT590で実行して、
ステップT601に進み終了する。一方、ステップT5
65でVthがVG40より小さい場合はそのままステ
ップT601に進み終了する。
In step T562, Vth is calculated by adding the knock intensity value Vad and the deviation ΔV obtained in step T561, and in step T565, this Vth is compared with a judgment value VG40 for switching the amplification factor, and Vth is determined to be VG.
If the value is 10 or more, a process for switching the amplification factor to 1x is executed in step T580 and step T590,
The process advances to step T601 and ends. On the other hand, step T5
If Vth is smaller than VG40 at step T65, the process directly advances to step T601 and ends.

【0041】なお、ステップT580およびステップT
590は図7で示したルーチンの同符号を付した処理と
同様であるので説明は省略する。以上述べた方法により
、ノックセンサ信号が現在増加傾向であるか、減少傾向
であるのかを求めて、これに基づいて増幅回路3の増幅
率を設定してもよい。次に本発明の他の実施例を以下に
示す図に基づいて説明する。
Note that step T580 and step T
590 is the same as the process with the same reference numeral in the routine shown in FIG. 7, so the explanation will be omitted. By the method described above, it may be determined whether the knock sensor signal is currently increasing or decreasing, and the amplification factor of the amplifier circuit 3 may be set based on this. Next, another embodiment of the present invention will be described based on the figures shown below.

【0042】図11は内燃機関の気筒内圧力を検出する
燃焼状態検出手段をなす筒内圧センサの出力信号波形を
示し、横軸はクランク角度、縦軸は気筒内圧力を示して
いる。また、図中の破線は内燃機関で失火が発生した時
の筒内圧センサ信号の特性を示し、実線は失火が発生し
ない、すなわち完全に燃焼が行われた時の特性を示す。 このとき、失火判定の処理は筒内圧センサ信号の出力波
形における所定クランク角度Δθ(例えば5℃A)毎の
大きさをA/D変換して、マイクロコンピュータに入力
してマイクロコンピュータによって実行される。
FIG. 11 shows an output signal waveform of a cylinder pressure sensor which is a combustion state detection means for detecting the cylinder pressure of an internal combustion engine, with the horizontal axis representing the crank angle and the vertical axis representing the cylinder pressure. Further, the broken line in the figure shows the characteristic of the cylinder pressure sensor signal when a misfire occurs in the internal combustion engine, and the solid line shows the characteristic when no misfire occurs, that is, when complete combustion occurs. At this time, the misfire determination process is performed by A/D converting the magnitude of each predetermined crank angle Δθ (for example, 5°C A) in the output waveform of the cylinder pressure sensor signal, inputting it to the microcomputer, and executing it. .

【0043】したがって、上述した実施例と同様にA/
D変換器でオーバーフローしないように、筒内圧センサ
信号は増幅回路を介してA/D変換器に入力される。次
の図12は本発明の装置の作動を説明するフローチャー
トであり、図示しない失火判定区間設定ルーチンからの
信号に応じて、ステップS100からスタートする。
Therefore, as in the above embodiment, A/
To prevent overflow in the D converter, the cylinder pressure sensor signal is input to the A/D converter via an amplifier circuit. Next, FIG. 12 is a flowchart illustrating the operation of the apparatus of the present invention, which starts from step S100 in response to a signal from a misfire determination section setting routine (not shown).

【0044】ステップS110では初期増幅率を設定す
る。ここで、初期増幅率は最高倍率を設定し、本実施例
では増幅率を4倍に設定し、同時にXG1フラグを0に
セットする。ステップS120では図示しない燃焼状態
検出手段をなす筒内圧センサからの検出信号から現在の
気筒内圧力値Vadを読み込み、ステップT510では
XG1フラグを検出し、増幅率が1倍であるか否かを判
別して、XG1フラグが1であるならステップS130
に進み、XG1フラグが0であるならステップS140
に進む。
[0044] In step S110, an initial amplification factor is set. Here, the initial amplification factor is set to the highest magnification, and in this embodiment, the amplification factor is set to 4 times, and at the same time, the XG1 flag is set to 0. In step S120, the current in-cylinder pressure value Vad is read from the detection signal from the in-cylinder pressure sensor, which is a combustion state detection means (not shown), and in step T510, the XG1 flag is detected and it is determined whether the amplification factor is 1. Then, if the XG1 flag is 1, step S130
If the XG1 flag is 0, the process proceeds to step S140.
Proceed to.

