JPH04223335A - Manufacture of dielectric thin film - Google Patents

Manufacture of dielectric thin film

Info

Publication number
JPH04223335A
JPH04223335A JP2406369A JP40636990A JPH04223335A JP H04223335 A JPH04223335 A JP H04223335A JP 2406369 A JP2406369 A JP 2406369A JP 40636990 A JP40636990 A JP 40636990A JP H04223335 A JPH04223335 A JP H04223335A
Authority
JP
Japan
Prior art keywords
thin film
tantalum
oxide
metal
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2406369A
Other languages
Japanese (ja)
Inventor
Koji Matsunaga
浩二 松永
Tomizo Matsuoka
富造 松岡
Mayumi Inoue
井上 真弓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2406369A priority Critical patent/JPH04223335A/en
Publication of JPH04223335A publication Critical patent/JPH04223335A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To easily form the title dielectric thin film having a large area at low cost by a method wherein a laminated metallic thin film of two or more layers having a tantalum metal on the topmost layer is oxidized by anode- oxidization step. CONSTITUTION:A multilayer structure formed by anode oxidization step is composed of four layers comprising a tantalum oxide thin film 1, the other element oxide thin film 2, another tantalum oxide thin film 3 and the other element oxide thin film 4. In such a constitution, after evaporating gold/chrome thin films 6, 7 used as electrodes on a glass substrate 5, the constituent metals are successively laminated by multielement high-frequency magnetron sputter step specifying the tantalum metal as the fourth layer. In general, the volume of a metal is to be expanded for increasing the film thickness when it is anode- oxidized. After performing the four layer lamination step, oxalic acid is used as a chemical-conversing solution to form all of the layers into oxides excluding gold/chrome electrodes. After drying-up step, aluminum electrodes 7 are evaporated to form capacitors.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は薄膜で構成するLSIの
トランジスターやキャパシターおよび電子デバイス、た
とえばEL表示パネルや液晶表示パネルの誘電体薄膜の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing dielectric thin films for LSI transistors and capacitors and electronic devices, such as EL display panels and liquid crystal display panels, which are constructed of thin films.

【0002】0002

【従来の技術】従来、酸化タンタル薄膜はディスクリー
トおよびハイブリッドICのキャパシター誘電体材料と
して使われており、また最近ではLSIへの応用として
MOSトランジスターのゲート絶縁膜やMOSキャパシ
ターの開発が進められている。さらに、液晶表示デバイ
スのTFTゲート絶縁膜やMIMダイオードの絶縁膜と
して応用された。その製造方法も陽極酸化法の他に金属
の熱酸化法、スパッタリング法、塩化物を用いたCVD
法および有機金属化合物を用いたMOCVD法などが開
発されている。これらの中で、陽極酸化法は製造の容易
さ、生産性およびコストの観点から、最も優れた方法で
あり、かつ大面積の製膜に向いている。製造された薄膜
はピンホールなどの欠陥が少ない特徴を持つ。
[Prior Art] Tantalum oxide thin films have conventionally been used as capacitor dielectric materials for discrete and hybrid ICs, and recently, the development of gate insulating films for MOS transistors and MOS capacitors has been progressing for application to LSIs. . Furthermore, it has been applied as a TFT gate insulating film for liquid crystal display devices and an insulating film for MIM diodes. In addition to anodic oxidation, its manufacturing methods include metal thermal oxidation, sputtering, and CVD using chlorides.
MOCVD methods and MOCVD methods using organometallic compounds have been developed. Among these, the anodic oxidation method is the most excellent method from the viewpoints of ease of manufacture, productivity, and cost, and is suitable for forming a film over a large area. The produced thin film has fewer defects such as pinholes.

【0003】0003

【発明が解決しようとする課題】従来の技術で説明した
陽極酸化法で製造した酸化タンタル薄膜は誘電率25、
誘電損失0.5 %、絶縁耐圧4〜5MV/cmおよび
リーク電流5×10−8A/cm2 (電界強度0.5
 MV/cm)の電気特性を有する。陽極酸化直後で酸
化タンタルは上記のごとく非常に小さいリーク電流を示
すが、300 ℃の真空熱処理を受けると5×10−4
A/cm2 に増える欠点を持つ。
[Problems to be Solved by the Invention] The tantalum oxide thin film manufactured by the anodic oxidation method described in the prior art has a dielectric constant of 25,
Dielectric loss 0.5%, dielectric strength voltage 4 to 5 MV/cm, and leakage current 5 x 10-8 A/cm2 (electric field strength 0.5
MV/cm). Immediately after anodizing, tantalum oxide exhibits a very small leakage current as described above, but when subjected to vacuum heat treatment at 300°C, the leakage current decreases to 5 x 10-4.
It has the disadvantage of increasing A/cm2.

