JPH04222927A - Optical read-out system - Google Patents

Optical read-out system

Info

Publication number
JPH04222927A
JPH04222927A JP41292590A JP41292590A JPH04222927A JP H04222927 A JPH04222927 A JP H04222927A JP 41292590 A JP41292590 A JP 41292590A JP 41292590 A JP41292590 A JP 41292590A JP H04222927 A JPH04222927 A JP H04222927A
Authority
JP
Japan
Prior art keywords
light
intensity
read
wavelength
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41292590A
Other languages
Japanese (ja)
Inventor
Toomasu Ebuson
エブソン トーマス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP41292590A priority Critical patent/JPH04222927A/en
Publication of JPH04222927A publication Critical patent/JPH04222927A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To be not erased the storage data even by performing the repetitive read-out with the optical read-out for photochromic data storage device use and to be unnecessary to weaken the intensity of the read-out light extremely. CONSTITUTION:The reading light is made by simultaneously radiating the writing light and the erasing light. The intensity ratio of the writing light and the erasing light is determined by considering the absorption probability of the photochromic material in each state. In an adequate relative intensity, there is no variation in the whole. The wider range of the reading light intensity can be adopted, so a low sensitive detector can be used.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、フォトクロミックデ−
タ記憶装置用の光読出し方式に関するものであり、さら
に詳しくは、繰返し光学的読出しが行われた時に、記憶
されているデ−タが揮発する問題を解決する方法に関す
るものである。これは、電子産業、とくにオプトエレク
トロニクス、光通信および光学的デ−タ記憶の分野にお
いて有用である。
[Industrial Application Field] The present invention relates to photochromic data.
The present invention relates to an optical reading system for a data storage device, and more particularly, to a method for solving the problem of stored data volatilizing when repeated optical reading is performed. This is useful in the electronics industry, particularly in the fields of optoelectronics, optical communications and optical data storage.

【0002】0002

【従来の技術】従来、フォトクロミックメモリに記憶さ
れているデ−タを読出すための方法としては、光を記憶
素子に照射して吸光度の変化または屈折率の変化を検出
する、という方法が用いられてきた。
[Prior Art] Conventionally, as a method for reading data stored in a photochromic memory, a method has been used in which a storage element is irradiated with light and a change in absorbance or a change in refractive index is detected. I've been exposed to it.

【0003】0003

【発明が解決しようとする課題】しかし、吸光度の変化
または屈折率の変化を分析するために用いられる読出し
光は、通常、書込み光、消去光のいずれかの波長、ある
いはそれ以外の単一波長の光が用いられるので、一部は
記憶素子により吸収されて、記憶されたデ−タが僅かに
消去される結果となる。繰り返し読出しの後では、デ−
タはついには消去されてしまう。必要とされる光の強度
が大きいほど、繰返し読出しによりデ−タが早く消去さ
れる。従って、読出し光は弱いことが望ましい。しかし
ながら、弱い読出し光でデ−タを検出するには感度の高
い検出器でなければならないという問題点があった。本
発明はこのような課題を解決して、繰り返し読出しを行
っても記憶デ−タが消去されることがなく、かつ高感度
の検出器を要しない光読出し方式を提供することを目的
とする。
[Problems to be Solved by the Invention] However, the readout light used to analyze changes in absorbance or refractive index usually has the wavelength of either the writing light or the erasing light, or a single wavelength other than that of the writing light or the erasing light. Since so much light is used, some of it is absorbed by the storage element, resulting in a slight erasure of the stored data. After repeated reading, the data
The data will eventually be erased. The greater the intensity of light required, the faster the data will be erased by repeated reading. Therefore, it is desirable that the reading light be weak. However, there is a problem in that a highly sensitive detector is required to detect data with weak readout light. It is an object of the present invention to solve these problems and provide an optical readout method that does not erase stored data even after repeated reading and does not require a highly sensitive detector. .

【0004】0004

【課題を解決するための手段】本発明は、書込み光を照
射することによって情報を書込み、消去光を照射するこ
とによって情報を消去するフォトクロミックデ―タ記憶
用の光読出し方式において、情報を読出す読出し光は、
書込み光の波長と消去光の波長が所定の強度比で混合し
たものを用いることを特徴とする光読出し方式である。
[Means for Solving the Problems] The present invention provides an optical reading method for photochromic data storage in which information is written by irradiating writing light and erasing information by irradiating erasing light. The readout light that is emitted is
This is an optical readout method characterized by using a mixture of the wavelength of writing light and the wavelength of erasing light at a predetermined intensity ratio.

