JPH04222479A - Method of getting power with permanent magnet - Google Patents

Method of getting power with permanent magnet

Info

Publication number
JPH04222479A
JPH04222479A JP41806990A JP41806990A JPH04222479A JP H04222479 A JPH04222479 A JP H04222479A JP 41806990 A JP41806990 A JP 41806990A JP 41806990 A JP41806990 A JP 41806990A JP H04222479 A JPH04222479 A JP H04222479A
Authority
JP
Japan
Prior art keywords
magnet
magnets
driving
force
magnetic poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41806990A
Other languages
Japanese (ja)
Inventor
Toshiaki Nomura
野村 聰明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP41806990A priority Critical patent/JPH04222479A/en
Publication of JPH04222479A publication Critical patent/JPH04222479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Mechanical Conveyors (AREA)

Abstract

PURPOSE:To get a power source with a permanent magnet by making use of the action that the repelling and attracting forces of each magnet become strong when the corner or its vicinity of the rear end of the pipe-shaped magnet and the end of a rectangular magnet come close to each other. CONSTITUTION:The plane of a magnet 1 is of a pike shape, and a magnet 2 is of a rectangular shape, and both its ends are inclined. The pike-shaped magnet 1 is placed in the middle, and rectangular magnets 2 are fixed on both ends. It is so arranged that it can rotate or shift, with the interval between the magnets 1 and 2 between, for example, 2m/m and 3m/m at the clossest approach point. At this time, the action that the repelling and attracting forces of three magnets 1 and 2 become strong when the corner or its vicinity of the rear end of the magnet 1 and the end of the magnet 2 come close to each other is made use of. Moreover, by arranging the magnets 1 and 2 in both forms in fixed rows and driving rows and making use of magnetism increasing phenomena and magnetism phenomena for multiparallel arrangement, the driving force is elevated further, and it is made use of as a power device. Hereby, clean energy can be taken out constantly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕本発明は、永久磁石を組合わせた
装置を動力源として利用するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention utilizes a device combined with permanent magnets as a power source.

〔従来の技術〕永久磁石の利用に関して、動力源として
本格的に実用化されたものは無い様に思われる。
[Prior Art] Regarding the use of permanent magnets, it seems that no permanent magnets have been put into practical use as a power source.

〔発明が解決しょうとする課題〕永久磁石を利用して動
力源を得るには、磁石が出して居る磁力線相互の反撥力
、吸着力を利用する事にあるが、本発明は磁石の異った
形態による相互の関係で動力源を見い出して、駆動方法
を明らかにしたものである。
[Problem to be solved by the invention] In order to obtain a power source using a permanent magnet, the repulsive force and attractive force between the magnetic lines of force emitted by the magnets are used. The power source was discovered based on the mutual relationship between the two forms, and the driving method was clarified.

〔課題を解決する為の手段〕磁石の基本的な形態と動力
源の関係を説明すると、第8図の磁石は総て高さが同じ
く、(10)(11)(12)は同体積で異形態の磁石
であり(10)の平面は正三角形、(11)の傾斜角(
16)は30゜磁石(13)は(10)の2倍、磁石(
14)は、(10)の3倍の体積で、以上5種の磁石を
反撥型の駆動方法に付き計量するものとする、第9図は
両側の磁石を固定、中央の磁石は移動出来る様になって
居り、両側の磁石とは最接近間隔を2m/m〜3m/m
の間として、手前の位置より錘(20)で引張って駆動
方向(3)に移動さすもので、両側の磁石間を通過する
に要する値を抵抗力とする、第10図は逆向に錘(20
)で引張り、通過に要する値を推進力とする、第11図
は装置を示し、磁石以外は常磁性体及び磁気不感材を使
用、第12図、第13図、第14図、第15図、第16
図は各磁石と磁極の組合せで、第12図に於ける推進力
の計量値を100として、それに対する各々の計量比の
値を次表に示す。
[Means for solving the problem] To explain the relationship between the basic form of magnets and the power source, all the magnets in Figure 8 have the same height, and (10), (11), and (12) have the same volume. It is a magnet with an unusual shape, the plane of (10) is an equilateral triangle, and the inclination angle of (11) (
16) is 30°, magnet (13) is twice that of (10), and magnet (
14) has a volume three times that of (10), and the above five types of magnets are weighed using a repulsion type driving method. In Figure 9, the magnets on both sides are fixed, and the center magnet is movable. The closest distance between the magnets on both sides is 2m/m to 3m/m.
The device is moved in the driving direction (3) by pulling it with a weight (20) from the front position, and the resistance force is the value required to pass between the magnets on both sides. 20
), and the value required for passage is used as the propulsion force. Figure 11 shows the device, and except for the magnet, paramagnetic materials and magnetically insensitive materials are used. Figures 12, 13, 14, and 15. , 16th
The diagram shows the combination of each magnet and magnetic pole, and the metric value of the propulsive force in FIG. 12 is set as 100, and the values of each metric ratio are shown in the following table.

