JPH04222275A - Highly electrically conductive carbon fiber and its production - Google Patents

Highly electrically conductive carbon fiber and its production

Info

Publication number
JPH04222275A
JPH04222275A JP2410554A JP41055490A JPH04222275A JP H04222275 A JPH04222275 A JP H04222275A JP 2410554 A JP2410554 A JP 2410554A JP 41055490 A JP41055490 A JP 41055490A JP H04222275 A JPH04222275 A JP H04222275A
Authority
JP
Japan
Prior art keywords
carbon fiber
expanded graphite
graphite
graphite powder
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2410554A
Other languages
Japanese (ja)
Inventor
Akira Kojima
昭 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2410554A priority Critical patent/JPH04222275A/en
Publication of JPH04222275A publication Critical patent/JPH04222275A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain carbon fiber, having a coating layer composed of expanded graphite on the surface and further a high electric conductivity and excellent in mechanical characteristics and an efficient method for producing the carbon fiber. CONSTITUTION:Graphite powder is heated with an acid such as nitric acid or sulfuric acid to provide oxidized graphite, which is further heated and expanded to afford expanded graphite powder. The resultant expended graphite powder is then applied onto the surface of carbon fiber and the obtained carbon fiber is normally press formed under 10-100kg/cm<2> pressure to afford highly electrically conductive carbon fiber having a coating layer of the expanded graphite formed on the surface thereof by utilizing mutual cohesive force of the expanded graphite.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、表面に膨張黒鉛からな
る被覆層を有しており、高い電気伝導性を有し、しかも
機械的特性に優れた炭素繊維と、その効率のよい製造方
法に関する。本発明の高導電性炭素繊維は、電気機器用
素材、特に建築物の避雷用アース材や電話機用アースな
どの静電除去材料等に有効に利用することができる。
[Industrial Application Field] The present invention relates to a carbon fiber having a coating layer made of expanded graphite on its surface and having high electrical conductivity and excellent mechanical properties, and an efficient manufacturing method thereof. Regarding. The highly conductive carbon fiber of the present invention can be effectively used as a material for electrical equipment, particularly as a static elimination material such as a grounding material for lightning protection in buildings or a grounding material for telephones.

【0002】0002

【従来の技術及び発明が解決しようとする課題】炭素繊
維は、比強度,比弾性率及び耐薬品性に優れていること
から、宇宙・航空分野,スポーツ用品分野及びその他の
産業用材料分野等も含め、その用途は、ますます拡大さ
れようとしている。
[Prior Art and Problems to be Solved by the Invention] Carbon fibers have excellent specific strength, specific modulus of elasticity, and chemical resistance, and are therefore used in the fields of space and aeronautics, sporting goods, and other industrial materials. Its uses are about to expand even further.

【0003】炭素繊維の電気的特性は、その焼成温度に
よって、著しく影響される。一般的に1000℃〜14
00℃程度の温度で焼成した炭素繊維の電気抵抗は、1
0−2〜10−3Ω・cm程度であるが、これよりも電
気抵抗を下げるには、2000℃〜2500℃、場合に
よっては3000℃に近い温度で焼成しなければならな
い。このように高温下での熱処理によって炭素繊維を黒
鉛化することにより、その電気抵抗を10−4Ω・cm
程度までに下げることは可能であるが、この場合には大
量の熱エネルギーや、特別の焼成装置が必要であること
は避けられない。したがって、1000℃程度の温度で
焼成した炭素繊維の電気抵抗を、高温下での加熱処理な
しに10−4Ω・cm程度までに下げられるならば、経
済性の点から見ても極めて有効な技術になる。
The electrical properties of carbon fibers are significantly influenced by their firing temperature. Generally 1000℃~14
The electrical resistance of carbon fiber fired at a temperature of about 00°C is 1
It is approximately 0-2 to 10-3 Ω·cm, but in order to lower the electrical resistance more than this, it is necessary to bake at a temperature of 2000°C to 2500°C, or in some cases close to 3000°C. By graphitizing carbon fiber through heat treatment at high temperatures, its electrical resistance can be reduced to 10-4Ω・cm.
Although it is possible to reduce the temperature to a certain extent, in this case it is inevitable that a large amount of thermal energy and special baking equipment are required. Therefore, if the electrical resistance of carbon fibers fired at a temperature of about 1000°C can be lowered to about 10-4 Ωcm without heat treatment at high temperatures, it would be an extremely effective technology from an economic point of view. become.

