JPH0422233Y2 - - Google Patents

Info

Publication number
JPH0422233Y2
JPH0422233Y2 JP4265785U JP4265785U JPH0422233Y2 JP H0422233 Y2 JPH0422233 Y2 JP H0422233Y2 JP 4265785 U JP4265785 U JP 4265785U JP 4265785 U JP4265785 U JP 4265785U JP H0422233 Y2 JPH0422233 Y2 JP H0422233Y2
Authority
JP
Japan
Prior art keywords
valve
compressor
heat exchanger
bypass pipe
outdoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4265785U
Other languages
Japanese (ja)
Other versions
JPS61159770U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4265785U priority Critical patent/JPH0422233Y2/ja
Publication of JPS61159770U publication Critical patent/JPS61159770U/ja
Application granted granted Critical
Publication of JPH0422233Y2 publication Critical patent/JPH0422233Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、空気調和機の室外側熱交換器の凍結
防止に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to freezing prevention of an outdoor heat exchanger of an air conditioner.

従来の技術 従来、空気調和機においては、暖房運転時外気
温の低下とともに室外側熱交換器が着霜して来る
ため、その除霜方法についてさまざまな工夫がな
されて来た。
BACKGROUND OF THE INVENTION Conventionally, in air conditioners, frost forms on the outdoor heat exchanger as the outside temperature falls during heating operation, and various methods have been devised to defrost the heat exchanger.

以下図面を参照しながら、上述した従来の空気
調和機の一例について説明する。
An example of the conventional air conditioner mentioned above will be described below with reference to the drawings.

第4図はヒートポンプ式空気調和機の冷凍サイ
クル図であり、圧縮機207、四方弁208、室
内側熱交換器209、減圧器210、室外側熱交
換器211からなる。暖房時、圧縮機207から
吐出された冷媒は実線で示すように四方弁208
を経て室内側熱交換器209で放熱し減圧器21
0で減圧し、室外側熱交換器211で吸熱し四方
弁208を経て圧縮機207へ戻る。
FIG. 4 is a refrigeration cycle diagram of a heat pump type air conditioner, which includes a compressor 207, a four-way valve 208, an indoor heat exchanger 209, a pressure reducer 210, and an outdoor heat exchanger 211. During heating, the refrigerant discharged from the compressor 207 flows through the four-way valve 208 as shown by the solid line.
The heat is radiated through the indoor heat exchanger 209 and the pressure is reduced to the pressure reducer 21.
It is depressurized at 0, absorbs heat in the outdoor heat exchanger 211, and returns to the compressor 207 via the four-way valve 208.

