JPH04222427A - Battery backup circuit - Google Patents

Battery backup circuit

Info

Publication number
JPH04222427A
JPH04222427A JP2413467A JP41346790A JPH04222427A JP H04222427 A JPH04222427 A JP H04222427A JP 2413467 A JP2413467 A JP 2413467A JP 41346790 A JP41346790 A JP 41346790A JP H04222427 A JPH04222427 A JP H04222427A
Authority
JP
Japan
Prior art keywords
battery
circuit
voltage
power supply
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2413467A
Other languages
Japanese (ja)
Inventor
Hideo Yoshida
秀男 吉田
Tsutomu Sakamoto
勉 坂本
Koichi Kobayashi
剛一 小林
Naoshige Ejiri
江尻 直繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwaki Electronics Co Ltd
Original Assignee
Iwaki Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwaki Electronics Co Ltd filed Critical Iwaki Electronics Co Ltd
Priority to JP2413467A priority Critical patent/JPH04222427A/en
Publication of JPH04222427A publication Critical patent/JPH04222427A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Power Sources (AREA)

Abstract

PURPOSE:To hold the state of a CPU or the data in a memory as long as possible by prolonging the duration of effective voltage region for a load circuit when a battery is removed or consumed in a battery drive appliance. CONSTITUTION:A power supply circuit 14 having output voltage, which can be switched between high and low levels, is connected with a battery 10 and a parallel circuit of a high resistor 18 and a switching element 16 is connected in series with an electric double layer capacitor 20, and the series circuit is connected in parallel with the battery on the output side of the power supply circuit. Prior to exchange of the battery, the power supply circuit is switched to high voltage output and the switching element is conducted thus charging the electric double layer capacitor quickly and when the battery is removed, power is fed through a rectifying diode 22 to a load circuit.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電池作動型の機器にお
ける電池バックアップ回路に関するものである。更に詳
しく述べると、電池交換前に高電圧を印加して電気二重
層コンデンサなどの蓄電体に急速充電し、それによって
電池取外し時における負荷回路への有効電圧域の持続時
間を長くする電池バックアップ回路に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery backup circuit for battery operated equipment. More specifically, this is a battery backup circuit that applies high voltage to quickly charge a power storage device such as an electric double layer capacitor before battery replacement, thereby extending the duration of the effective voltage range to the load circuit when the battery is removed. It is related to.

【0002】0002

【従来の技術】ノート型あるいはパームトップ型のコン
ピュータ、小型ワードプロセッサ等の例に見られるよう
に、電子機器は益々小型化の傾向にある。それに伴って
消費電力もマイクロパワー化し、電池で長時間作動する
機器も市場に出回っている。このような電池を使用する
機器では、電池交換直前におけるCPUの状態やメモリ
のデータ保持が問題となる。
2. Description of the Related Art Electronic devices are becoming increasingly smaller, as seen in notebook or palmtop computers, small word processors, and the like. Along with this trend, power consumption has also become micro-power, and devices that can operate for long periods on batteries are now on the market. In devices using such batteries, problems arise with the state of the CPU and data retention in the memory immediately before battery replacement.

【0003】電池交換時のバックアップには二次電池や
電気二重層コンデンサが用いられている。即ち、電池と
並列に二次電池や電気二重層コンデンサを接続し、通常
時に電池からの電流により充電し、電池が消耗した時あ
るいは電池取外し時には二次電池や電気二重層コンデン
サから負荷回路へデータ等が消滅しない程度の電力を供
給する方式である。図3に一般的な電池の放電曲線を示
す。電池の端子電圧を電圧検出回路で監視し、それが電
池交換電圧下限レベルまで低下すると警報信号を生じ電
池交換を促す。従って上記の方式の回路で電池交換を必
要とする直前の二次電池又は電気二重層コンデンサの充
電電圧は、上記電池交換電圧下限レベルと同等値である
[0003] Secondary batteries and electric double layer capacitors are used for backup when replacing batteries. In other words, a secondary battery or electric double layer capacitor is connected in parallel with the battery, and the current from the battery charges the battery during normal operation.When the battery is exhausted or removed, data is transferred from the secondary battery or electric double layer capacitor to the load circuit. This is a method that supplies enough power to prevent the etc. from disappearing. Figure 3 shows the discharge curve of a typical battery. The terminal voltage of the battery is monitored by a voltage detection circuit, and when it drops to the battery replacement voltage lower limit level, an alarm signal is generated to prompt battery replacement. Therefore, in the circuit of the above system, the charging voltage of the secondary battery or electric double layer capacitor immediately before battery replacement is required is equivalent to the battery replacement voltage lower limit level.