【0004】現在、各種電子デバイスや半導体デバイス
の誘電体薄膜に対し、陽極酸化法はすでに説明したよう
に生産性やコストの観点から非常に有利な方法であるの
で、この方法を用い、かつ酸化タンタルより電気特性が
優れたものが望まれている。たとえば、交流薄膜EL表
示デバイスではさらに高い誘電率と絶縁耐圧が必要であ
る。TFT液晶表示デバイスのゲート絶縁膜としては高
誘電率とともに欠陥レスの耐熱性が高いものが要求され
ている。耐熱性は他のプロセスとのコンパチビリティを
保つために、液晶デバイスのみならず一般に高い程良い
。今迄耐熱性を上げリーク電流を減らすために、たとえ
ば反応性スパッター法においてはタンタル金属ターゲッ
トの高純度化や電極の平坦化、CVD法では基板温度の
低下やアニールによる酸素欠陥の低減およびプラズマ応
用がなされた。Ta2 O5 /Si界面を酸化してS
iO2 にする界面酸化法も耐熱性を上げるために開発
された。一方、液晶表示デバイスのMIMダイオードで
は、むしろあらかじめリーク電流が大きく、その特性が
安定なものが良い。
[0004]Currently, as already explained, anodic oxidation is a very advantageous method for dielectric thin films of various electronic devices and semiconductor devices from the viewpoint of productivity and cost. A material with better electrical properties than tantalum is desired. For example, AC thin film EL display devices require even higher dielectric constant and dielectric strength. A gate insulating film for a TFT liquid crystal display device is required to have a high dielectric constant and high heat resistance without defects. In order to maintain compatibility with other processes, the higher the heat resistance, the better in general, not only for liquid crystal devices. Until now, in order to improve heat resistance and reduce leakage current, for example, in reactive sputtering, we have improved the purity of the tantalum metal target and flattened the electrodes, and in CVD, we have lowered the substrate temperature and reduced oxygen defects by annealing, and applied plasma. It has been made. By oxidizing the Ta2O5/Si interface, S
An interfacial oxidation method to iO2 was also developed to increase heat resistance. On the other hand, it is preferable for the MIM diode of a liquid crystal display device to have a large leakage current and stable characteristics.

【0005】本発明はこのような問題に鑑みなされたも
ので、各種の特性面で酸化タンタルより優れた特性を持
つ薄膜を容易に製造する方法を提供することを目的とす
る。
The present invention was made in view of the above problems, and an object of the present invention is to provide a method for easily producing a thin film having properties superior to tantalum oxide in various properties.

【0006】[0006]

【課題を解決するための手段】この課題を解決するため
に本発明は、タンタル金属を最表面にした2層以上の積
層金属薄膜を、陽極酸化法によって酸化することを要旨
とするものである。
[Means for Solving the Problem] In order to solve this problem, the gist of the present invention is to oxidize a laminated metal thin film of two or more layers with tantalum metal as the outermost surface by an anodic oxidation method. .

【0007】さらに本発明について説明すると、タンタ
ル金属を最表面にして、金属の種類と膜厚があらかじめ
設定された積層膜を多元の電子ビーム加熱法などを用い
て形成する。タンタル金属以外の金属は陽極酸化によっ
て皮膜形成性金属が選ばれる。続いてタンタル金属に適
した陽極酸化条件によって化成して、複合化した酸化物
の積層膜を形成する。タンタル金属を最表面にしている
ので、複合する他の金属がどのような種類であっても、
タンタル金属の陽極酸化条件で化成を行なって酸化物の
積層膜を製造できる特徴を持つ。
To further explain the present invention, a laminated film having tantalum metal as the outermost surface and having a predetermined metal type and film thickness is formed using a multi-dimensional electron beam heating method or the like. Metals other than tantalum metal that can form a film by anodizing are selected. Subsequently, tantalum metal is chemically converted under anodizing conditions suitable for tantalum metal to form a composite oxide laminated film. Since tantalum metal is used as the top surface, no matter what kind of other metals are used in the composite,
It has the feature of being able to produce a laminated oxide film by performing chemical conversion under the conditions of anodic oxidation of tantalum metal.