暖房時外気温が低い場合、室外側熱交換器21
1で凝縮した凝縮水は徐々に室外側熱交換器21
1に着霜し始めるため四方弁208を切替え冷房
運転とし室外側熱交換器211に着霜した霜をと
かす。(点線矢印) 第5図は第4図の冷凍サイクルを改善したもの
で、室外側熱交換器311と減圧器310の間の
冷媒管よりバイパス管305を設け、前記バイパ
ス管305の他端を四方弁308と圧縮機307
の間の吸入管とつなぎ並列回路を構成し、かつバ
イパス管305の中間に電磁弁313を設けたも
のである。暖房時、室外側熱交換器311が着霜
して来ると第4図の場合と同様四方弁308を切
替え冷房運転とするとともに電磁弁313を開き
室内側熱交換器309へは冷媒をほとんど流さず
圧縮機307の吸入側へ冷媒を帰し除霜運転を行
う。(例えば、実公昭55−45236号公報) 考案が解決しようとする問題点 しかしながら上記第4図の構成では、除霜運転
のたびに冷房運転となるため室内側では冷風が吹
き出しフイーリングが悪いと言う問題点を有して
いた。また上記第5図の構成では除霜時冷媒をバ
イパスさせるため、室内側での吸熱が抑えられフ
イーリングもよくなり、また直接冷媒が圧縮機の
吸入側へ戻つて来るためその結果圧縮機の入力も
上昇し除霜時間を短縮することができる。しかし
ながらその反面バイパス管を開閉するための電磁
弁、ならびに室外側熱交換器が着霜したかどうか
感知するための温度センサーあるいは圧力センサ
ーが必要となり、また電子回路等の部品点数も増
しコストもアツプする。さらに電磁弁が開となつ
ている間はつねに電磁弁に通電されているため入
力もそれだけ増すと言う欠点を有していた。
When the outside temperature is low during heating, the outdoor heat exchanger 21
The condensed water condensed in step 1 gradually passes through the outdoor heat exchanger 21.
1, the four-way valve 208 is switched to a cooling operation to melt the frost that has formed on the outdoor heat exchanger 211. (Dotted line arrow) FIG. 5 shows an improved version of the refrigeration cycle shown in FIG. Four-way valve 308 and compressor 307
A solenoid valve 313 is provided in the middle of the bypass pipe 305 and connects with the suction pipe between the bypass pipes 305 and 305 to form a parallel circuit. During heating, when the outdoor heat exchanger 311 becomes frosted, the four-way valve 308 is switched to the cooling operation as in the case of FIG. 4, and the solenoid valve 313 is opened so that almost no refrigerant flows to the indoor heat exchanger 309. First, the refrigerant is returned to the suction side of the compressor 307 to perform defrosting operation. (For example, Publication of Utility Model Publication No. 55-45236) Problems that the invention aims to solve However, in the configuration shown in Fig. 4 above, since cooling operation is performed every time defrosting operation is performed, cold air is blown indoors, resulting in poor feeling. It had some problems. In addition, in the configuration shown in Figure 5 above, since the refrigerant is bypassed during defrosting, heat absorption on the indoor side is suppressed and the feeling is improved, and the refrigerant is directly returned to the suction side of the compressor, resulting in input to the compressor. This also increases the defrost time. However, on the other hand, it requires a solenoid valve to open and close the bypass pipe, as well as a temperature sensor or pressure sensor to detect whether frost has formed on the outdoor heat exchanger, and the number of parts such as electronic circuits increases, increasing costs. do. Furthermore, since the solenoid valve is always energized while it is open, the input power increases accordingly.

本考案は上記問題に鑑み、空気調和機の暖房運
転時の室外側熱交換器の凍結防止を目的とするも
のである。
In view of the above-mentioned problems, the present invention aims to prevent freezing of an outdoor heat exchanger during heating operation of an air conditioner.

問題点を解決するための手段 上記問題を解決するために本考案の空気調和機
は、圧縮機、四方弁、室内側熱交換器、減圧装
置、室外側熱交換器を環状に連結してヒートポン
プ式冷凍サイクルを構成し、前記室外側熱交換器
と減圧器の間の冷媒管よりバイパス管を設け、前
記バイパス管の他端を四方弁と圧縮機の間の吸入
管とつなぎ並列回路を構成し、かつバイパス管の
中間に形状の変化する形状記憶合金より形成した
開閉弁を設けたものである。
Means for Solving the Problems In order to solve the above problems, the air conditioner of the present invention is a heat pump that connects a compressor, a four-way valve, an indoor heat exchanger, a pressure reduction device, and an outdoor heat exchanger in a ring. A bypass pipe is provided from the refrigerant pipe between the outdoor heat exchanger and the pressure reducer, and the other end of the bypass pipe is connected to the suction pipe between the four-way valve and the compressor to form a parallel circuit. In addition, an on-off valve made of a shape-memory alloy whose shape changes is provided in the middle of the bypass pipe.

作 用 本考案は上記した構成によつて、室外側熱交換
器に凝縮水が着霜した際、四方弁が切替つて冷房
運転となり除霜を行うとともに、その際バイパス
回路の開閉弁が開き冷媒を直接圧縮機の吸入側へ
流すため室内側での吸熱が抑えられフイーリング
がよくなり、また圧縮機の入力も上昇し除霜時間
を短縮でき、かつ電磁弁、センサー等も不必要と
なりかつ入力も低減できる。
Function The present invention has the above-mentioned configuration, so that when condensed water forms frost on the outdoor heat exchanger, the four-way valve switches to perform cooling operation and defrost, and at the same time, the on-off valve of the bypass circuit opens and cools the refrigerant. Flows directly to the suction side of the compressor, which suppresses heat absorption on the indoor side and improves the feeling.Also, compressor input increases, reducing defrosting time, and eliminates the need for solenoid valves, sensors, etc. can also be reduced.