【0004】ところで通常動作時における省電力化に関
連して、電池に出力電圧を高低切換え可能な電源回路を
接続し、ノーマルモードとスリープモード(スタンバイ
モード)に切り換える機器がある。ノート型コンピュー
タなどでは、常時、その機能性能をフル回転しているこ
とは少なく、キー入力待ちなどCPUが有用なプログラ
ムを実行していない時間が大半を占めている。この点に
着目し、機能が殆ど眠っている状態の時には電源電圧を
下げる(スリープモード)。このような省電力機器で、
電池バックアップのために電源回路の出力に電気二重層
コンデンサを設ける構成とすると、電池の端子電圧が電
池交換電圧下限レベルまで低下し警報信号が生じた状態
はスリープモード(低電圧動作)になるため電池交換直
前の電気二重層コンデンサの充電電圧は低い。
By the way, in connection with power saving during normal operation, there is a device in which a power supply circuit capable of switching high and low output voltage is connected to a battery to switch between a normal mode and a sleep mode (standby mode). Notebook computers and the like do not operate at full capacity all the time, and most of the time is spent when the CPU is not executing useful programs, such as when waiting for key input. Focusing on this point, the power supply voltage is lowered when most of the functions are asleep (sleep mode). With such power saving devices,
If an electric double layer capacitor is installed at the output of the power supply circuit for battery backup, the system will enter sleep mode (low voltage operation) when the battery terminal voltage drops to the battery replacement voltage lower limit level and an alarm signal is generated. The charging voltage of an electric double layer capacitor immediately before battery replacement is low.

【0005】[0005]

【発明が解決しようとする課題】上述したように従来の
回路では二次電池又は電気二重層コンデンサの充電電圧
は電池交換電圧下限レベルと同等値であり、この状態か
ら放電を開始するため、容量に限りがある蓄電体による
有効な電圧域の持続時間は短く、ユーザーに不安感を持
たせることになる。
[Problems to be Solved by the Invention] As mentioned above, in conventional circuits, the charging voltage of a secondary battery or electric double layer capacitor is equivalent to the lower limit level of battery replacement voltage, and since discharging starts from this state, the capacity The duration of the effective voltage range due to the limited power storage device is short, which causes users to feel uneasy.

【0006】本発明の目的は、上記のような従来技術の
欠点を解消し、省電力化のために出力電圧の高低切換え
が可能で、且つ電池取外し時における負荷回路への有効
電圧域の持続時間を長くできる電池バックアップ回路を
提供することである。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, to make it possible to switch high and low output voltages for power saving, and to maintain the effective voltage range for the load circuit when the battery is removed. It is an object of the present invention to provide a battery backup circuit that can extend the operating time.

【0007】[0007]

【課題を解決するための手段】本発明は基本的には、電
池と並列に蓄電体を接続し、電池取外し時に該蓄電体か
ら負荷回路に電力を供給する方式の電池バックアップ回
路である。前記の目的を達成するため本発明では、電池
に出力電圧を高低切換え可能な電源回路を接続し、高抵
抗とスイッチ素子との並列回路を蓄電体と直列に接続し
て前記電源回路の出力側で電池と並列に配置する。そし
て電池交換前に電源回路を高電圧出力に切り換えると共
にスイッチ素子を導通するよう制御し、電池取外し時に
蓄電体から整流ダイオードを介して負荷回路に電力を供
給するように構成している。
[Means for Solving the Problems] The present invention is basically a battery backup circuit of a type in which a power storage body is connected in parallel with a battery and power is supplied from the power storage body to a load circuit when the battery is removed. In order to achieve the above object, the present invention connects a power supply circuit that can switch the output voltage high or low to the battery, and connects a parallel circuit of a high resistance and a switch element in series with the power storage body to connect the battery to the output side of the power supply circuit. Place it in parallel with the battery. Then, before battery replacement, the power supply circuit is switched to high voltage output and the switch element is controlled to be conductive, and when the battery is removed, power is supplied from the power storage body to the load circuit via the rectifier diode.