【0004】そこで、従来より1000℃程度の温度で
焼成した炭素繊維の電気抵抗を向上させるために、種々
の方法が試みられている。例えば、■炭素繊維表面にメ
ッキ法で金属被膜を形成する方法が提案されているが、
廃液処理などに問題がある。また、■蒸着,スパッタリ
ングあるいはイオン打込みなどで被膜を形成し、それに
よって炭素繊維の電気的特性を改善する方法も提案され
ているが、これらの方法は大規模な装置を必要とすると
いう問題があった。
[0004] Various methods have heretofore been attempted in order to improve the electrical resistance of carbon fibers fired at a temperature of about 1000°C. For example, a method has been proposed in which a metal film is formed on the surface of carbon fiber by plating.
There are problems with waste liquid treatment, etc. In addition, methods have been proposed to improve the electrical properties of carbon fibers by forming a film by vapor deposition, sputtering, or ion implantation, but these methods have the problem of requiring large-scale equipment. there were.

【0005】本発明者は、従来のこのような問題を解消
し、1000℃程度の温度で焼成した炭素繊維の電気抵
抗を、高温下での加熱処理なしに10−4Ω・cm程度
までに下げることのできる方法について鋭意研究を重ね
た。 その結果、膨張黒鉛粉末を炭素繊維表面上に付着させた
後、これを加圧成形することにより、表面に膨張黒鉛か
らなる被覆層を有していて、高い電気伝導性を有し、し
かも機械的特性に優れた炭素繊維が得られることを見出
し、この知見に基づいて本発明を完成するに至った。
[0005] The present inventor solved these conventional problems and lowered the electrical resistance of carbon fiber fired at a temperature of about 1000° C. to about 10 −4 Ω·cm without heat treatment at high temperatures. We have conducted extensive research into possible methods. As a result, by adhering expanded graphite powder onto the surface of carbon fibers and then press-molding this, a coating layer made of expanded graphite is formed on the surface, which has high electrical conductivity and is machined. The inventors have discovered that carbon fibers with excellent physical properties can be obtained, and have completed the present invention based on this knowledge.

【0006】[0006]

【課題を解決するための手段】すなわち本発明は、炭素
繊維表面に膨張黒鉛の被覆層を形成してなる高導電性炭
素繊維を提供するものである。本発明の高導電性炭素繊
維を構成する炭素繊維については特に制限はなく、各種
の公知の炭素繊維、例えば石炭ピッチ,石油ピッチ,合
成ピッチなどから得られるピッチ系炭素繊維や、ポリア
クリロニトリル系(PAN系)の炭素繊維を用いること
ができる。
[Means for Solving the Problems] That is, the present invention provides a highly conductive carbon fiber having a coating layer of expanded graphite formed on the surface of the carbon fiber. There are no particular restrictions on the carbon fibers constituting the highly conductive carbon fibers of the present invention, and there are various known carbon fibers, such as pitch-based carbon fibers obtained from coal pitch, petroleum pitch, synthetic pitch, etc., and polyacrylonitrile-based ( PAN-based carbon fibers can be used.

【0007】この炭素繊維は1000℃〜1400℃程
度の温度で焼成したもので充分であり、2000℃を超
えるような高い温度で焼成したものを用いる必要はない
。また、炭素繊維の糸径や長さ等は、形状に応じて異な
り、一義的に決定することは困難である。
[0007] It is sufficient that the carbon fiber is fired at a temperature of about 1000°C to 1400°C, and there is no need to use one fired at a high temperature exceeding 2000°C. Furthermore, the thread diameter, length, etc. of carbon fibers vary depending on the shape, and are difficult to determine unambiguously.