実施例 以下本考案の一実施例を添付図面の第1図から
第3図を参考に説明する。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 to 3 of the accompanying drawings.

第3図はヒートポンプ式空気調和機の冷凍サイ
クルである。7は圧縮機、8は四方弁、9は室内
側熱交換器、10は減圧器、11は室外側熱交換
器、5はバイパス管、12は形状記憶合金より形
成した開閉弁である。室外側熱交換器11と減圧
器10の間の冷媒管よりバイパス管5を設け、前
記バイパス管5の他端を四方弁8と圧縮機7の間
の吸入管6とつなぎ並列回路を構成し、かつバイ
パス管5の中間に形状の変化する形状記憶合金よ
り形成した開閉弁12が設けられている。
Figure 3 shows the refrigeration cycle of a heat pump air conditioner. 7 is a compressor, 8 is a four-way valve, 9 is an indoor heat exchanger, 10 is a pressure reducer, 11 is an outdoor heat exchanger, 5 is a bypass pipe, and 12 is an on-off valve made of a shape memory alloy. A bypass pipe 5 is provided from the refrigerant pipe between the outdoor heat exchanger 11 and the pressure reducer 10, and the other end of the bypass pipe 5 is connected to the suction pipe 6 between the four-way valve 8 and the compressor 7 to form a parallel circuit. , and an on-off valve 12 made of a shape memory alloy whose shape changes is provided in the middle of the bypass pipe 5.

第1図は前記開閉弁12が閉となつている状態
を示す断面図である。6は吸入管、5はバイパス
管であり、開閉弁12は弁2、形状記憶合金製の
スプリング1、シリンダ4よりなり、シリンダ4
には圧縮機7の吸入口14よりゲージキヤピ3が
接続されている。冷房運転時ならびに室外側熱交
換器11が着霜していない暖房運転時には形状記
憶合金製のスプリング1が伸びているため弁2が
そのばね力により押されバイパス管5の流路を閉
じている。
FIG. 1 is a sectional view showing a state in which the on-off valve 12 is closed. 6 is a suction pipe, 5 is a bypass pipe, and the on-off valve 12 is made up of a valve 2, a shape memory alloy spring 1, and a cylinder 4.
A gauge cap 3 is connected to the suction port 14 of the compressor 7. During cooling operation and during heating operation when the outdoor heat exchanger 11 is not frosted, the shape memory alloy spring 1 is stretched, so the valve 2 is pushed by the spring force and closes the flow path of the bypass pipe 5. .