【0008】蓄電体としては電気二重層コンデンサが好
ましい。また電池と並列に電圧検出回路を設けて電池端
子電圧が電池交換電圧下限レベルまで低下した時に生じ
る警報信号と、電池ケースの蓋の開閉に連動するスイッ
チを設けてその蓋開放信号とにより、前記電源回路及び
スイッチ素子の制御を行う構成が好ましい。
[0008] As the electricity storage body, an electric double layer capacitor is preferable. In addition, a voltage detection circuit is provided in parallel with the battery to generate an alarm signal when the battery terminal voltage drops to the battery replacement voltage lower limit level, and a switch is provided that is linked to the opening/closing of the battery case lid to generate the lid opening signal. A configuration in which a power supply circuit and a switch element are controlled is preferable.

【0009】[0009]

【作用】通常時には、電池出力を電源回路で定電圧化し
て負荷回路に供給する。同時に高抵抗を介して蓄電体に
も充電する。電源回路の出力電圧が高くなると蓄電体の
端子電圧も徐々に高くなるように充電され、出力電圧が
低くなると蓄電体の端子電圧は徐々に低くなり、その低
い電圧で充電される。つまり蓄電体の端子電圧は電源回
路の出力電圧に応じてゆっくりと上下に変動する。
[Operation] Under normal conditions, the battery output is made into a constant voltage by the power supply circuit and supplied to the load circuit. At the same time, the power storage device is also charged via the high resistance. When the output voltage of the power supply circuit increases, the terminal voltage of the power storage body is charged so as to gradually increase, and when the output voltage decreases, the terminal voltage of the power storage body gradually decreases, and the power storage body is charged at that low voltage. In other words, the terminal voltage of the power storage body slowly fluctuates up and down depending on the output voltage of the power supply circuit.

【0010】電池交換時あるいは電池出力が電池交換電
圧下限レベルまで低下した時には、動作状態の如何にか
かわらず、電源回路の出力電圧が高くなる。そしてスイ
ッチ素子が導通する。これによって蓄電体は高電圧で急
速充電される。その後、電池の消耗又は電池の取外しに
よって電源回路の出力は無くなり、蓄電体から負荷回路
への放電が始まる。この給電によってデータ等が保存さ
れる。蓄電体は一旦高電圧で急速充電されるため、電池
取外し時又は電池消耗時における負荷回路への有効電圧
域の持続時間が長くなる。
[0010] When the battery is replaced or when the battery output drops to the battery replacement voltage lower limit level, the output voltage of the power supply circuit increases regardless of the operating state. Then, the switch element becomes conductive. As a result, the power storage body is rapidly charged at a high voltage. Thereafter, the output of the power supply circuit disappears due to battery consumption or removal of the battery, and discharge from the power storage body to the load circuit begins. Data etc. are saved by this power supply. Since the power storage body is once rapidly charged at a high voltage, the duration of the effective voltage range to the load circuit becomes longer when the battery is removed or when the battery is exhausted.

【0011】[0011]