【0008】ここで炭素繊維の形状としては、ストラン
ド状,不織布状,織布状などを問わない。例えば、スト
ランド状の炭素繊維の場合には、通常、糸径が0.1〜
10μm、好ましくは7〜10μmのものを、1000
〜12000本の束にしたものを用い、また不織布状の
場合には、長さ3〜60mm、好ましくは5〜25mm
のチョップドストランド状の炭素繊維からなるものを用
い、さらに織布状の場合には、上記ストランド状炭素繊
維の織布が好適に用いられる。
[0008] Here, the shape of the carbon fibers may be strand, nonwoven fabric, woven fabric, or the like. For example, in the case of strand-like carbon fiber, the thread diameter is usually 0.1 to
10 μm, preferably 7 to 10 μm, 1000
A bundle of ~12,000 pieces is used, and in the case of a nonwoven fabric, the length is 3 to 60 mm, preferably 5 to 25 mm.
In the case of a woven fabric, a woven fabric of the above-mentioned strand-shaped carbon fibers is preferably used.

【0009】一方、本発明の高導電性炭素繊維を構成し
、かつ上記炭素繊維表面に形成される被覆層をなす膨張
黒鉛は、炭素材料の中でも高い導電性を有するものの一
つであり、黒鉛粉末を硝酸,硫酸あるいはその他の酸と
加熱することによって酸化黒鉛を作り、それを加熱し、
膨張させたものである。
On the other hand, expanded graphite, which constitutes the highly conductive carbon fiber of the present invention and forms the coating layer formed on the surface of the carbon fiber, is one of the carbon materials that has high conductivity. Graphite oxide is made by heating the powder with nitric acid, sulfuric acid or other acids;
It is inflated.

【0010】ここで酸化黒鉛を作製する際の処理条件は
、黒鉛粉末を硝酸,硫酸或いはその他の酸の存在下に、
常温程度の温度で1〜10時間程度処理すれば充分であ
る。また、このようにして得られる酸化黒鉛から、膨張
黒鉛を作製するには、この酸化黒鉛を電気炉等に入れて
、600〜1000℃、好ましくは750〜850℃の
温度に加熱し、1〜5分間程度処理すればよい。
[0010] The processing conditions for producing graphite oxide are as follows: graphite powder is heated in the presence of nitric acid, sulfuric acid, or other acids;
It is sufficient to perform the treatment at room temperature for about 1 to 10 hours. In addition, in order to produce expanded graphite from the graphite oxide obtained in this way, the graphite oxide is placed in an electric furnace or the like and heated to a temperature of 600 to 1000°C, preferably 750 to 850°C. It is sufficient to process for about 5 minutes.

【0011】なお、膨張倍率は、濃硫酸に対する濃硝酸
の割合を変化させたり、処理時間を変更することにより
、適宜変えることができるが、通常は、1〜5倍、好ま
しくは2〜3倍とする。ここで、膨張倍率が低すぎると
、炭素繊維上に被覆した場合に剥離してしまう。また、
この膨張倍率は高いほど、炭素繊維上に薄い被覆層を形
成することがてきるので好ましい。
[0011] The expansion ratio can be changed as appropriate by changing the ratio of concentrated nitric acid to concentrated sulfuric acid or by changing the treatment time, but it is usually 1 to 5 times, preferably 2 to 3 times. shall be. Here, if the expansion ratio is too low, the coating will peel off when coated on carbon fibers. Also,
The higher the expansion ratio is, the more preferable it is because a thin coating layer can be formed on the carbon fiber.

【0012】このようにして得られる膨張黒鉛は、平均
粒径10〜100μm,好ましくは30〜50μmの粉
末状のものである。ここで平均粒径が10μm未満のも
のであると作業性が低下し、一方、平均粒径が100μ
mを超えるものでは、炭素繊維表面に被覆する際に剥離
しやすくなる。このような膨張黒鉛は、これをプレス或
いはロール間を通してシート状にしたものの場合には、
通常、10−4Ωcm程度の電気抵抗を有している。
The expanded graphite thus obtained is in powder form with an average particle size of 10 to 100 μm, preferably 30 to 50 μm. If the average particle size is less than 10 μm, the workability will decrease, while if the average particle size is less than 10 μm, the workability will decrease.
If it exceeds m, it will be easy to peel off when coating the carbon fiber surface. When such expanded graphite is made into a sheet by pressing or passing between rolls,
Usually, it has an electrical resistance of about 10-4 Ωcm.