第16図の組合わせに於て、磁石(11)を第17図の
装置で、両側の固定台(6)に前後の間隔を縦巾と同じ
巾で固定し、磁石(14)を滑車台(5)に固定、第1
8図の点線内(22)に示す位置より手放すと磁石(1
4)は磁石(11)との反撥力で、滑車台(5)諸共、
駆動方向へ加速を得ながら進んで行く、吸着型の配列の
場合は、第19図に示す点線内(23)の位置より磁石
(14)を手放すと、滑車台(5)諸共、駆動方向に進
んで行く、これ等の現象を使用磁石(11)及び(14
)の形態による相互間の性質等について説明すると、第
20図は磁石(11)及び磁石(14)の磁力線の模様
を示し、中央付近のライン(26)及び(25)の各々
の側面は両極に於ける着磁の中心である、第21図は磁
石(14)の長さを10分割した目盛りを左右に取り、
磁石(11)と(14)の位置関係による推進力及び抵
抗力の値を反撥型に付きグラフに示したもので、磁石(
14)の着磁ライン(25)より後端寄りの所にあって
、両側の磁石(11)に対して推進力も抵抗力も示さな
い0地点を静止ライン(30)とし、このラインを境に
左右の0地点に対し、矢線(27)の方向に推進力を、
矢線(28)の方向に抵抗力を表す、推進力の最高値(
31)の箇所は、表の第16図の行に於ける推進力の値
81を示し、抵抗力の最高値(32)は同様に抵抗力の
値39を示す、なほ吸着型の場合は、駆動方向の矢線(
3)が反対方向に、グラフは静止ライン(30)を境に
して左右逆方向になり、値は反撥型と全く同じである。
In the combination shown in Figure 16, the magnet (11) is fixed to the fixed bases (6) on both sides with the same width as the vertical width, and the magnet (14) is attached to the pulley base using the device shown in Figure 17. Fixed to (5), first
When you let go of the position shown within the dotted line (22) in Figure 8, the magnet (1
4) is the repulsive force with the magnet (11), and the pulley stand (5)
In the case of an adsorption type arrangement that advances in the driving direction while gaining acceleration, when the magnet (14) is released from the position within the dotted line (23) shown in Fig. 19, the pulley stands (5) will move in the driving direction. Proceeding, these phenomena are used with magnets (11) and (14).
) Figure 20 shows the pattern of magnetic lines of force of magnet (11) and magnet (14), and the sides of each line (26) and (25) near the center are polar. The center of magnetization in Figure 21 is the center of magnetization, with scales dividing the length of the magnet (14) into 10 on the left and right.
This is a graph showing the values of propulsive force and resistance force depending on the positional relationship of magnets (11) and (14) for the repulsive type.
The zero point located near the rear end of the magnetized line (25) of 14) and exhibiting neither propulsive force nor resistance to the magnets (11) on both sides is defined as the static line (30), and the left and right lines are separated from this line. Propulsive force is applied in the direction of arrow (27) with respect to the zero point of
The maximum value of the propulsive force (
31) indicates the propulsive force value of 81 in the row of Figure 16 of the table, and the maximum resistance value (32) similarly indicates the resistance value of 39. In the case of the Naho adsorption type, Driving direction arrow (
3) is in the opposite direction, the graph is left and right opposite with the stationary line (30) as the border, and the values are exactly the same as the rebound type.

第18図及び第19図に示す配列で磁石(14)が受け
る推進力の総和及び抵抗力の総和に於いて、たえず推進
力が上廻り、駆動力を発生させるもので、本発明が解明
できた尤も基本的な現象である。
In the arrangement shown in Figs. 18 and 19, the propulsive force constantly exceeds the sum of the propulsive forces and the sum of the resistive forces that the magnet (14) receives, and the driving force is generated. However, it is a very basic phenomenon.