【0008】[0008]

【作用】本発明は前記した手段により酸化タンタルと他
の化成可能金属の酸化物が、たとえば交互に積層された
複合積層膜を形成し、複合効果により酸化タンタルの各
種特性を変化させ、それぞれの薄膜デバイスに合った誘
電体薄膜を容易に製造できる。積層した複合効果は誘電
率と絶縁耐圧を平均化するが、性能指数(最大蓄積電荷
量)は高い方の薄膜材料の値を保持する。絶縁耐圧は必
ずしも平均化せず、薄膜材料の組み合せによっては同じ
膜厚の各構成薄膜単独より大きくなることもあり得る。 また、絶縁破壊し易い欠陥が極力少なくなり、絶縁破壊
モードを変えることが可能である。さらに耐熱性や付着
力および耐薬品性など、デバイス作成のプロセスに関わ
る性質を調節可能である。陽極酸化による製造方法は大
面積に亘って欠陥やゴミのない薄膜を容易に低コストで
製造できる工業的に有利な方法である。
[Operation] The present invention forms a composite laminated film in which tantalum oxide and other formable metal oxides are laminated alternately by the above-described means, and the various properties of tantalum oxide are changed by the combined effect, so that the properties of each tantalum oxide are changed. Dielectric thin films suitable for thin film devices can be easily manufactured. The combined effect of stacking averages the dielectric constant and dielectric strength, but the figure of merit (maximum stored charge) maintains the value of the higher thin film material. The dielectric strength voltage is not necessarily averaged, and depending on the combination of thin film materials, the dielectric strength voltage may be higher than that of each constituent thin film alone having the same thickness. Furthermore, the number of defects that are likely to cause dielectric breakdown is minimized, making it possible to change the dielectric breakdown mode. Furthermore, properties related to the device fabrication process, such as heat resistance, adhesion, and chemical resistance, can be adjusted. The manufacturing method using anodic oxidation is an industrially advantageous method that allows a thin film without defects or dust to be easily manufactured over a large area at low cost.

【0009】[0009]

【実施例】以下、本発明の実施例について、図面に基づ
いて説明する。まず、第1実施例について説明すると、
図1において陽極酸化して形成される積層膜の構造が、
酸化タンタル薄膜1、他種酸化物薄膜2、酸化タンタル
薄膜3、他種酸化物薄膜4の4層として、各層の膜厚が
50nm、全体の膜厚が200nmとなるようにあらか
じめ設計した。そこで、ガラス基板5の上に電極として
用いる金/クロム薄膜6,7を蒸着した後、多元高周波
マグネトロンスパッター法で順次構成金属を積み重ね、
4層目を必ずタンタル金属とした。陽極酸化すると一般
に金属は体積が膨張し、膜厚が増加する。たとえばタン
タル金属の場合2.5 倍に膨張するので、金属の膜厚
は20nmとした。他種酸化物として酸化チタンを積層
した結果を以下に示す。4層積層した後、化成液として
50℃の0.1 規定の蓚酸を用いた。電流を0.3m
A /cm2 とし、120 Vで60分間化成して金
/クロム電極以外すべて酸化物化した。 150 ℃で乾燥した後、2mm直径のアルミニウム電
極7を蒸着してコンデンサーを形成し、電気特性を測定
した。 その結果、誘電率35、絶縁破壊電界強度4〜5MV/
cmおよびリーク電流として4×10−8A/cm2 
(電界:0.5MV/cm)の特性を得た。耐圧および
リーク電流は酸化タンタル薄膜とほぼ同等で、誘電率が
2倍弱大きい薄膜が得られた。かかる特性の薄膜は低電
圧駆動する交流薄膜EL表示デバイスの誘電体薄膜とし
て適当である。酸化チタンの膜厚の割合を上記実施例の
50%よりさらに大きくすることによって、より高い誘
電率が得られることは原理的に明らかである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings. First, to explain the first example,
In Figure 1, the structure of the laminated film formed by anodic oxidation is as follows.
The four layers of tantalum oxide thin film 1, other oxide thin film 2, tantalum oxide thin film 3, and other oxide thin film 4 were designed in advance so that the film thickness of each layer was 50 nm and the total film thickness was 200 nm. Therefore, after depositing gold/chromium thin films 6 and 7 to be used as electrodes on the glass substrate 5, the constituent metals were sequentially stacked using a multi-element high-frequency magnetron sputtering method.
The fourth layer was always made of tantalum metal. When anodized, the metal generally expands in volume and increases in film thickness. For example, since tantalum metal expands 2.5 times, the metal film thickness was set to 20 nm. The results of laminating titanium oxide as another type of oxide are shown below. After laminating four layers, 0.1N oxalic acid at 50° C. was used as a chemical liquid. Current 0.3m
A/cm2 and chemical conversion was performed at 120 V for 60 minutes to convert everything except the gold/chromium electrode into oxide. After drying at 150° C., an aluminum electrode 7 with a diameter of 2 mm was deposited to form a capacitor, and the electrical properties were measured. As a result, the dielectric constant was 35, and the dielectric breakdown field strength was 4 to 5 MV/
cm and leakage current as 4×10-8A/cm2
(Electric field: 0.5 MV/cm) characteristics were obtained. A thin film was obtained whose breakdown voltage and leakage current were almost the same as those of the tantalum oxide thin film, and whose dielectric constant was slightly more than twice as high. A thin film with such characteristics is suitable as a dielectric thin film for an AC thin film EL display device driven at a low voltage. It is clear in principle that a higher dielectric constant can be obtained by increasing the film thickness ratio of titanium oxide to more than 50% of the above example.