【0045】ステップS130ではステップS120で
読み込んだ気筒内圧力値Vadを4倍して失火検出する
ための積算処理を実行し、ステップS140ではそのま
ま気筒内圧力値Vadを積算処理を実行する。なお、こ
の積算処理は気筒が圧縮行程中は気筒内圧力値Vadを
負とし、膨張行程中は気筒内圧力値Vadを正として符
号を付けて積算するもので、例えば特開昭60ー457
50号公報で詳しく述べてあり、ここでの説明は省略す
る。
In step S130, the cylinder pressure value Vad read in step S120 is multiplied by four to perform an integration process for detecting a misfire, and in step S140, the cylinder pressure value Vad is directly integrated. In this integration process, the cylinder pressure value Vad is set to be negative during the compression stroke of the cylinder, and the cylinder pressure value Vad is set to be positive during the expansion stroke.
It is described in detail in Japanese Patent No. 50, and the explanation here will be omitted.

【0046】ステップS130での処理が終了するとス
テップT530に進み、ステップS140での処理が終
了するとステップT570に進む。ここで、図7で示し
た処理と同様なものには同符号を付してあり、この処理
方法については既に詳細に説明したものと同様であるの
でここでの説明は省略する。ステップS150ではステ
ップS120で気筒内圧力を読み込むタイミングである
か否かを判別するもので、本実施例では所定クランク角
度(例えば、5℃A)毎に読み込むものであり、所定ク
ランク角度になるとステップS160に進む。
When the process in step S130 is completed, the process advances to step T530, and when the process in step S140 is completed, the process advances to step T570. Here, the same reference numerals are given to the same processes as those shown in FIG. 7, and since the processing method is the same as that already explained in detail, the explanation here will be omitted. In step S150, it is determined whether or not it is the timing to read the cylinder pressure in step S120. In this embodiment, the cylinder pressure is read at every predetermined crank angle (for example, 5 degrees Celsius), and when the predetermined crank angle is reached, step Proceed to S160.

【0047】ステップS160では失火検出区間が終了
であるか否かを判別して、終了でないならステップS1
20に戻り繰り返し上述した処理を実行する。一方終了
であるなら、ステップS170でステップS130およ
びステップS140での積算処理結果と失火判定値とを
比較して失火発生したか否かを判別し、失火発生と判断
されると失火発生フラグを1としてステップS200に
進みメインルーチンにリターンする。一方、ステップS
170で失火発生していないと判断されるとステップS
190に進み失火発生フラグを0としてステップS20
0に進みメインルーチンにリターンする。
In step S160, it is determined whether the misfire detection section has ended or not, and if it has not ended, step S1
The process returns to step 20 and repeats the process described above. On the other hand, if the misfire has ended, in step S170, the integration processing results in steps S130 and S140 are compared with the misfire determination value to determine whether a misfire has occurred, and if it is determined that a misfire has occurred, the misfire occurrence flag is set to 1. Then, the process advances to step S200 and returns to the main routine. On the other hand, step S
If it is determined in step 170 that no misfire has occurred, step S
The process proceeds to step S20, where the misfire occurrence flag is set to 0.
Proceed to 0 and return to the main routine.