〔作用〕[Effect]

上記は磁石の基本形態の組合わせの中で駆動力が得られ
た現象を述べたものであり、先ず動力源として使用でき
る形態に修整し、その標準的な形態の物に付き、作用の
説明をする。磁石(14)は回転駆動に対するトルク効
率を高める為に長さを縮め、且つ推進力増加の為に、後
端を大きくして、第22図に示す形態に変更す、磁石(
11)は全く容量不足であり、第23図に示す如く磁石
(1)の着磁中心ライン(25)より後端に至る体積と
同容量として、形態と共に磁石(2)に変更する、又傾
斜角(16)及び縦巾(17)は磁石(1)の形態によ
り駆動力が最適になる様に選定する、選択された磁石(
1).(2)の静止ライン(30)は、第24図に示す
磁石(1)(2)及び磁極の吸着型配列に於て、静止状
態に有る磁石の並びの共通ラインを引出す事により定め
る事が出来る、第25図に示す標準配列で、磁石(1)
及び(2)の縦の配列間隔は、接近し過ぎると反撥力に
よる減磁が伴うので、駆動力に影響を及ぼさない程度に
間隔を保つ又磁石(1)及び(2)から出る余計な方向
の磁力線を短絡させる為、第26図に示す如く磁石(1
)(2)にヨーク(29)を施すと抵抗力を減らす相乗
効果が得られる。標準形態の磁石についての作用を述べ
ると、第27図は反撥型で磁石(2)が左右に固定され
磁石(1)が矢線(3)方向に単体で駆動する時のグラ
フで、上部は推進力(35)、中は抵抗力(36)下部
が正味の駆動力(37)となり、推進力の30%以上の
駆動力が平均して得られる、之等の相互関係による磁石
(1).(2)と磁極の配列は、第4図、第5図、第6
図、第7図に示す如く、動力源として使用出来るもので
有る。
The above describes the phenomenon in which driving force is obtained in a combination of the basic forms of magnets. First, we modify the form to be usable as a power source, and then explain the action of the standard form of the magnet. do. The magnet (14) is shortened in length in order to increase the torque efficiency for rotational drive, and the rear end is enlarged in order to increase the propulsive force.
11) is completely lacking in capacity, and as shown in Fig. 23, it is changed to magnet (2) with the same capacity as the volume from the magnetization center line (25) to the rear end of magnet (1), and the shape is changed to magnet (2). The corner (16) and the length (17) are selected so that the driving force is optimized depending on the shape of the magnet (1).
1). The stationary line (30) in (2) can be determined by drawing out the common line of the array of magnets in the stationary state in the attraction type arrangement of magnets (1), (2) and magnetic poles shown in Fig. 24. In the standard arrangement shown in Figure 25, the magnet (1)
And (2), the vertical spacing between magnets (1) and (2) is such that if they are too close together, demagnetization will occur due to repulsive force. In order to short-circuit the lines of magnetic force, a magnet (1
) Adding a yoke (29) to (2) provides a synergistic effect of reducing resistance. To describe the action of a standard type magnet, Figure 27 is a graph when the magnet (2) is fixed on the left and right sides of the repulsion type and the magnet (1) is driven singly in the direction of the arrow (3). Propulsive force (35), resistance force (36) in the middle, net driving force (37) in the lower part, and a driving force of 30% or more of the propulsive force can be obtained on average. .. (2) and the arrangement of magnetic poles are shown in Figures 4, 5, and 6.
As shown in Fig. 7, it can be used as a power source.