【0010】次に第2実施例について述べると、第1実
施例と全く同じ寸法、構造で、酸化チタンの代りに酸化
アルミニウムを用いた。製造条件もほとんど同じである
が、蓚酸に代って燐酸を用いた。緻密なバリヤー型の酸
化アルミニウム陽極酸化膜を得る場合、基本的には中性
溶液でかつアルミニウムを腐食し難い溶液が用いられる
。しかし、タンタル金属が最表面に配置され、腐食が防
止されたためと考えられるが、タンタルの陽極酸化で通
常用いられる上記燐酸溶液で緻密なバリヤー型酸化アル
ミニウムを形成することができた。その結果、誘電率1
4、絶縁破壊電界強度9MV/cm、リーク電流4×1
0−9A/cm2 と酸化タンタルに比べ誘電率は幾分
低下するが、耐電圧特性がより優れた積層薄膜が得られ
た。さらに300 ℃の真空中で加熱したところ、リー
ク電流は6×10−8A/cm2 で耐熱特性も非常に
優れたものが得られた。かかる特性の薄膜は液晶表示デ
バイスのTFTゲート絶縁膜や薄膜EL表示デバイスの
誘電体薄膜として適当である。
Next, the second embodiment will be described. It has exactly the same dimensions and structure as the first embodiment, but aluminum oxide is used instead of titanium oxide. The manufacturing conditions were almost the same, but phosphoric acid was used instead of oxalic acid. When obtaining a dense barrier-type aluminum oxide anodic oxide film, a neutral solution that does not easily corrode aluminum is basically used. However, it was possible to form a dense barrier-type aluminum oxide using the above-mentioned phosphoric acid solution, which is commonly used in anodizing tantalum, probably because tantalum metal was placed on the outermost surface and corrosion was prevented. As a result, the dielectric constant is 1
4. Breakdown electric field strength 9MV/cm, leakage current 4×1
Although the dielectric constant was 0-9 A/cm2, which was somewhat lower than that of tantalum oxide, a laminated thin film with better withstand voltage characteristics was obtained. When further heated in a vacuum at 300 DEG C., a leak current of 6.times.10@-8 A/cm@2 and extremely excellent heat resistance properties were obtained. A thin film with such characteristics is suitable as a TFT gate insulating film of a liquid crystal display device or a dielectric thin film of a thin film EL display device.

【0011】次に第3実施例について述べると、第1実
施例と全く同じ寸法、構造で、酸化チタンの代りに酸化
ニオブを用いた。製造条件もほとんど同じであるが、蓚
酸に代って燐酸を用いた。その結果、誘電率32、絶縁
破壊電界強度6MV/cm、リーク電流2×10−8A
/cm2 と酸化チタンの場合と良く似た特性を得た。 かかる特性の薄膜は薄膜EL表示デバイスの誘電体薄膜
として適当である。
Next, the third embodiment will be described. It has the same dimensions and structure as the first embodiment, but uses niobium oxide instead of titanium oxide. The manufacturing conditions were almost the same, but phosphoric acid was used instead of oxalic acid. As a result, the dielectric constant was 32, the dielectric breakdown field strength was 6 MV/cm, and the leakage current was 2 x 10-8 A.
/cm2, and properties very similar to those of titanium oxide were obtained. A thin film with such characteristics is suitable as a dielectric thin film for a thin film EL display device.