【実施例】図1は本発明に係る電池バックアップ回路の
一実施例を示す回路図である。この回路は電池10と、
それに並列に接続した電圧検出回路12と、電池10の
出力を定電圧制御する電源回路14を備えている。電圧
検出回路12は、電池10の端子電圧を監視して電池交
換電圧下限レベル(使用電圧下限レベル)まで低下する
と警報信号VDS を出力する。電源回路14は、ノー
マルモードのために昇圧(例えば+5V)したり、キー
入力待ちなどのスリープモード(スタンバイモード)の
ために降圧(例えば+3V)して負荷回路(図示せず)
に動作電圧 VCC1 で給電する回路である。つまり
この電源回路14は出力電圧を高低切換え可能な回路で
ある。その高低切換え制御は電源制御信号PWS で行
う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a circuit diagram showing an embodiment of a battery backup circuit according to the present invention. This circuit includes a battery 10,
It includes a voltage detection circuit 12 connected in parallel thereto, and a power supply circuit 14 that controls the output of the battery 10 at a constant voltage. The voltage detection circuit 12 monitors the terminal voltage of the battery 10 and outputs an alarm signal VDS when the terminal voltage falls to the battery replacement voltage lower limit level (operating voltage lower limit level). The power supply circuit 14 boosts the voltage (for example, +5V) for a normal mode, or steps it down (for example, +3V) for a sleep mode (standby mode) such as waiting for a key input, and supplies it to a load circuit (not shown).
This is a circuit that supplies power with the operating voltage VCC1. In other words, this power supply circuit 14 is a circuit that can switch the output voltage to high or low. The high/low switching control is performed by the power supply control signal PWS.

【0012】本発明では、高抵抗18とスイッチ素子1
6との並列回路を、蓄電体となる電気二重層コンデンサ
20に接続して前記電源回路14の出力側で電池10と
並列に配置する。高抵抗18としては例えば100kΩ
程度の抵抗値のものを用いる。スイッチ素子16はトラ
ンジスタスイッチでよく、スイッチ制御信号SWS で
その導通(オン)−非導通(オフ)を制御する。また電
気二重層コンデンサ20の正極側に整流ダイオード22
のアノードを接続し、カソードを負荷回路に接続して、
電池消耗時又は電池取外し時に負荷回路に保持電圧 V
CC2 を印加する。
In the present invention, the high resistance 18 and the switching element 1
A parallel circuit with 6 is connected to an electric double layer capacitor 20 serving as a power storage body and placed in parallel with the battery 10 on the output side of the power supply circuit 14. For example, the high resistance 18 is 100kΩ.
Use one with a certain resistance value. The switch element 16 may be a transistor switch, and its conduction (on) and non-conduction (off) are controlled by a switch control signal SWS. In addition, a rectifier diode 22 is connected to the positive electrode side of the electric double layer capacitor 20.
Connect the anode of and connect the cathode to the load circuit,
Hold voltage V in the load circuit when the battery is exhausted or when the battery is removed
Apply CC2.

【0013】十分エネルギーが残っている電池10によ
って通常動作を行っている場合は、電源回路14が動作
している。ノーマルモードの場合は高電圧(+5V)を
出力する。キー入力待ちのようなスリープモード(スタ
ンバイモード)の場合は電源制御信号PWS によって
低電圧(+3V)出力に切り換わり、負荷回路での電力
消費を抑える。またこの間、スイッチ素子16は非導通
状態であり、電源回路14の出力は高抵抗18を通して
電気二重層コンデンサ20を充電する。従って電気二重
層コンデンサ20の端子電圧は、電源回路14の出力電
圧に応じて、高電圧出力の場合は徐々に+5Vに近づき
、また低電圧出力に切り換わった場合は徐々に+3Vに
近づくように端子電圧が変化する。つまりこの+5〜3
Vの範囲で動作モードに応じて充放電を繰り返す。
[0013] When normal operation is performed with the battery 10 having sufficient energy remaining, the power supply circuit 14 is in operation. In normal mode, high voltage (+5V) is output. When in sleep mode (standby mode) such as waiting for a key input, the power control signal PWS switches to low voltage (+3V) output to suppress power consumption in the load circuit. Also, during this time, the switch element 16 is in a non-conductive state, and the output of the power supply circuit 14 charges the electric double layer capacitor 20 through the high resistance 18. Therefore, depending on the output voltage of the power supply circuit 14, the terminal voltage of the electric double layer capacitor 20 gradually approaches +5V when outputting a high voltage, and gradually approaches +3V when switching to a low voltage output. Terminal voltage changes. In other words, this +5~3
Charging and discharging are repeated within the V range according to the operating mode.