〔  実施例  〕〔 Example 〕

今まで述べた例は、磁石(1)及び(2)を縦3列に配
列したもので、之を多並列に使用した方が経済効率が良
い事と、それに伴う磁石相互間の増磁、減磁現象を、本
発明で使用する磁石(1).(2)の形態による特性を
活かして駆動力を更に増加させる事が出来る、第28図
に示す磁石と磁極の配列で、左は反撥型で磁石(1).
(2)の並びが着磁ライン(25)付近から後端の間に
ある場合、磁極の(38)及び(39)に減磁現象が起
り、右の吸着型では磁極の(40)及び(41)に増磁
現象が起る、その範囲は第29図に示す如く磁石(1)
の中央付近(42)より後端に至る間で、平均して13
%程度の増減作用がある、又中央付近(42)より磁石
の先端側は極端に作用が無くなり通常の状態になる、之
は両側磁石との間隔が開くのと磁石(1)自体の磁力線
の容量が少くなる相乗作用によるものと思われる、この
様な現象により磁石(1)の容量を変えずに形態の一部
を第30図の如く変えて多並列用として使用する、第4
図に示した反撥型の配列で、磁石(1)の並びを第31
図の如く交互に配列して抵抗力の減磁による駆動力の上
昇を計り、又第5図に示した吸着型では、磁石(1)の
横の並びを第32図の如く一直線に配列して推進力の相
互増磁作用のみに集中させて駆動力の上昇を得る。〔発
明の効果〕恒常的に、クリーンエネルギーとしての利用
効果が大で有る。
The example described so far is one in which magnets (1) and (2) are arranged in three vertical rows, and it is more economical to use them in parallel, and the magnets increase the magnetism between each other as a result. The demagnetization phenomenon is observed in the magnet (1) used in the present invention. The arrangement of magnets and magnetic poles shown in Fig. 28 can further increase the driving force by taking advantage of the characteristics of the form (2).
When the arrangement (2) is between the vicinity of the magnetization line (25) and the rear end, demagnetization occurs at the magnetic poles (38) and (39), and in the attracting type on the right, the magnetic poles (40) and ( 41) The magnetization phenomenon occurs in the magnet (1) as shown in Figure 29.
13 on average from near the center (42) to the rear end of the
There is an increase/decrease effect on the order of %, and the effect on the tip side of the magnet is extremely reduced from near the center (42), returning to the normal state.This is due to the increased distance between the magnets on both sides and the magnetic field lines of the magnet (1) itself. Due to this phenomenon, which is thought to be due to a synergistic effect that reduces the capacitance, the fourth magnet (1) is used for multi-parallel use by changing part of its shape as shown in Figure 30 without changing the capacitance of the magnet (1).
In the repulsion type arrangement shown in the figure, the magnet (1) is placed in the 31st row.
The magnets (1) are arranged alternately as shown in the figure to increase the driving force due to demagnetization of the resistive force, and in the adsorption type shown in Fig. 5, the horizontal rows of magnets (1) are arranged in a straight line as shown in Fig. 32. The driving force is increased by concentrating only on the mutual magnetizing effect of the propulsive forces. [Effects of the invention] The use of the invention as a constant source of clean energy is highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は使用する磁石の標準的な形態を示し、第2図は
その斜視図で有る、第3図は基本的な回転駆動装置を示
す。第4図以降は、磁石の配列と駆動現象を順次説明す
る図で有る。 1  ……  矛先型磁石 2  ……  横長型磁石 3  ……  駆動方向     25…着磁中心ライン 30  ……  静止ライン 第33図は多並列駆動装置を示す。
FIG. 1 shows the standard form of the magnet used, FIG. 2 is a perspective view thereof, and FIG. 3 shows the basic rotary drive device. FIG. 4 and subsequent figures are diagrams sequentially explaining the arrangement of magnets and the driving phenomenon. 1... Spearhead magnet 2... Oblong magnet 3... Driving direction 25... Magnetization center line 30... Stationary line FIG. 33 shows a multi-parallel drive device.

Claims (1)