【0048】なお、失火判別方法についても例えば特開
昭60ー45750号公報で詳しく述べてあり、ここで
の説明は省略する。ここで、ステップS180およびス
テップS190で設定した失火発生フラグを検出するこ
とにより失火発生気筒への燃料の遮断等の失火発生ダイ
アグ処理を実行することができる。
[0048] The misfire determination method is also described in detail in, for example, Japanese Patent Application Laid-Open No. 45750/1983, and its explanation will be omitted here. Here, by detecting the misfire occurrence flag set in step S180 and step S190, misfire occurrence diagnosis processing such as cutting off fuel to the cylinder where the misfire has occurred can be executed.

【0049】また、ステップT530およびステップT
570において気筒内圧力値Vadと所定値とを比較し
て増幅率を切換えるか否かを判別したが、図10で示し
た処理と同様に、筒内圧センサからの検出信号が増加傾
向であるか減少傾向かを判別して増幅率の切換えをして
もよい。図13は図12のルーチンの処理説明に供する
筒内圧センサ信号特性を示す図であり、図9で説明した
ものと同様に、実線で示した燃焼時の筒内圧センサ信号
の出力波形の初期増幅率は4倍に設定され、所定値VG
4 を越える出力信号値Vad6 になるまで4倍を保
持する。
[0049] Also, step T530 and step T
In step 570, it is determined whether or not to switch the amplification factor by comparing the in-cylinder pressure value Vad with a predetermined value, but similarly to the process shown in FIG. 10, it is determined whether the detection signal from the in-cylinder pressure sensor is increasing. The amplification factor may be switched after determining whether there is a decreasing trend. FIG. 13 is a diagram showing the characteristics of the in-cylinder pressure sensor signal used to explain the processing of the routine in FIG. 12, and similar to that explained in FIG. The rate is set to 4 times, and the predetermined value VG
The value of 4 is maintained until the output signal value Vad6 exceeds 4.

【0050】次に、出力信号値Vad6 から所定値V
G1 より小さくなるVad8 まで増幅率を1倍にし
て、それ以降は増幅率を4倍に変換する。以上のように
、筒内圧力センサ信号を用いた失火検出装置においても
、1つの燃焼区間内で増幅率を変換させることにより、
A/D変換器のダイナミックレンジを最大限使用するこ
とが可能になり、失火検出の精度を向上させることがで
きる。
Next, from the output signal value Vad6, a predetermined value V
The amplification factor is increased to 1 until Vad8 becomes smaller than G1, and thereafter the amplification factor is converted to 4. As mentioned above, even in the misfire detection device using the in-cylinder pressure sensor signal, by converting the amplification factor within one combustion section,
It becomes possible to use the dynamic range of the A/D converter to the maximum, and the accuracy of misfire detection can be improved.

【0051】[0051]

【発明の効果】以上述べたように本発明においては、内
燃機関の燃焼状態を検出する燃焼状態検出手段からの信
号に基づいて、増幅率を1つの燃焼区間内で複数回切換
えることにより、オーバーフローを防止すると伴にA/
D変換器のダイナミックレンジを最大限使用でき、内燃
機関の燃焼状態の検出精度を向上させることができると
いう優れた効果を奏する。
As described above, in the present invention, the amplification factor is switched multiple times within one combustion section based on the signal from the combustion state detection means that detects the combustion state of the internal combustion engine. In addition to preventing A/
This has excellent effects in that the dynamic range of the D converter can be used to the maximum extent and the detection accuracy of the combustion state of the internal combustion engine can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のクレーム対応図である。FIG. 1 is a diagram corresponding to claims of the present invention.

【図2】本発明の一実施例の構成を示す全体構成図であ
る。
FIG. 2 is an overall configuration diagram showing the configuration of an embodiment of the present invention.

【図3】図2に図示した装置の作動説明に供するフロー
チャートである。
FIG. 3 is a flowchart illustrating the operation of the apparatus shown in FIG. 2;

【図4】図2に図示した装置の作動説明に供するフロー
チャートである。
FIG. 4 is a flowchart for explaining the operation of the apparatus shown in FIG. 2;

【図5】ノックセンサ信号の波形図である。FIG. 5 is a waveform diagram of a knock sensor signal.