【0014】電池10が消耗してくると図3に示すよう
に端子電圧が低下する。電池交換電圧下限レベルに達す
ると電圧検出回路12から警報信号VDS が生じ電池
交換を促す。この警報信号VDS によって液晶ディス
プレイの表示が消える。また電源回路14は電源制御信
号PWS によってその出力電圧が強制的に高電圧出力
に切り換わる。そしてスイッチ制御信号SWS によっ
てスイッチ素子16が導通する。すると電気二重層コン
デンサ20はスイッチ素子16を通して電源回路16か
ら高電圧で急速に(数秒程度で)充電される。その動作
を図2に示す。 電気二重層コンデンサ20の端子電圧は、破線で示すよ
うに+3V近傍のレベルから+5V近くまで急上昇する
。やがて電源回路14からの出力は無くなるが、その後
は電気二重層コンデンサ20から負荷回路への給電に自
然に切り換わる。
As the battery 10 becomes exhausted, the terminal voltage decreases as shown in FIG. When the battery replacement voltage lower limit level is reached, an alarm signal VDS is generated from the voltage detection circuit 12 to prompt battery replacement. This alarm signal VDS causes the display on the liquid crystal display to disappear. Further, the output voltage of the power supply circuit 14 is forcibly switched to a high voltage output by the power supply control signal PWS. The switch element 16 is then rendered conductive by the switch control signal SWS. Then, the electric double layer capacitor 20 is rapidly charged (in about a few seconds) with a high voltage from the power supply circuit 16 through the switch element 16. The operation is shown in FIG. The terminal voltage of the electric double layer capacitor 20 rises rapidly from a level near +3V to near +5V, as shown by the broken line. Eventually, the output from the power supply circuit 14 disappears, but after that, the electric double layer capacitor 20 naturally switches to supplying power to the load circuit.

【0015】なおこの動作は電池10の端子電圧が電池
交換電圧下限レベルに達した場合以外でも、電池を交換
する際に自動的に行われるようになっている。電池ケー
スの蓋にはその開閉によってオン−オフする機械式スイ
ッチ(図示せず)を組み込んである。電池交換のため電
池ケースの蓋を開けると、該スイッチはそれを検出して
蓋開放信号を生じる。すると上記と同様、電源制御信号
PWS によって電源回路14の出力電圧が強制的に高
電圧(+5V)出力に切り換わり、次にスイッチ制御信
号SWS によってスイッチ素子16が導通し、電気二
重層コンデンサ20が高電圧で急速充電される。
Note that this operation is automatically performed when replacing the battery even when the terminal voltage of the battery 10 has not reached the battery replacement voltage lower limit level. A mechanical switch (not shown) is built into the battery case lid to turn it on and off by opening and closing the lid. When the battery case lid is opened to replace the battery, the switch detects this and generates a lid open signal. Then, similarly to the above, the output voltage of the power supply circuit 14 is forcibly switched to a high voltage (+5V) output by the power supply control signal PWS, and then the switch element 16 is made conductive by the switch control signal SWS, and the electric double layer capacitor 20 is made conductive. Charges quickly with high voltage.

【0016】電気二重層コンデンサ20に充電された電
荷をQとすると、その電荷量は次式で表される。 Q(クーロン)=C・V          …(1)
ここでCは電気二重層コンデンサの静電容量(ファラッ
ド)Vは電気二重層コンデンサの端子電圧(充電電圧)
から負荷回路が動作を維持できる下限電圧を差し引いた
電位差(ボルト)である。本発明は電荷量をかせぐため
に電圧を高くしている。電気二重層コンデンサから放電
できる時間は次式で表せる。 T(時間)=Q/I              …(
2)ここでIは平均放電電流(アンペア)Qは電気二重
層コンデンサに蓄えられた電荷量であり、上記の(1)
式で表される。以上をまとめると、電気二重層コンデン
サから給電できる時間は T=(C・V)/I              …(
3)となる。
When the charge charged in the electric double layer capacitor 20 is Q, the amount of charge is expressed by the following equation. Q (coulomb) = C・V…(1)
Here, C is the capacitance (farad) of the electric double layer capacitor, and V is the terminal voltage (charging voltage) of the electric double layer capacitor.
This is the potential difference (in volts) obtained by subtracting the lower limit voltage at which the load circuit can maintain operation. In the present invention, the voltage is increased to increase the amount of charge. The time that can be discharged from an electric double layer capacitor can be expressed by the following formula. T (time) = Q/I...(
2) Here, I is the average discharge current (ampere), Q is the amount of charge stored in the electric double layer capacitor, and the above (1)
Expressed by the formula. To summarize the above, the time that power can be supplied from an electric double layer capacitor is T=(C・V)/I...(
3).