【0012】次に第4実施例について述べると、第1実
施例と全く同じ寸法、構造で、酸化チタンの代りに酸化
ジルコニウムを用いた。製造条件もほとんど同じである
が、蓚酸に代ってホウ酸を用いた。その結果、誘電率2
5、絶縁破壊電界強度8MV/cm、リーク電流3×1
0−9A/cm2 と酸化タンタルに比べ誘電率はほと
んど同じで、耐電圧特性が格段に優れた積層薄膜が得ら
れた。さらに、300 ℃の真空中で加熱したところ、
リーク電流は1×10−9A/cm2で耐熱特性も非常
に優れたものが得られた。かかる特性の薄膜は液晶表示
デバイスのTFTゲート絶縁膜やLSIのMOSキャパ
シターの誘電体として適当である。
Next, the fourth embodiment will be described. It has exactly the same dimensions and structure as the first embodiment, but uses zirconium oxide instead of titanium oxide. The manufacturing conditions were almost the same, but boric acid was used instead of oxalic acid. As a result, the dielectric constant 2
5. Breakdown electric field strength 8MV/cm, leakage current 3×1
A laminated thin film having a dielectric constant of 0-9 A/cm2, which is almost the same as that of tantalum oxide, and a much superior dielectric strength property was obtained. Furthermore, when heated in a vacuum at 300 °C,
The leakage current was 1 x 10-9 A/cm2, and the heat resistance was also excellent. A thin film with such characteristics is suitable as a TFT gate insulating film of a liquid crystal display device or a dielectric material of a MOS capacitor of an LSI.

【0013】さらに第5実施例について述べると、第1
実施例と全く同じ寸法、構造で、酸化チタンの代りに酸
化タングステンを用いた。製造条件もほとんど同じであ
るが、蓚酸に代って希硫酸を用いた。その結果、誘電率
28、絶縁破壊電界強度3MV/cm、リーク電流9×
10−8A/cm2 と酸化タンタルに比べ誘電率はほ
とんど同じで、耐電圧特性においてリーク電流が大きい
積層薄膜が得られた。かかる特性の薄膜は液晶表示デバ
イスのMIMダイオードの絶縁膜として適当である。
Further describing the fifth embodiment, the first
The dimensions and structure were exactly the same as in the example, but tungsten oxide was used instead of titanium oxide. The manufacturing conditions were almost the same, but dilute sulfuric acid was used instead of oxalic acid. As a result, the dielectric constant was 28, the dielectric breakdown field strength was 3MV/cm, and the leakage current was 9×
A laminated thin film having a dielectric constant of 10-8 A/cm2, which is almost the same as that of tantalum oxide, and a high leakage current in terms of withstand voltage characteristics was obtained. A thin film with such characteristics is suitable as an insulating film for an MIM diode in a liquid crystal display device.

【0014】以上、代表的な4層の積層構造で酸化タン
タルに酸化チタン、酸化アルミニウム、酸化ニオブ、酸
化ジルコニウムおよび酸化タングステンを積層した場合
を示したが、層の構造を変え、他の陽極酸化で化成可能
な酸化物を組み合せ、各種特徴的な積層薄膜を作成でき
ることは上記実施例から明らかといえる。構造としては
、より層数を多くしたり、膜厚比を変えたりできる。 酸化物としては実施例の他に、イットリウム、ハフニウ
ム、クロム、モリブデン、ビスマス、マグネシウム、ゲ
ルマニウム、バナジウムおよびシリコンの酸化物を用い
ることができる。これらの1種のみならず2種以上を組
み合わせることも可能である。
The above example shows a typical four-layer laminated structure in which titanium oxide, aluminum oxide, niobium oxide, zirconium oxide, and tungsten oxide are laminated on tantalum oxide. It is clear from the above examples that various characteristic laminated thin films can be created by combining oxides that can be chemically formed. As for the structure, the number of layers can be increased or the film thickness ratio can be changed. In addition to the examples, oxides of yttrium, hafnium, chromium, molybdenum, bismuth, magnesium, germanium, vanadium, and silicon can be used as oxides. It is also possible to use not only one type of these but also a combination of two or more types.