【0005】[0005]

【作用】フォトクロミックデ−タ記憶システムにおいて
は、デ−タは1つの波長の光で記憶され、別の波長の光
で消去される。適切な強さの消去光波長と書込み光波長
の光を同時に照射することにより記憶素子の読出しを行
うものとすると、記憶素子には正味の変化は引き起こさ
れない。したがって、読出し操作による不安定性は存在
しない。更に、記憶素子を読出すために加えられる光の
強さは、システムの損傷を防ぐために非常に弱くする必
要はない。このことにより、記憶素子の状態の検出は、
従来よりも容易になる。
In a photochromic data storage system, data is stored with one wavelength of light and erased with another wavelength of light. If the storage element is read by simultaneous irradiation with light of appropriate intensities of erasing and writing wavelengths, no net change is induced in the storage element. Therefore, there is no instability due to read operations. Furthermore, the intensity of the light applied to read the storage element need not be very low to prevent damage to the system. As a result, the state of the storage element can be detected by
easier than before.

【0006】[0006]

【実施例】次に本発明の実施例について説明する。書込
み波長と消去波長は、用いられる2つのフォトクロミッ
ク状態の光吸収に対応する。それら2つの状態の一方を
読出し用の光として用いるとすると、その光は吸収され
て、他方の状態への変化が引き起こされる。しかし、記
憶素子の内容を読出すために書込み光と消去光の両方が
照射されたとすると、適切な相対的強度では、全体とし
ての変化はない。2つの照射光の強さは、入射光の波長
における2つの状態の相対的な吸収確率まで調節せねば
ならない。例えば、光学的に薄い状態においては、状態
Aから状態Bへ変換される分子の割合fAは、次の数1
により、古典的な2つの状態モデルにおいて与えられる
[Example] Next, an example of the present invention will be described. The write and erase wavelengths correspond to the optical absorption of the two photochromic states used. If one of these two states is used as readout light, that light will be absorbed and cause a change to the other state. However, if both write and erase light are applied to read the contents of a storage element, at appropriate relative intensities there is no overall change. The intensities of the two illuminating lights must be adjusted to the relative absorption probabilities of the two states at the wavelength of the incident light. For example, in an optically thin state, the proportion fA of molecules converted from state A to state B is given by the following equation 1
is given in the classical two-state model.

【0007】[0007]

【数1】 この数1は、fAの小さい値に対する近似において、[Math 1] In approximation to a small value of fA, this number 1 is


数2】fA=2.303φAεAIA103になる。こ
こに、εAは状態Aにおける波長λAの光の吸収係数、
φAは状態Bの形成の量子収量、IAは波長λAにおけ
る入射光の強さである。状態AからBへ変化する分子の
絶対数は、状態Aにおける分子の初めの数nAにfAを
乗じたものに等しい。読出し操作により全体としての変
化がないとすると、分子数nAfAは波長がλBである
光による逆変換を行う分子Bの数nBfBに等しくなけ
ればならない。いいかえると、書込み光の強さと読出し
光の強さの比は、次の数3で与えられる第1の近似にな
らなければならない。
[
Equation 2] fA=2.303φAεAIA103. Here, εA is the absorption coefficient of light with wavelength λA in state A,
φA is the quantum yield of the formation of state B, and IA is the intensity of the incident light at wavelength λA. The absolute number of molecules changing from state A to B is equal to the initial number of molecules in state A, nA, multiplied by fA. Assuming that there is no overall change due to the readout operation, the number of molecules nAfA must be equal to the number nBfB of molecules B that undergo inverse conversion by light with wavelength λB. In other words, the ratio of the write light intensity to the read light intensity must be a first approximation given by Equation 3 below.

【数3】  ここに、εBは状態Bにおける波長λBの光に対する
吸収係数、φBは状態Aの形成の量子収量、IBは波長
がλBである入射光の強さ、nBは波長がλBの光を照
射する前の状態Bにおける分子の数である。
[Equation 3] Here, εB is the absorption coefficient for light with wavelength λB in state B, φB is the quantum yield of formation of state A, IB is the intensity of the incident light with wavelength λB, and nB is the light with wavelength λB is the number of molecules in state B before irradiation.

【0008】数2から、重要なことは読出し操作のため
に用いられる光の相対的な強さであって、その光の絶対
的な強さではないことがわかる。もちろん、その光が多
光子事象のような他の望ましくない光化学反応を引き起
こさないように、光の強さを妥当な値に保たねばならな
い。いずれの場合にも、この読出し方式によれば、読出
し光の強さの範囲をはるかに広くでき、したがって、感
度の低い検出器を使用できる。
From equation 2, it can be seen that what is important is the relative intensity of the light used for the read operation, not the absolute intensity of that light. Of course, the light intensity must be kept at a reasonable value so that the light does not cause other undesirable photochemical reactions such as multiphoton events. In either case, this readout scheme allows for a much wider range of readout light intensities and thus allows the use of less sensitive detectors.