【0013】本発明の高導電性炭素繊維は、このような
膨張黒鉛が炭素繊維表面に、通常、50〜500μm、
好ましくは100〜150μmの厚さで被覆されている
ものである。この被覆層の厚みが小さすぎると、高導電
性のものが得難くなり、またこの被覆層の厚みが大きく
なりすぎると、屈曲時や変形時に膨張黒鉛が剥落しやす
くなるので好ましくない。この膨張黒鉛の被覆量を組成
割合で示すと、膨張黒鉛が通常、99〜1重量%、好ま
しくは96〜60重量%に対して、炭素繊維が通常1〜
99重量%、好ましくは4〜40重量%である。
The highly conductive carbon fiber of the present invention has such expanded graphite on the surface of the carbon fiber, usually 50 to 500 μm thick.
Preferably, it is coated with a thickness of 100 to 150 μm. If the thickness of this coating layer is too small, it will be difficult to obtain a highly conductive material, and if the thickness of this coating layer is too large, the expanded graphite will easily peel off during bending or deformation, which is not preferable. When the amount of coverage of expanded graphite is expressed as a composition ratio, expanded graphite is usually 99 to 1% by weight, preferably 96 to 60% by weight, and carbon fiber is usually 1 to 1% by weight.
99% by weight, preferably 4-40% by weight.

【0014】このような炭素繊維表面に膨張黒鉛の被覆
層を形成してなる、本発明の高導電性炭素繊維は、様々
な方法により製造することが可能であるが、例えば、膨
張黒鉛粉末を炭素繊維表面上に付着させた後、これを加
圧成形することにより、効率良く製造することができる
。ここで膨張黒鉛粉末を炭素繊維表面に形成させるのに
、フェノール樹脂,フラン樹脂或いはエポキシ樹脂を用
いる方法も考えられるが、本発明の方法では、これらの
樹脂を使用することなく、炭素繊維上に膨張黒鉛粉末を
加圧密着し、膨張黒鉛同士の凝集力を利用して作製する
The highly conductive carbon fiber of the present invention, which has a coating layer of expanded graphite formed on the surface of the carbon fiber, can be produced by various methods. After adhering to the carbon fiber surface, it can be manufactured efficiently by press-molding it. In order to form expanded graphite powder on the carbon fiber surface, a method using phenol resin, furan resin, or epoxy resin can be considered, but in the method of the present invention, it is possible to form expanded graphite powder on the carbon fiber without using any of these resins. It is produced by pressing expanded graphite powder into close contact with each other and utilizing the cohesive force between expanded graphite particles.

【0015】従って、膨張黒鉛の付着量および厚さによ
って炭素繊維の電気抵抗を充分制御することが可能とな
る。このような被覆層は、10〜100kg/cm2 
、好ましくは20〜50kg/cm2 の圧力において
、0〜200℃、好ましくは20〜30℃の温度にて、
10秒〜5分間、好ましくは30秒〜2分間、プレス等
の方法で加圧成形することにより得ることができる。こ
こで加圧成形における圧力が低すぎる場合或いは加圧時
間が短すぎる場合には、密着性の良好な被覆層の形成が
難しくなり、一方、圧力が高すぎると、炭素繊維が破損
するおそれがある。また、加圧時間が長すぎると、生産
性の低下を招くことになるので、好ましくない。
[0015] Therefore, it is possible to sufficiently control the electrical resistance of carbon fibers by adjusting the amount and thickness of expanded graphite deposited. Such a coating layer has a weight of 10 to 100 kg/cm2
, preferably at a pressure of 20-50 kg/cm2 and a temperature of 0-200°C, preferably 20-30°C,
It can be obtained by pressure molding using a method such as a press for 10 seconds to 5 minutes, preferably 30 seconds to 2 minutes. If the pressure in pressure molding is too low or the pressurization time is too short, it will be difficult to form a coating layer with good adhesion, while if the pressure is too high, there is a risk of damaging the carbon fibers. be. Further, if the pressurization time is too long, it is not preferable because it causes a decrease in productivity.