【0015】[0015]

【発明の効果】以上説明したように本発明によれば、各
種電子デバイスに有用な誘電体薄膜を、大面積に亘って
容易に低コストで製造でき、その実用的効果は大きい。
As explained above, according to the present invention, dielectric thin films useful for various electronic devices can be easily manufactured over a large area at low cost, and the practical effects thereof are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例における誘電体薄膜の断面図
である。
FIG. 1 is a cross-sectional view of a dielectric thin film in one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1    酸化タンタル薄膜 2    他種酸化物薄膜 3    酸化タンタル薄膜 4    他種酸化物薄膜 5    ガラス基板 6    金/クロム薄膜 7    アルミニウム電極 1 Tantalum oxide thin film 2 Other oxide thin films 3 Tantalum oxide thin film 4 Other oxide thin films 5 Glass substrate 6    Gold/Chromium thin film 7 Aluminum electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  タンタル金属を最表面にした2層以上
の積層金属薄膜を、陽極酸化法によって酸化することを
特徴とする誘電体薄膜の製造方法。
1. A method for producing a dielectric thin film, which comprises oxidizing a laminated metal thin film of two or more layers with tantalum metal as the outermost surface by an anodic oxidation method.
JP2406369A 1990-12-26 1990-12-26 Manufacture of dielectric thin film Pending JPH04223335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2406369A JPH04223335A (en) 1990-12-26 1990-12-26 Manufacture of dielectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2406369A JPH04223335A (en) 1990-12-26 1990-12-26 Manufacture of dielectric thin film

Publications (1)

Publication Number Publication Date
JPH04223335A true JPH04223335A (en) 1992-08-13

Family

ID=18515980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2406369A Pending JPH04223335A (en) 1990-12-26 1990-12-26 Manufacture of dielectric thin film

Country Status (1)

Country Link
JP (1) JPH04223335A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994015370A1 (en) * 1992-12-28 1994-07-07 Orion Electric Company Ltd. Structure of mim diode and method for its manufacture
JP2009003314A (en) * 2007-06-25 2009-01-08 Ricoh Co Ltd Toner carrier, developing device, and image forming device
JP2009071304A (en) * 2007-09-10 2009-04-02 Samsung Electronics Co Ltd Resistance change memory element, and method of forming resistance change memory element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994015370A1 (en) * 1992-12-28 1994-07-07 Orion Electric Company Ltd. Structure of mim diode and method for its manufacture
JP2009003314A (en) * 2007-06-25 2009-01-08 Ricoh Co Ltd Toner carrier, developing device, and image forming device
JP2009071304A (en) * 2007-09-10 2009-04-02 Samsung Electronics Co Ltd Resistance change memory element, and method of forming resistance change memory element

Similar Documents

Publication Publication Date Title
US6075691A (en) Thin film capacitors and process for making them
US5936831A (en) Thin film tantalum oxide capacitors and resulting product
US4432035A (en) Method of making high dielectric constant insulators and capacitors using same
TWI248214B (en) Method for fabricating MIM capacitor
US5111355A (en) High value tantalum oxide capacitor
US4464701A (en) Process for making high dielectric constant nitride based materials and devices using the same
US6461931B1 (en) Thin dielectric films for DRAM storage capacitors
JPH06151712A (en) Manufacture of structure and capacitor
JP2000353787A (en) Composite iridium barrier structure formed of heat- resistant metal oxide accompanied with barrier, and method of forming the same
KR20070045210A (en) Devices and methods of making the same
JP5458514B2 (en) Semiconductor device manufacturing method and semiconductor device
JPH04223335A (en) Manufacture of dielectric thin film
US5594259A (en) Semiconductor device and a method for producing the same
JP4031791B2 (en) Capacitor for semiconductor device and method for manufacturing the same
JPH0745475A (en) Thin film capacitor and fabrication thereof
JPS63166236A (en) Electronic device
JPS59167009A (en) Method of producing electrode material for electrolytic condenser
JP3172665B2 (en) Dielectric thin film capacitor element and method of manufacturing the same
JPH11126728A (en) Thin-film capacitor and manufacture thereof
JPH06275776A (en) Capacitor
JPH01154547A (en) Production of capacitor
JP3106620B2 (en) Method of manufacturing dielectric thin film and method of manufacturing capacitive element
JPH10242393A (en) Dielectric thin-film capacitor element and its manufacturing method
JP3047363B2 (en) Semiconductor device and manufacturing method thereof
JPH0778727A (en) Thin film capacitor