【特許請求の範囲】[Claims] 1.平面が矛先の形をした磁石(1)と、横長形で両端
が傾斜のある磁石(2)に於て、磁石(2)が両側に固
定され、磁石(1)が真中に位置して両側の磁石(2)
との間隔を、再接近点で2m/m〜3m/mの間として
回転又は直進移動出来る様に装置し第4図の如き磁石(
1).(2)及び磁極の配列をして、磁石(1)を矢線
(3)の方向に駆動させる方法2.請求項1記載の磁石
(1)及び(2)に於て、請求項1記載の如く装置し、
第5図の如き磁石(1).(2)及び磁極の配列をして
、磁石(1)を矢線(3)の方向に駆動させる方法3.
請求項1記載の磁石(1)及び(2)に於いて、磁石(
1)が両側に固定され、磁石(2)が真中に位置して両
側の磁石(1)との間隔を、最接近点で2m/m〜3m
/mの間として回転又は直進移動出来る様に装置し、第
6図の如く磁石(1)(2)及び磁極の配列をして、磁
石(2)を矢線(3)の方向に駆動させる方法4.請求
項1記載の磁石(1)及び(2)に於て、請求項3記載
の如く装置し、第7図の如く磁石(1)(2)及び磁極
の配列をして、磁石(2)を矢線(3)の方向に駆動さ
せる方法5.請求項1記載の駆動方法で、多並列に配列
する時、第30図の如き形態の磁石(1)及び磁石(2
)と磁極の配列をして駆動させる方法6.請求頂2記載
の駆動方法で、多並列に配列する時、第31図の如き形
態の磁石(1)及び磁石(2)と磁極の配列をして駆動
させる方法
1. A magnet (1) whose flat surface is in the shape of a tip, and a magnet (2) which is oblong and has sloped ends, the magnets (2) are fixed on both sides, and the magnet (1) is located in the middle, magnet (2)
A magnet (as shown in Fig. 4) is installed so that it can be rotated or moved in a straight line with an interval of 2 m/m to 3 m/m at the re-approach point.
1). (2) and a method of arranging the magnetic poles and driving the magnet (1) in the direction of the arrow (3) 2. In the magnets (1) and (2) according to claim 1, an apparatus as described in claim 1 is provided,
Magnet (1) as shown in Figure 5. (2) and a method of arranging the magnetic poles and driving the magnet (1) in the direction of the arrow (3) 3.
In the magnets (1) and (2) according to claim 1, the magnet (
1) is fixed on both sides, magnet (2) is located in the middle, and the distance between the magnets (1) on both sides is 2 m/m to 3 m at the closest point.
The magnet (1), (2) and magnetic poles are arranged as shown in Figure 6, and the magnet (2) is driven in the direction of the arrow (3). Method 4. In the magnets (1) and (2) according to claim 1, the magnets (1) and (2) are arranged as described in claim 3, and the magnets (1) and (2) and magnetic poles are arranged as shown in FIG. Method of driving in the direction of arrow (3) 5. In the driving method according to claim 1, when the magnets (1) and (2) are arranged in parallel, the magnets (1) and (2) are arranged in parallel.
) and a method of driving by arranging magnetic poles 6. According to the driving method according to claim 2, when arranging multiple magnets in parallel, a method of arranging magnets (1) and magnets (2) and magnetic poles as shown in FIG. 31 and driving them.
JP41806990A 1990-12-20 1990-12-20 Method of getting power with permanent magnet Pending JPH04222479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41806990A JPH04222479A (en) 1990-12-20 1990-12-20 Method of getting power with permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41806990A JPH04222479A (en) 1990-12-20 1990-12-20 Method of getting power with permanent magnet

Publications (1)

Publication Number Publication Date
JPH04222479A true JPH04222479A (en) 1992-08-12

Family

ID=18526022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41806990A Pending JPH04222479A (en) 1990-12-20 1990-12-20 Method of getting power with permanent magnet

Country Status (1)

Country Link
JP (1) JPH04222479A (en)

Similar Documents

Publication Publication Date Title
JP4619594B2 (en) Friction-free transport device and method
JP4289677B2 (en) Mobile toy using magnetic force
PL108574B1 (en) Magnetic chuck with permanent and electro-permanent magnets
CN113192718B (en) Method and apparatus for generating a magnetic field
US7235909B2 (en) Electromagnetic motor/generator
JPH04222479A (en) Method of getting power with permanent magnet
CN204650858U (en) Multifunctional multistage magnetic force accelerator
US4542361A (en) Permanent magnet field diverted to do useful work
US4404766A (en) Magnetic toy
US1859764A (en) Magnetic device
DE2945269A1 (en) Hardware item positioning unit - has permanent magnet layer positioned on drive part and uses stator with crossing windings
WO2017193352A1 (en) Magnetic gap spanned electric generator
CN208548821U (en) A kind of linear generating set
CN211044749U (en) Demonstration device for left-hand rule and right-hand rule
CN217467861U (en) Magnet demonstration device
US2700831A (en) Magnetic force demonstration device
WO2024042335A1 (en) Repelling magnetic instrument
CN1016624B (en) Selected needle device of double spiratron for crochet
JP2649954B2 (en) Self-propelled device for traveling body
EP0162164A2 (en) Magnet structure
TW218355B (en) Impulse type magnetically floating rail
EP0550709A1 (en) Magnetically driven motor
JPH078640A (en) Block or brick for toy
SU1557584A1 (en) Indicator
CN113300559A (en) Swing memory motor and integrated motor thereof