【0016】このようにして本発明の高導電性炭素繊維
を得ることができる。本発明の高導電性炭素繊維を構成
する、炭素繊維表面上の膨張黒鉛層は、繰り返し大きく
屈曲させるならば剥離することもありうるが、小さな変
形ならば、そのようなことは全くなく、通常の使用では
全く差支えない。本発明は、高い導電性をもつ膨張黒鉛
層を、炭素繊維表面上に形成させることによって、炭素
繊維表面の電気抵抗を低下させることを可能にしたもの
である。
[0016] In this manner, the highly conductive carbon fiber of the present invention can be obtained. The expanded graphite layer on the surface of the carbon fiber, which constitutes the highly conductive carbon fiber of the present invention, may peel off if it is repeatedly bent to a large extent, but if the deformation is small, this will not occur at all, and usually There is no problem in using it. The present invention makes it possible to reduce the electrical resistance of the carbon fiber surface by forming an expanded graphite layer with high conductivity on the carbon fiber surface.

【0017】[0017]

【実施例】次に、本発明を実施例により詳しく説明する
EXAMPLES Next, the present invention will be explained in detail by examples.

【0018】製造例1(膨張黒鉛の製造)黒鉛粉末50
gをビーカーにとり、濃硫酸(濃度95%)100gと
、濃硝酸(濃度61%)50gを加え、常温で2時間充
分にかく拌した。その後、大量の水で稀釈し、次いでデ
カンテーション或いは吸引ろ過によって数回水洗し、洗
浄液のpHが5になるまで繰り返した。最後に、ろ別し
て、酸化処理した黒鉛粉末を作製した。この黒鉛粉末3
gを、ルツボ中に入れ、800℃に加熱してある電気炉
中に2分間入れたところ4倍程度膨張した黒鉛粉末(膨
張黒鉛)が得られた。
Production Example 1 (Production of expanded graphite) Graphite powder 50
g was placed in a beaker, 100 g of concentrated sulfuric acid (concentration 95%) and 50 g of concentrated nitric acid (concentration 61%) were added, and the mixture was thoroughly stirred at room temperature for 2 hours. Thereafter, it was diluted with a large amount of water, and then washed with water several times by decantation or suction filtration, and this process was repeated until the pH of the washing solution reached 5. Finally, the mixture was filtered to produce oxidized graphite powder. This graphite powder 3
When the sample was placed in a crucible and placed in an electric furnace heated to 800° C. for 2 minutes, graphite powder (expanded graphite) expanded by about 4 times was obtained.

【0019】製造例2〜5(膨張黒鉛の製造)濃硫酸と
濃硝酸の割合を種々変化させた場合に、作られた酸化黒
鉛の膨張度合いについて検討した。使用する黒鉛量を1
5gとし、濃硫酸と濃硝酸との合計使用量を150g程
度とし、濃硝酸に対する濃硫酸の割合を2:1,3:1
,4:1および5:1と変化させて(それぞれ製造例2
,3,4,5)処理した。なお、処理温度はいずれも常
温であり、処理時間は2時間であった。また、処理後の
水洗、乾燥などは、製造例1と同じに行なった。使用し
た混酸中の割合が異なっても、生成した酸化黒鉛の外観
などに違いはなかった。
Production Examples 2 to 5 (Production of Expanded Graphite) The degree of expansion of the produced graphite oxide was studied when the ratio of concentrated sulfuric acid and concentrated nitric acid was varied. The amount of graphite used is 1
5g, the total amount of concentrated sulfuric acid and concentrated nitric acid used is about 150g, and the ratio of concentrated sulfuric acid to concentrated nitric acid is 2:1, 3:1.
, 4:1 and 5:1 (Production Example 2 respectively)
, 3, 4, 5) processed. Note that the treatment temperature was room temperature in all cases, and the treatment time was 2 hours. Further, washing with water, drying, etc. after treatment were performed in the same manner as in Production Example 1. Even if the ratio in the mixed acid used was different, there was no difference in the appearance of the produced graphite oxide.