【図6】図2に図示した装置の作動説明に供するフロー
チャートである。
FIG. 6 is a flowchart for explaining the operation of the apparatus shown in FIG. 2;

【図7】図2に図示した装置の作動説明に供するフロー
チャートである。
FIG. 7 is a flowchart illustrating the operation of the apparatus shown in FIG. 2;

【図8】図2に図示した装置の作動説明に供するフロー
チャートである。
FIG. 8 is a flowchart for explaining the operation of the apparatus shown in FIG. 2;

【図9】図2に図示した装置の作動説明に供する特性図
である。
9 is a characteristic diagram for explaining the operation of the device shown in FIG. 2. FIG.

【図10】図2に図示した装置の他の作動説明に供する
フローチャートである。
FIG. 10 is a flowchart illustrating another operation of the apparatus shown in FIG. 2;

【図11】本発明の他の実施例の説明に供する特性図で
ある。
FIG. 11 is a characteristic diagram for explaining another embodiment of the present invention.

【図12】他の実施例の作動説明に供するフローチャー
トである。
FIG. 12 is a flowchart for explaining the operation of another embodiment.

【図13】本発明の他の実施例の作動説明に供する特性
図である。
FIG. 13 is a characteristic diagram for explaining the operation of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  ノックセンサ 2  フィルタ 3  増幅回路 4  ノック検出用マイクロコンピュータ(ノック用E
CU)
1 knock sensor 2 filter 3 amplifier circuit 4 knock detection microcomputer (knock E
CU)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  内燃機関の燃焼状態を検出する燃焼状
態検出手段と、前記燃焼状態検出手段で検出された燃焼
信号を増幅または減衰させる複数の増幅率をもつ増幅手
段と、前記燃焼状態検出手段の検出結果に基づいて、前
記増幅手段の増幅率を1つの燃焼区間内で複数回切換え
可能な増幅率切換え手段と、前記増幅手段の出力により
内燃機関の燃焼状態を判別する燃焼状態判別手段とを備
えることを特徴とする内燃機関の燃焼状態検出装置。
1. Combustion state detection means for detecting a combustion state of an internal combustion engine; amplification means having a plurality of amplification factors for amplifying or attenuating a combustion signal detected by said combustion state detection means; and said combustion state detection means. amplification factor switching means capable of switching the amplification factor of the amplification means multiple times within one combustion section based on the detection result of the amplification means; and combustion state determination means for determining the combustion state of the internal combustion engine based on the output of the amplification means. A combustion state detection device for an internal combustion engine, comprising:
【請求項2】  前記燃焼状態検出手段は内燃機関のノ
ック振動を検出をするノックセンサであり、前記増幅率
切換え手段はこのノックセンサ信号波形の所定周期中の
極大値Vadの大きさに基づいて、1つの燃焼区間内で
前記増幅率を切換えることを特徴する請求項1に記載の
内燃機関の燃焼状態検出装置。