第2図は開閉弁12が開となつている状態を示
す断面図である。暖房運転時外気温度が低下して
来ると蒸発圧力の低下とともに室外側熱交換器6
で凝縮した凝縮水は徐々に着霜して来る。着霜が
進行すると四方弁8が切替り冷房運転となり室側
熱交換器6に高温高圧の冷媒が流れ除霜運転とな
る。この時圧縮機7の吸入側の圧力は負圧近くに
なり圧縮機7の冷媒循環量は極端に低下する。シ
リンダ4には圧縮機7の吸入口14よりゲージキ
ヤピ3が接続されているため、吸入圧力が低下す
るとシリンダ4内の温度も低下する。その結果、
形状記憶合金製のスプリング1が徐々に縮みバイ
パス管5の流路を閉じていた弁2が開き一点鎖線
で示すごとくバイパス管5より冷媒が直接圧縮機
7の吸入側へ流れるためほとんど室内側熱交換器
9へは冷媒は流れない。除霜が終了すると徐々に
圧縮機7の吸入圧力が上昇し再び第1図に示すご
とく弁2は閉じる。
FIG. 2 is a sectional view showing a state in which the on-off valve 12 is open. During heating operation, when the outside air temperature decreases, the evaporation pressure decreases and the outdoor heat exchanger 6
The condensed water gradually forms frost. As frosting progresses, the four-way valve 8 is switched to enter cooling operation, and high-temperature, high-pressure refrigerant flows into the indoor heat exchanger 6, resulting in defrosting operation. At this time, the pressure on the suction side of the compressor 7 becomes close to negative pressure, and the amount of refrigerant circulated through the compressor 7 is extremely reduced. Since the gauge cap 3 is connected to the cylinder 4 from the suction port 14 of the compressor 7, when the suction pressure decreases, the temperature inside the cylinder 4 also decreases. the result,
The shape-memory alloy spring 1 gradually contracts, and the valve 2 that closes the flow path of the bypass pipe 5 opens, allowing the refrigerant to flow directly from the bypass pipe 5 to the suction side of the compressor 7, as shown by the dashed line, so that most of the heat is inside the room. No refrigerant flows into the exchanger 9. When defrosting is completed, the suction pressure of the compressor 7 gradually increases and the valve 2 closes again as shown in FIG.

なお形状記憶合金の特性として変態温度を境に
して変形が生じ、すなわち形状変化が起こり低温
側と高温側とそれぞれ記憶させた形状に復元する
性質が一般に知られており、本考案もこの効果を
利用している。
It is generally known that shape memory alloys undergo deformation at the transformation temperature, that is, they undergo a shape change and return to the memorized shape on both the low temperature and high temperature sides, and the present invention takes advantage of this effect. We are using.

一般的な空気調和機において、冷房運転時であ
れば、圧縮機7の吸入温度は最低約0℃前後、暖
房運転時であれば最低約−10℃前後、除霜運転時
であれば約−30℃前後である。そのため、形状記
憶合金の変態温度を約−30℃前後に設定すること
により、除霜時のみ開閉弁2が開き、通常の冷房
運転時には開閉弁2を閉にすることができる。
In a typical air conditioner, the intake temperature of the compressor 7 is at least around 0°C during cooling operation, at least around -10°C during heating operation, and about - during defrosting operation. The temperature is around 30℃. Therefore, by setting the transformation temperature of the shape memory alloy to around -30°C, the on-off valve 2 can be opened only during defrosting and closed during normal cooling operation.

したがつて、室外側熱交換器11と減圧器10
の間の冷媒管よりバイパス管5を設け、前記バイ
パス管の他端を四方弁8と圧縮機7の間の吸入管
6とつなぎ並列回路を構成し、かつバイパス管5
の中間に形状の変化する形状記憶合金より形成し
た開閉弁12を設けたことにより、暖房運転時室
外側熱交換器11が着霜して来ると四方弁8を切
替えて除霜運転になるとともに開閉弁12が開き
バイパス管5を通つて直接圧縮機7の吸入側へ冷
媒が流れるためほとんど室内側熱交換器9へは冷
媒は流れず、その結果室内側での吸熱が抑えられ
フイーリングもよくなる。また直接冷媒が圧縮機
7の吸入側へ戻つて来るためその結果圧縮機7の
入力も上昇し除霜時間を短縮することができる。
さらにバイパス管5を開閉するための電磁弁13
ならびに電磁弁13の開閉のタイミングを検知す
るための圧力センサーあるいは温度センサーなら
びに電子回路等も必要なく部品点数が減少しコス
トも下げることができ、かつ構造も簡単である。
また電磁弁13を使用しないため入力も減少させ
ることができる。
Therefore, the outdoor heat exchanger 11 and the pressure reducer 10
A bypass pipe 5 is provided from the refrigerant pipe between the bypass pipe 5 and the other end of the bypass pipe is connected to the suction pipe 6 between the four-way valve 8 and the compressor 7 to form a parallel circuit.
By providing an on-off valve 12 made of a shape memory alloy whose shape changes in the middle, when the outdoor heat exchanger 11 becomes frosted during heating operation, the four-way valve 8 is switched to switch to defrosting operation. Since the on-off valve 12 opens and the refrigerant flows directly to the suction side of the compressor 7 through the bypass pipe 5, almost no refrigerant flows to the indoor heat exchanger 9, and as a result, heat absorption on the indoor side is suppressed and the feeling is improved. . Furthermore, since the refrigerant directly returns to the suction side of the compressor 7, the input to the compressor 7 also increases and the defrosting time can be shortened.
Furthermore, a solenoid valve 13 for opening and closing the bypass pipe 5
Further, there is no need for a pressure sensor or a temperature sensor or an electronic circuit for detecting the opening/closing timing of the electromagnetic valve 13, so the number of parts can be reduced, costs can be reduced, and the structure is simple.
Furthermore, since the solenoid valve 13 is not used, input can also be reduced.