【0020】そして、酸化黒鉛3gをとり、これを80
0℃の電気炉中に入れ、1分間,2分間および3分間の
加熱処理を行なって、膨張させた。この処理の前後にお
ける黒鉛粉末の見かけの体積を、おおよそ測定し、膨張
倍率を求めた。その結果、膨張倍率は、濃硫酸に対する
濃硝酸の割合が2:1の場合に最も大きくなり、好まし
い配合比であることが判明した。また、800℃の加熱
時間については、1分間では黒鉛が膨張しきれずに不充
分であるが、2分間および3分間の場合には膨張倍率が
ほぼ同じであったので、2分間熱処理することにより、
黒鉛が完全に膨張することが確認された。結果を表1に
示す。
[0020] Then, take 3 g of graphite oxide and add it to 80
It was placed in an electric furnace at 0° C. and heat treated for 1 minute, 2 minutes, and 3 minutes to cause expansion. The apparent volume of the graphite powder before and after this treatment was roughly measured to determine the expansion ratio. As a result, it was found that the expansion ratio was highest when the ratio of concentrated nitric acid to concentrated sulfuric acid was 2:1, which was a preferable blending ratio. Regarding the heating time at 800°C, 1 minute was insufficient because the graphite did not fully expand, but the expansion ratio was almost the same for 2 minutes and 3 minutes, so heat treatment for 2 minutes ,
It was confirmed that the graphite expanded completely. The results are shown in Table 1.

【0021】表1Table 1

【0022】実施例1 膨張した黒鉛粉末を、炭素繊維表面上に形成させるため
に、次の操作を行なった。炭素繊維は、不織布状のもの
(幅3cm,長さ6cm,厚さ 0.3mm、目付33
g/m2)を使用した。この炭素繊維不織布上に、製造
例2で得られた所定量の膨張黒鉛粉末を、篩から均一に
ばらまいた。次に、この上にテフロンフィルムを載せ、
軽く圧力を加えて炭素繊維に付着させた。次いで、炭素
繊維不織布を裏返して、同一量の膨張黒鉛粉末を付着さ
せた。
Example 1 The following operation was performed to form expanded graphite powder on the surface of carbon fibers. The carbon fiber is a non-woven fabric (width 3 cm, length 6 cm, thickness 0.3 mm, basis weight 33
g/m2) was used. A predetermined amount of the expanded graphite powder obtained in Production Example 2 was uniformly spread over this carbon fiber nonwoven fabric through a sieve. Next, put a Teflon film on top of this,
It was attached to the carbon fiber by applying light pressure. Next, the carbon fiber nonwoven fabric was turned over and the same amount of expanded graphite powder was applied.

【0023】これを二枚のステンレス板の間にはさみ、
油圧プレスで30kg/cm2 の圧力を1分間加えて
成形した。加圧後の炭素繊維不織布の厚みは、付着させ
た膨張黒鉛量によって異なるが、0.4mm程度から1
.1mm位にまで増大した。また、嵩密度も増大してい
た。これらの結果を、以下の方法で得た固有抵抗値と共
に表2に示す。
[0023] This is sandwiched between two stainless steel plates,
It was molded by applying a pressure of 30 kg/cm2 for 1 minute using a hydraulic press. The thickness of the carbon fiber nonwoven fabric after pressurization varies depending on the amount of expanded graphite attached, but it ranges from about 0.4 mm to 1 mm.
.. It increased to about 1mm. Moreover, the bulk density was also increased. These results are shown in Table 2 together with the specific resistance values obtained by the following method.

【0024】作製した試料片の電気抵抗は、通常のテス
ターを用いて、2本のプローブ間の距離を6cmから1
cmまで、1cm間隔で順次測定してグラフ上にプロッ
トし、距離ゼロにおける電気抵抗を推定して試料の固有
抵抗とした。
The electrical resistance of the prepared sample piece was measured using an ordinary tester by changing the distance between the two probes from 6 cm to 1 cm.
The electrical resistance at zero distance was estimated and determined as the specific resistance of the sample.