【0017】本発明ではスリープモード(+3V)の状
態であっても、図2の破線で示すように出力電圧が高く
なり、電気二重層コンデンサ20は電池取り外し時には
ほぼ+5Vの高電圧に充電される。このため、放電終了
点TP(負荷回路のスリープ動作電圧下限レベルVLに
達する点)まで比較的長い時間(本発明による電圧保持
時間を符号TLで示す)がとれ、電池交換時間として十
分余裕が生じる。それに対して従来技術では、電気二重
層コンデンサの端子電圧は電池交換電圧下限レベル又は
スリープモード電圧(+3V)であるので、放電終了点
までの時間(従来回路での電圧保持時間を符号TNで示
す)はかなり短く、電池交換の時間的余裕が少ない。
In the present invention, even in the sleep mode (+3V), the output voltage increases as shown by the broken line in FIG. 2, and the electric double layer capacitor 20 is charged to a high voltage of approximately +5V when the battery is removed. . Therefore, it takes a relatively long time (the voltage holding time according to the present invention is indicated by the symbol TL) to reach the discharge end point TP (the point at which the load circuit's sleep operation voltage lower limit level VL is reached), and there is sufficient time for battery replacement. . On the other hand, in the conventional technology, since the terminal voltage of the electric double layer capacitor is at the battery replacement voltage lower limit level or the sleep mode voltage (+3V), the time until the discharge end point (the voltage holding time in the conventional circuit is indicated by the symbol TN) ) is quite short, leaving little time for battery replacement.

【0018】[0018]

【発明の効果】本発明は上記のように電池交換時に先立
ち高電圧を印加して蓄電体を急速充電するように構成し
たため、それによって電池消耗時または電池交換時にお
ける負荷回路への有効電圧域の持続時間を長くできる。 この結果、時間的余裕が生じるため手元に電池が無い場
合でもデータなどの消滅の危険性が少ない。電池交換を
行う場合でもユーザーは安心してゆっくりと作業できる
ことになる。また本発明は省電力化のため出力電圧を高
低切換える方式の電源回路を組み込む装置に適合し、小
型携帯機器の有効利用と信頼性の向上の面で効果が大き
い。
[Effects of the Invention] As described above, the present invention is configured to apply a high voltage to rapidly charge the power storage device before replacing the battery, thereby reducing the effective voltage range for the load circuit when the battery is exhausted or when replacing the battery. The duration can be extended. As a result, there is ample time, so even if there is no battery at hand, there is less risk of data loss. Even when replacing batteries, the user can work slowly and with peace of mind. Furthermore, the present invention is suitable for devices incorporating a power supply circuit that switches the output voltage high and low for power saving, and is highly effective in effectively utilizing small portable devices and improving reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による電池バックアップ回路の一実施例
を示す回路図。
FIG. 1 is a circuit diagram showing an embodiment of a battery backup circuit according to the present invention.

【図2】本発明回路と従来回路における電気二重層コン
デンサの放電曲線の説明図。
FIG. 2 is an explanatory diagram of discharge curves of electric double layer capacitors in the circuit of the present invention and the conventional circuit.

【図3】電池の放電曲線の説明図。FIG. 3 is an explanatory diagram of a battery discharge curve.