考案の効果 以上の説明で明らかなように、本考案は圧縮
機、四方弁、室内側熱交換器、減圧装置、室外側
熱交換器を環状に連結してヒートポンプ式冷凍サ
イクルを構成し、前記室外側熱交換器と減圧器の
間の冷媒管よりバイパス管を設け、前記バイパス
管の他端を四方弁と圧縮機の間の吸入管とのつな
ぎ並列回路を構成し、かつバイパス管の中間に形
状の変化する形状記憶合金より形成した開閉弁を
設けてあるため、暖房運転時室外側熱交換器が着
霜して来ると、四方弁8を切替えて除霜運転にな
るとともに開閉弁が開きバイパス管を通つて直接
圧縮機の吸入側へ冷媒が流れるためほとんど室内
側熱交換器へは冷媒は流れず、その結果室内側で
の吸熱が抑えられフイーリングもよくなる。また
直接冷媒が圧縮機の吸入側へ戻つて来るためその
結果圧縮機7の入力も上昇し除霜時間を短縮する
ことができる。さらにバイパス管を開閉するため
の電磁弁ならびに電磁弁の開閉のタイミングを検
知するための圧力センサーあるいは温度センサー
ならびに電子回路等も必要なく部品点数が減少し
コストも下げることができ、かつ構造が簡単であ
る。また電磁弁を使用しないため入力も減少させ
ることができる等種々の利点を有するものであ
る。
Effects of the invention As is clear from the above explanation, the present invention constructs a heat pump refrigeration cycle by connecting a compressor, a four-way valve, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger in a ring. A bypass pipe is provided from the refrigerant pipe between the outdoor heat exchanger and the pressure reducer, and the other end of the bypass pipe is connected to the suction pipe between the four-way valve and the compressor to form a parallel circuit. is equipped with an on-off valve made of a shape-memory alloy that changes its shape, so when the outdoor heat exchanger becomes frosted during heating operation, the four-way valve 8 is switched to defrost operation and the on-off valve is turned off. Since the refrigerant flows directly to the suction side of the compressor through the open bypass pipe, almost no refrigerant flows to the indoor heat exchanger, and as a result, heat absorption on the indoor side is suppressed and the feeling is improved. Furthermore, since the refrigerant directly returns to the suction side of the compressor, the input to the compressor 7 increases as a result, making it possible to shorten the defrosting time. Furthermore, there is no need for solenoid valves to open and close the bypass pipe, as well as pressure sensors or temperature sensors and electronic circuits to detect the timing of opening and closing of the solenoid valves, reducing the number of parts, lowering costs, and simplifying the structure. It is. In addition, since no electromagnetic valve is used, input power can be reduced, and other advantages are provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本考案の一実施例における開
閉弁の構造を示す断面図、第3図は本考案の一実
施例における冷凍サイクル図、第4図、第5図は
従来の冷凍サイクル図である。 1……形状記憶合金製のスプリング、2……
弁、4……シリンダ、12……開閉弁。
Figures 1 and 2 are cross-sectional views showing the structure of an on-off valve in an embodiment of the present invention, Figure 3 is a refrigeration cycle diagram in an embodiment of the present invention, and Figures 4 and 5 are conventional refrigeration systems. It is a cycle diagram. 1... Spring made of shape memory alloy, 2...
Valve, 4...Cylinder, 12...Opening/closing valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機、四方弁、室内側熱交換器、減圧装置、
室外側熱交換器を順に環状に連結してヒートポン
プ式冷凍サイクルを構成し、前記室外側熱交換器
と減圧器の間の冷媒管よりバイパス管を設け、前
記バイパス管の他端を四方弁と圧縮機の間の吸入
管とつなぎ並列回路を構成し、かつバイパス管の
中間に、シリンダ部内に形状記憶合金を有する開
閉弁を設け、前記圧縮機の吸入側と前記開閉弁の
シリンダ部をゲージキヤピにて接続し、除霜運転
時の前記圧縮機の吸入圧力低下による前記圧縮機
の吸入側の温度低下を前記ゲージキヤピを介して
前記シリンダ部に伝えることにより前記形状記憶
合金は、前記開閉弁が開状態となるように形状を
変化し、かつ前記開閉弁の開状態により前記バイ
パス管を通つて冷媒が直接前記圧縮機の吸入側へ
流れ、ホツトガスバイパス除霜を行う空気調和
機。
Compressor, four-way valve, indoor heat exchanger, pressure reducing device,
A heat pump refrigeration cycle is constructed by sequentially connecting the outdoor heat exchangers in a ring shape, a bypass pipe is provided from the refrigerant pipe between the outdoor heat exchanger and the pressure reducer, and the other end of the bypass pipe is connected to a four-way valve. Connecting the suction pipe between the compressors to form a parallel circuit, and providing an on-off valve having a shape memory alloy in the cylinder part in the middle of the bypass pipe, and connecting the suction side of the compressor and the cylinder part of the on-off valve with a gauge cap. The shape memory alloy is connected to An air conditioner that changes shape to be in an open state, and in which refrigerant flows directly to the suction side of the compressor through the bypass pipe depending on the open state of the on-off valve, thereby performing hot gas bypass defrosting.
JP4265785U 1985-03-25 1985-03-25 Expired JPH0422233Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4265785U JPH0422233Y2 (en) 1985-03-25 1985-03-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4265785U JPH0422233Y2 (en) 1985-03-25 1985-03-25