【0009】[0009]

【発明の効果】以上説明した本発明の光読出し方式は、
フォトクロミック物質を用いる光学的デ−タ記憶のため
に非常に有用であり、従来の光学的デ−タ記憶方法の問
題の多くを解消するものである。
[Effects of the Invention] The optical readout method of the present invention explained above is as follows:
It is very useful for optical data storage using photochromic materials and overcomes many of the problems of conventional optical data storage methods.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  書込み光を照射することによって情報
を書込み、消去光を照射することによって情報を消去す
るフォトクロミックデ―タ記憶用の光読出し方式におい
て、情報を読出す読出し光は、書込み光の波長と消去光
の波長が所定の強度比で混合したものを用いることを特
徴とする光読出し方式。
Claim 1: In an optical readout method for photochromic data storage in which information is written by irradiating writing light and information is erased by irradiating erasing light, the readout light for reading information is An optical readout method characterized by using a mixture of the wavelength and the wavelength of erasing light at a predetermined intensity ratio.
JP41292590A 1990-12-25 1990-12-25 Optical read-out system Pending JPH04222927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41292590A JPH04222927A (en) 1990-12-25 1990-12-25 Optical read-out system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41292590A JPH04222927A (en) 1990-12-25 1990-12-25 Optical read-out system

Publications (1)

Publication Number Publication Date
JPH04222927A true JPH04222927A (en) 1992-08-12

Family

ID=18521665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41292590A Pending JPH04222927A (en) 1990-12-25 1990-12-25 Optical read-out system

Country Status (1)

Country Link
JP (1) JPH04222927A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232024A (en) * 1988-07-18 1990-02-01 Kazuo Sakashita Healthy nutriment containing gynostemma pentaphyllum makino and houttuynia cordata thunb. of folk medicinal herb as material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232024A (en) * 1988-07-18 1990-02-01 Kazuo Sakashita Healthy nutriment containing gynostemma pentaphyllum makino and houttuynia cordata thunb. of folk medicinal herb as material

Similar Documents

Publication Publication Date Title
US4101976A (en) Frequency selective optical data storage system
US5470690A (en) Optical information storage on a bacteriorhodopsin - containing film
US5325324A (en) Three-dimensional optical memory
US5268862A (en) Three-dimensional optical memory
US6278679B1 (en) Supra-density optical photochromic rewrite data access system
US6432610B1 (en) Dye precursor molecules chemically reactive with the light-altered form of light-sensitive molecules to form stable fluorescent dye, particularly for optical memories including two-photon three-dimensional optical memories
Guenther et al. Intensity dependence and white-light gating of two-color photorefractive gratings in LiNbO 3
RU2000100332A (en) OPTICAL LOGIC ELEMENT AND METHODS OF ITS APPROPRIATE MANUFACTURE AND OPTICAL ADDRESSING, AND ALSO ITS USE IN THE OPTICAL LOGIC DEVICE
US6608774B1 (en) Two-photon four-dimensional optical memory
KR920006312B1 (en) Optical recording medium and the method of recording, reading and erasing information using it
US4103346A (en) Non-destructive readout scheme for holographic storage system
Lee et al. Quasinondestructive holographic recording in photochromic LiNbO 3
Liu et al. Nonvolatile holograms in LiNbO 3: Fe: Cu by use of the bleaching effect
US5759447A (en) Erasable optical memory and method
US20080213625A1 (en) Optical Data Storage and Retrieval Based on Fluorescent and Photochromic Components
Partovi et al. Volume holographic storage in hydrogen treated germano‐silicate glass
Wilson Applications of photochromic polymer films
Dvornikov et al. Photochromism: non-linear picosecond kinetics and 3D computer memory
US5061582A (en) Optical data storage
CA2048721A1 (en) Method for recording and reproducing information
JPH04222927A (en) Optical read-out system
US20030073031A1 (en) Dye precursor molecules chemically reactive with the light-altered form of light-sensitive molecules to form stable fluorescent dye, particularly for optical memories including two-photon three-dimensional optical memories
Vanhaudenarde et al. Refractive-index changes during photodarkening in semiconductor-doped glasses
US4789965A (en) Methods and compositions for recording optical information employing molecular pseudorotation
GB2180360A (en) Optical resonant assembly