2. The combustion state detection means is a knock sensor that detects knock vibration of the internal combustion engine, and the amplification factor switching means is based on the magnitude of the local maximum value Vad during a predetermined period of the knock sensor signal waveform. 2. The combustion state detection device for an internal combustion engine according to claim 1, wherein the amplification factor is switched within one combustion section.
【請求項3】  前記燃焼状態検出手段は内燃機関の気
筒内圧力を検出をする筒内圧センサであり、前記増幅率
切換え手段はこの筒内圧センサ信号の所定クランク角毎
の極大値に基づいて、1つの燃焼区間内で前記増幅率を
切換えることを特徴する請求項1に記載の内燃機関の燃
焼状態検出装置。
3. The combustion state detection means is an in-cylinder pressure sensor that detects the in-cylinder pressure of the internal combustion engine, and the amplification factor switching means is configured to: The combustion state detection device for an internal combustion engine according to claim 1, wherein the amplification factor is switched within one combustion section.
【請求項4】  前記増幅率切換え手段は前記燃焼状態
検出手段の検出結果が増加傾向であるか減少傾向である
かを判別し、この判別結果に応じて1つの燃焼区間内で
前記増幅率を切換えることを特徴する請求項1に記載の
内燃機関の燃焼状態検出装置。
4. The amplification factor switching means determines whether the detection result of the combustion state detection means is an increasing trend or a decreasing trend, and changes the amplification factor within one combustion section according to this determination result. The combustion state detection device for an internal combustion engine according to claim 1, wherein the combustion state detection device for an internal combustion engine is configured to switch.
JP2406994A 1990-12-26 1990-12-26 Combustion condition detecting device for internal combustion engine Pending JPH04224260A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2406994A JPH04224260A (en) 1990-12-26 1990-12-26 Combustion condition detecting device for internal combustion engine
EP91121853A EP0494423B1 (en) 1990-12-26 1991-12-19 System for detecting combustion state in internal combustion engine
DE69102262T DE69102262T2 (en) 1990-12-26 1991-12-19 Device for detecting the state of combustion in an internal combustion engine.
US07/812,109 US5339245A (en) 1990-12-26 1991-12-23 System for detecting combustion state in internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2406994A JPH04224260A (en) 1990-12-26 1990-12-26 Combustion condition detecting device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH04224260A true JPH04224260A (en) 1992-08-13