Publications (2)

Publication Number Publication Date
JPS61159770U JPS61159770U (en) 1986-10-03
JPH0422233Y2 true JPH0422233Y2 (en) 1992-05-20

Family

ID=30553616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4265785U Expired JPH0422233Y2 (en) 1985-03-25 1985-03-25

Country Status (1)

Country Link
JP (1) JPH0422233Y2 (en)

Also Published As

Publication number Publication date
JPS61159770U (en) 1986-10-03

Similar Documents

Publication Publication Date Title
US5740679A (en) Binary refrigerating apparatus
JP2002188873A (en) Refrigerating equipment of air conditioner
JPH01118080A (en) Heat pump type air conditioner
JPH0422233Y2 (en)
JPH03170758A (en) Air conditioner
JPH05340643A (en) Air conditioner
KR100194105B1 (en) Automatic defrost heat pump cycle for air conditioning and air conditioning
JPH086203Y2 (en) Air conditioner
JPS608291Y2 (en) Refrigeration cycle for air conditioners
JPH03286978A (en) Cooling and heating apparatus
JPH0238061U (en)
JPS5922440Y2 (en) air conditioner
JPS631151Y2 (en)
JPS609502Y2 (en) four way switching valve
JPH0623886Y2 (en) Heat pump air conditioner
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JPS5825233Y2 (en) air conditioner
JP2002089934A (en) Air conditioner
JPH07103596A (en) Air-conditioner
JPS6038852Y2 (en) air conditioner
KR100308759B1 (en) Heating air conditioner
CN112856718A (en) Air conditioner, control method thereof and storage medium
KR20050102525A (en) Heat-pump type airconditioner
JPH0216966U (en)
KR920001454Y1 (en) Defrost cycle for air-conditioner