【0025】炭素繊維不織布の電気抵抗は、テスターの
測定値で20〜40Ω、これを固有抵抗に換算すると0
.95Ω・cmであるが、炭素繊維不織布に膨張黒鉛粒
子を付着することにより、テスターの測定値は0.95
Ωからどんどん小さくなり、通常のテスターでは測定で
きないほど小さい値になった。そこで市販している膨張
黒鉛シート(固有抵抗は10−4Ω・cm程度)の電気
抵抗を求めてみると、これと全く同程度の電気抵抗であ
るので、本発明の高導電性炭素繊維の固有抵抗も10−
4Ω・cm程度であると推定される。また、膨張黒鉛粉
末は、炭素繊維不織布から剥離することなく、良好な接
着状態を示していた。
The electrical resistance of the carbon fiber nonwoven fabric is 20 to 40Ω as measured by a tester, which is 0 when converted to specific resistance.
.. 95Ω・cm, but by attaching expanded graphite particles to the carbon fiber nonwoven fabric, the measured value of the tester becomes 0.95.
It gradually decreased from Ω to a value so small that it could not be measured with a normal tester. Therefore, when we determined the electrical resistance of a commercially available expanded graphite sheet (specific resistance is about 10-4 Ω cm), we found that the electrical resistance was exactly the same as that of a commercially available expanded graphite sheet. Resistance is also 10-
It is estimated to be about 4Ω·cm. Further, the expanded graphite powder did not peel off from the carbon fiber nonwoven fabric, and exhibited a good adhesion state.

【0026】表2Table 2

【0027】実施例2 ストランド状の石油ピッチ系炭素繊維(糸径:10μm
,3000本束)を、長さ5cm程度に切断し、この炭
素繊維の両面に、膨張黒鉛粉末を付着させた後、プレス
して、膨張黒鉛粉末−炭素繊維複合材を作製した。膨張
黒鉛の炭素繊維に対する付着量を、4倍,9倍,16倍
,24倍,32倍,49倍,99倍(それぞれ試料8,
9,10,11,12,13,14)と変化させて、炭
素繊維の両面に均一に付着させた。なお、膨張黒鉛粉末
は、炭素繊維のフィラメント間にも入り込み、充分に空
隙を充填していた。そして、炭素繊維ストランドを屈曲
或いは湾曲させても、表面に付着している膨張黒鉛は剥
離することはなかった。
Example 2 Strand-shaped petroleum pitch carbon fiber (thread diameter: 10 μm
, 3,000 pieces) were cut into lengths of about 5 cm, expanded graphite powder was attached to both sides of the carbon fibers, and then pressed to produce an expanded graphite powder-carbon fiber composite material. The amount of expanded graphite attached to carbon fiber was increased by 4 times, 9 times, 16 times, 24 times, 32 times, 49 times, and 99 times (sample 8,
9, 10, 11, 12, 13, 14), and was uniformly adhered to both sides of the carbon fiber. The expanded graphite powder also entered between the carbon fiber filaments and sufficiently filled the voids. Even when the carbon fiber strand was bent or curved, the expanded graphite attached to the surface did not peel off.

【0028】この膨張黒鉛粉末−炭素繊維複合材におけ
る炭素繊維表面の電気抵抗を、ブロープ間距離4cmで
測定した。膨張黒鉛粉末を付着させる前の固有抵抗は、
およそ1Ωであったが、膨張黒鉛量が増すにつれて表3
に示すように固有抵抗値が小さくなり、導電性が改良さ
れることが判った。
[0028] The electrical resistance of the carbon fiber surface in this expanded graphite powder-carbon fiber composite material was measured at a distance between the probes of 4 cm. The specific resistance before attaching the expanded graphite powder is
It was approximately 1Ω, but as the amount of expanded graphite increased, Table 3
As shown in Figure 2, it was found that the specific resistance value was reduced and the conductivity was improved.

【0029】表3Table 3

【0030】[0030]

【発明の効果】本発明の炭素繊維は、極めて導電性に優
れている上に、機械的特性にも優れたものである。また
、本発明の方法によれば、上記、膨張黒鉛を被覆した炭
素繊維を高温下での加熱処理を行なうこなく、簡易に、
かつ、経済的に得ることができる。
[Effects of the Invention] The carbon fiber of the present invention not only has extremely good conductivity but also excellent mechanical properties. Further, according to the method of the present invention, the carbon fiber coated with expanded graphite described above can be easily heated without being subjected to heat treatment at high temperature.
And it can be obtained economically.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  炭素繊維表面に膨張黒鉛の被覆層を形
成してなる高導電性炭素繊維。
1. A highly conductive carbon fiber comprising a coating layer of expanded graphite formed on the surface of the carbon fiber.
【請求項2】  膨張黒鉛粉末を炭素繊維表面上に付着
させた後、これを加圧成形することを特徴とする請求項
1記載の高導電性炭素繊維の製造方法。
2. The method for producing highly conductive carbon fibers according to claim 1, wherein the expanded graphite powder is adhered onto the surface of the carbon fibers and then pressure-molded.
JP2410554A 1990-12-14 1990-12-14 Highly electrically conductive carbon fiber and its production Withdrawn JPH04222275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2410554A JPH04222275A (en) 1990-12-14 1990-12-14 Highly electrically conductive carbon fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2410554A JPH04222275A (en) 1990-12-14 1990-12-14 Highly electrically conductive carbon fiber and its production