Family

ID=18516614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2406994A Pending JPH04224260A (en) 1990-12-26 1990-12-26 Combustion condition detecting device for internal combustion engine

Country Status (4)

Country Link
US (1) US5339245A (en)
EP (1) EP0494423B1 (en)
JP (1) JPH04224260A (en)
DE (1) DE69102262T2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009533595A (en) * 2006-07-04 2009-09-17 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for increasing the resolution of the output signal of at least one measuring sensor for an internal combustion engine and the associated control device
JP2011163236A (en) * 2010-02-10 2011-08-25 Toyota Motor Corp Cylinder internal pressure detector
JP2013122229A (en) * 2011-12-12 2013-06-20 Denso Corp Electronic control device of internal combustion engine

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0632864T3 (en) * 1993-01-28 1998-02-16 Jenbacher Energiesysteme Ag Device for determining engine parameters for an internal combustion engine
JP2890093B2 (en) * 1993-12-29 1999-05-10 株式会社ユニシアジェックス Misfire diagnosis device for multi-cylinder internal combustion engine
JPH07280637A (en) * 1994-04-01 1995-10-27 Ngk Insulators Ltd Fire sensor
US5450829A (en) * 1994-05-03 1995-09-19 Servojet Products International Electronically controlled pilot fuel injection of compression ignition engines
US5535722A (en) * 1994-06-27 1996-07-16 Ford Motor Company Knock detection system and control method for an internal combustion engine
US5576963A (en) * 1994-10-18 1996-11-19 Regents Of The University Of Michigan Method and system for detecting the misfire of a reciprocating internal combustion engine utilizing a misfire index model
US5506777A (en) * 1994-12-23 1996-04-09 Ford Motor Company Electronic engine controller with automatic hardware initiated A/D conversion of critical engine control parameters
JPH08202403A (en) * 1995-01-26 1996-08-09 Toyota Motor Corp Vehicle state quantity estimation device
DE19612180C1 (en) * 1996-03-27 1997-03-06 Siemens Ag Irregular combustion detection method for multicylinder diesel engine
US5934256A (en) * 1997-03-04 1999-08-10 Siemens Aktiengesellschaft Method for detecting irregular combustion processes in a multicylinder diesel internal combustion engine
US6273064B1 (en) 2000-01-13 2001-08-14 Ford Global Technologies, Inc. Controller and control method for an internal combustion engine using an engine-mounted accelerometer
DE102004046082A1 (en) * 2004-09-23 2006-03-30 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
US7254475B1 (en) * 2006-02-07 2007-08-07 Infineon Technologies Ag Detection systems and methods
US20090078027A1 (en) * 2007-09-25 2009-03-26 Lycoming Engines, A Division Of Avco Corporation Aircraft engine cylinder assembly knock detection and suppression system
JP5395201B2 (en) * 2012-03-14 2014-01-22 三菱電機株式会社 Knock control device for internal combustion engine
US9556810B2 (en) 2014-12-31 2017-01-31 General Electric Company System and method for regulating exhaust gas recirculation in an engine
US9752949B2 (en) 2014-12-31 2017-09-05 General Electric Company System and method for locating engine noise
US9803567B2 (en) 2015-01-07 2017-10-31 General Electric Company System and method for detecting reciprocating device abnormalities utilizing standard quality control techniques
US9874488B2 (en) 2015-01-29 2018-01-23 General Electric Company System and method for detecting operating events of an engine
US9528445B2 (en) 2015-02-04 2016-12-27 General Electric Company System and method for model based and map based throttle position derivation and monitoring
US9903778B2 (en) 2015-02-09 2018-02-27 General Electric Company Methods and systems to derive knock sensor conditions
US9791343B2 (en) 2015-02-12 2017-10-17 General Electric Company Methods and systems to derive engine component health using total harmonic distortion in a knock sensor signal
US10001077B2 (en) 2015-02-19 2018-06-19 General Electric Company Method and system to determine location of peak firing pressure
US9915217B2 (en) 2015-03-05 2018-03-13 General Electric Company Methods and systems to derive health of mating cylinder using knock sensors
US9695761B2 (en) 2015-03-11 2017-07-04 General Electric Company Systems and methods to distinguish engine knock from piston slap
US9435244B1 (en) 2015-04-14 2016-09-06 General Electric Company System and method for injection control of urea in selective catalyst reduction
US9784231B2 (en) 2015-05-06 2017-10-10 General Electric Company System and method for determining knock margin for multi-cylinder engines
US9933334B2 (en) 2015-06-22 2018-04-03 General Electric Company Cylinder head acceleration measurement for valve train diagnostics system and method
US9784635B2 (en) 2015-06-29 2017-10-10 General Electric Company Systems and methods for detection of engine component conditions via external sensors
US10393609B2 (en) 2015-07-02 2019-08-27 Ai Alpine Us Bidco Inc. System and method for detection of changes to compression ratio and peak firing pressure of an engine
US9897021B2 (en) 2015-08-06 2018-02-20 General Electric Company System and method for determining location and value of peak firing pressure
US10760543B2 (en) 2017-07-12 2020-09-01 Innio Jenbacher Gmbh & Co Og System and method for valve event detection and control