【符号の説明】[Explanation of symbols]

10  電池 12  電圧検出回路 14  電源回路 16  スイッチ素子 18  高抵抗 20  電気二重層コンデンサ 22  整流ダイオード 10 Battery 12 Voltage detection circuit 14 Power supply circuit 16 Switch element 18 High resistance 20 Electric double layer capacitor 22 Rectifier diode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  電池と並列に蓄電体を接続し、電池取
外し時に該蓄電体から負荷回路に電力を供給する電池バ
ックアップ回路において、電池に出力電圧を高低切換え
可能な電源回路を接続し、高抵抗とスイッチ素子との並
列回路を蓄電体と直列に接続して前記電源回路の出力側
で電池と並列に配置し、電池交換前に電源回路を高電圧
出力に切り換えると共にスイッチ素子を導通するよう制
御し、電池取外し時に蓄電体から整流ダイオードを介し
て負荷回路に電力を供給することを特徴とする電池バッ
クアップ回路。
Claim 1: In a battery backup circuit that connects a power storage body in parallel with a battery and supplies power from the power storage body to a load circuit when the battery is removed, a power supply circuit that can switch the output voltage high or low is connected to the battery, A parallel circuit consisting of a resistor and a switch element is connected in series with the power storage body and placed in parallel with the battery on the output side of the power supply circuit, so that the power supply circuit is switched to a high voltage output and the switch element is made conductive before the battery is replaced. A battery backup circuit is characterized in that it controls the battery and supplies power to a load circuit from a power storage body through a rectifier diode when the battery is removed.
【請求項2】  蓄電体が電気二重層コンデンサである
請求項1記載の電池バックアップ回路。
2. The battery backup circuit according to claim 1, wherein the electricity storage body is an electric double layer capacitor.
JP2413467A 1990-12-22 1990-12-22 Battery backup circuit Pending JPH04222427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2413467A JPH04222427A (en) 1990-12-22 1990-12-22 Battery backup circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2413467A JPH04222427A (en) 1990-12-22 1990-12-22 Battery backup circuit

Publications (1)

Publication Number Publication Date
JPH04222427A true JPH04222427A (en) 1992-08-12

Family

ID=18522101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2413467A Pending JPH04222427A (en) 1990-12-22 1990-12-22 Battery backup circuit

Country Status (1)

Country Link
JP (1) JPH04222427A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308099A (en) * 1995-04-27 1996-11-22 Lg Semicon Co Ltd Method and circuit for supplying memory ic in ic memory cardwith power
JP2015527040A (en) * 2012-09-17 2015-09-10 インテル コーポレイション Voltage regulator
JP2018007474A (en) * 2016-07-06 2018-01-11 株式会社デンソーウェーブ Portable terminal apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308099A (en) * 1995-04-27 1996-11-22 Lg Semicon Co Ltd Method and circuit for supplying memory ic in ic memory cardwith power
JP2015527040A (en) * 2012-09-17 2015-09-10 インテル コーポレイション Voltage regulator
JP2018007474A (en) * 2016-07-06 2018-01-11 株式会社デンソーウェーブ Portable terminal apparatus

Similar Documents

Publication Publication Date Title
US9229472B2 (en) Method for supplying electric power to a timekeeping circuit within a portable electronic device
EP0624944B1 (en) System and method of connection between a first and a second battery, a device load and a logic load
US8035356B2 (en) Ultra-capacitor based uninterruptible power supply
KR0147199B1 (en) Memory ic power supply method
CN100429857C (en) Uninterrupted power device
JP3401886B2 (en) Power system using batteries
JP2001145274A (en) Portable device including a charger
JP2001103679A (en) Emergency power supply device
JPH04222427A (en) Battery backup circuit
JP3545129B2 (en) Power supply control circuit for electronic equipment
CN113852147B (en) Power supply device of display screen and electronic equipment
JPH05189096A (en) Power control circuit for computer system
JPH07271681A (en) Backup circuit for semiconductor memory
JPH09264971A (en) Electric power controller, electricity generating apparatus and electronic equipment
JPH10210681A (en) Power controller and electronic appliance having the same
CN220252536U (en) Power supply system and electronic system
CN218958539U (en) Data storage processing circuit and electronic equipment
JPH06225478A (en) Charge controller
GB2247577A (en) Power supply arrangement
JP2012100517A (en) Backup power supply device and computer system
JP2010142098A (en) Charger for mobile electronic equipment
JPH11220873A (en) Power-supply circuit
JPH09322430A (en) Backup circuit
JPH1185328A (en) Ending processing support device
JP2000060128A (en) Memory backup circuit for electronic apparatus