Publications (1)

Publication Number Publication Date
JPH04222275A true JPH04222275A (en) 1992-08-12

Family

ID=18519707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2410554A Withdrawn JPH04222275A (en) 1990-12-14 1990-12-14 Highly electrically conductive carbon fiber and its production

Country Status (1)

Country Link
JP (1) JPH04222275A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005024119A1 (en) * 2003-09-02 2005-03-17 Nagoya Oilchemical Co., Ltd. Flame-retardant sheet and formed article therefrom
CN103343451A (en) * 2013-07-25 2013-10-09 台州宏元工艺有限公司 Black impregnated canvas and preparation process thereof
WO2020255377A1 (en) * 2019-06-21 2020-12-24 株式会社大木工藝 Yarn, textile, and manufacturing method for said yarn
JP2022183133A (en) * 2021-05-28 2022-12-08 カール・フロイデンベルク・カーゲー Electrically conductive nonwoven fabric, grounding ring comprising such a nonwoven fabric and array including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005024119A1 (en) * 2003-09-02 2005-03-17 Nagoya Oilchemical Co., Ltd. Flame-retardant sheet and formed article therefrom
CN103343451A (en) * 2013-07-25 2013-10-09 台州宏元工艺有限公司 Black impregnated canvas and preparation process thereof
WO2020255377A1 (en) * 2019-06-21 2020-12-24 株式会社大木工藝 Yarn, textile, and manufacturing method for said yarn
JP2022183133A (en) * 2021-05-28 2022-12-08 カール・フロイデンベルク・カーゲー Electrically conductive nonwoven fabric, grounding ring comprising such a nonwoven fabric and array including the same

Similar Documents

Publication Publication Date Title
CA1102673A (en) Multilayer insulating material and process for production thereof
JPS6150912B2 (en)
JPH0451510B2 (en)
KR100756053B1 (en) Manufacturing method of carbon fiber for sheet heater
CN107840330B (en) Preparation method of carbon/carbon composite heat dissipation film
CN109097615A (en) Graphene enhances composite material and preparation method
JPH04222275A (en) Highly electrically conductive carbon fiber and its production
DE102013007809A1 (en) METHOD FOR COATING A GRAPHITE MATERIAL WITH PYROLYTIC BORONITRIDE AND COATED ARTICLE OBTAINED THEREWITH
EP0280233B1 (en) Method for producing carbon-carbon composite materials
JPH0536521B2 (en)
CN104999763B (en) A kind of preparation method of flexible nano interface composite material for weaving
JPS6088198A (en) Conductive fiber mat
CN109183010A (en) Hollow glass micropearl roughing in surface-nickel plating method
CN110193600B (en) Preparation method of titanium carbide reinforced titanium-coated graphite powder
CN110634589A (en) Polydopamine-coated graphene oxide-based ternary artificial pearl layer material and preparation method thereof
CN107987477B (en) Preparation method of graphene garland/epoxy resin composite material
JPH0365505A (en) Low density swollen graphite molded product and preparation thereof
Sakai et al. Effect of pre-treatment and annealing temperature on the strength of SiC-Ni monofilament composites
JP4936478B2 (en) Carbonized fabric manufacturing method and carbonized fabric
JPH08109077A (en) Manufacture of formed carbonized material consisting of single-fiber bound material
KR20210003419A (en) Manufacturing method of planar heating element using graphene carbon fiber heating paper
CN104561846B (en) A kind of preparation method of continuous lod carbon/carbon-niobium composite
JPH06190962A (en) Molded heat insulating material
CN114409403B (en) Graphite crucible
CN114908570B (en) Base film for graphene oxide coating and preparation method thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980312