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4274379A (en) * 1978-06-13 1981-06-23 Nippon Soken, Inc. Method and system for controlling ignition timing of internal combustion engines
US4404841A (en) * 1981-03-28 1983-09-20 Robert Bosch Gmbh Optical combustion sensor system
US4513716A (en) * 1981-12-02 1985-04-30 Nippondenso Co., Ltd. Ignition timing control system with knock control for internal combustion engines
JPH0650103B2 (en) * 1982-01-18 1994-06-29 株式会社日立製作所 Knock control device
DE3313036C2 (en) * 1983-04-12 1997-02-13 Bosch Gmbh Robert Device for preventing knocking in internal combustion engines
JPH0715424B2 (en) * 1983-08-05 1995-02-22 日本電装株式会社 Knocking detection device
JPS6045750A (en) * 1983-08-23 1985-03-12 Toyota Motor Corp Fuel injection control method of internal-combustion engine
DE3342466A1 (en) * 1983-11-24 1985-06-05 Robert Bosch Gmbh, 7000 Stuttgart Device for detecting knocking combustion in internal combustion engines
DE3506114A1 (en) * 1985-02-22 1986-09-04 Robert Bosch Gmbh, 7000 Stuttgart Method for controlling an internal combustion engine in an open-loop or closed-loop fashion
US4711212A (en) * 1985-11-26 1987-12-08 Nippondenso Co., Ltd. Anti-knocking in internal combustion engine
JPH0721440B2 (en) * 1986-09-11 1995-03-08 日本電装株式会社 Knocking detection device for internal combustion engine
JPH07117031B2 (en) * 1987-08-13 1995-12-18 日本電装株式会社 Knock control device for internal combustion engine
KR940002956B1 (en) * 1987-09-29 1994-04-09 미쓰비시전기주식회사 Air-fuel ratio controlling apparatus for internal combustion engine
WO1989011088A1 (en) * 1988-05-06 1989-11-16 Robert Bosch Gmbh Detection of knocking signals in i.c. engines
US5076098A (en) * 1990-02-21 1991-12-31 Nissan Motor Company, Limited System for detecting combustion state in internal combustion engine
KR940004352B1 (en) * 1990-10-02 1994-05-23 미쓰비시덴키가부시키가이샤 Knocking control apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009533595A (en) * 2006-07-04 2009-09-17 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for increasing the resolution of the output signal of at least one measuring sensor for an internal combustion engine and the associated control device
JP4705690B2 (en) * 2006-07-04 2011-06-22 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for increasing the resolution of the output signal of at least one measuring sensor for an internal combustion engine and the associated control device
JP2011163236A (en) * 2010-02-10 2011-08-25 Toyota Motor Corp Cylinder internal pressure detector
JP2013122229A (en) * 2011-12-12 2013-06-20 Denso Corp Electronic control device of internal combustion engine
US8914222B2 (en) 2011-12-12 2014-12-16 Denso Corporation Electronic control unit of internal combustion engine

Also Published As

Publication number Publication date
EP0494423A3 (en) 1992-08-19
DE69102262D1 (en) 1994-07-07
EP0494423A2 (en) 1992-07-15
EP0494423B1 (en) 1994-06-01
DE69102262T2 (en) 1995-01-12
US5339245A (en) 1994-08-16

Similar Documents

Publication Publication Date Title
JPH04224260A (en) Combustion condition detecting device for internal combustion engine
US7424820B2 (en) Knocking state determination device
EP0550411A2 (en) Knock control system for internal combustion engine
JP3084889B2 (en) Knock control device for internal combustion engine
US5153834A (en) Method and apparatus for detecting a misfire in a combustion chamber of an internal combustion engine
JPH04252840A (en) Knocking controller for internal combustion engine
JPH04101068A (en) Ignition timing control device for internal combustion engine
JPH04219465A (en) Knocking control device for internal combustion engine
JPH0750010B2 (en) Knocking detection device abnormality determination device
JPH0663482B2 (en) Knocking control device for internal combustion engine
JP4324137B2 (en) Control device for internal combustion engine
JP6845067B2 (en) Internal combustion engine controller
US5062402A (en) Knocking control apparatus of internal combustion engine
JPH0631564B2 (en) Knock control device for internal combustion engine
JPS5968565A (en) Reduction of engine roughness by ingition timing control
JP2956328B2 (en) Ignition timing control device for internal combustion engine
JPS62189370A (en) Ignition timing control device
JPS61142366A (en) Knocking detector for internal-combustion engine
JPH04272450A (en) Knocking control device for internal-combustion engine
JPH07117031B2 (en) Knock control device for internal combustion engine
JPH0367064A (en) Ignition timing control device of engine
JPS6146466A (en) Decision device of knocking in internal-combustion engine
JPH0489535A (en) Detecting device of knocking of internal combustion engine
JPH1150904A (en) Knock control system for internal combustion engine
JPS6113126A (en) Knocking detector for internal-combustion engine

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990119