JPH0422172B2 - - Google Patents

Info

Publication number
JPH0422172B2
JPH0422172B2 JP1949684A JP1949684A JPH0422172B2 JP H0422172 B2 JPH0422172 B2 JP H0422172B2 JP 1949684 A JP1949684 A JP 1949684A JP 1949684 A JP1949684 A JP 1949684A JP H0422172 B2 JPH0422172 B2 JP H0422172B2
Authority
JP
Japan
Prior art keywords
parts
weight
acid
meth
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1949684A
Other languages
Japanese (ja)
Other versions
JPS60163937A (en
Inventor
Hajime Kumada
Kazuyoshi Maruyama
Koji Tokunaga
Yukio Yokoyama
Yoichi Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP1949684A priority Critical patent/JPS60163937A/en
Publication of JPS60163937A publication Critical patent/JPS60163937A/en
Publication of JPH0422172B2 publication Critical patent/JPH0422172B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規にして有用なプラスチツクス塗装
用樹脂組成物に関し、さらに詳細には、特定の乾
性油脂肪酸変性ビニル共重合体を必須の成分と
し、セルローズ誘導体、紫外線吸収剤、さらには
ドライヤーおよび/またはポリイソシアネートも
しくはアミノ樹脂をも含んで成る、光沢、乾燥性
および肉持感にすぐれた、しかも被塗装素材表
面、つまりプラスチツクスの表面を侵しにくい特
長を有するプラスチツクス塗装用樹脂組成物に関
する。 プラスチツクスは軽量材料ないしは省エネルギ
ー材料として、自動車用、家電商品用または雑貨
用などの各種の分野で消費を伸ばす一途にある
が、それに伴つて、商品の装飾や保護機能性能向
上といつた点から、さらには高付加価値化といつ
た点から、素材表面に対して塗装を施すことが、
一般に行なわれている。 現在の処、プラスチツクス用の塗料としては、
架橋反応に与からないラツカー系のものと、架橋
反応を伴うウレタン系のものと、さらには耐熱性
のある素材に対しては、アミノ樹脂を混合したも
のとがあるが、そのうちウレタン系のものは低温
硬化性であつて、かつ塗膜性能がすぐれている処
から、上塗り用と下塗り用とを問わず、需要が増
大してきている。 ところが、このウレタン系塗料にしても、エス
テル系溶剤、ケトン系溶剤を溶剤組成物中の必須
成分として使用するためにポリスチレン、ABS、
ポリカーボネートまたは「ノリル」(米国ジエネ
ラル・エレクトリツク社製のポリフエニレンオキ
サイド)などの耐溶剤性の余りよくない被塗装素
材に対しては、白化現象やソルベントクラツクの
発生とか、被塗装素材表面の溶解が起こる処か
ら、塗膜性能がよい反面、使用可能な被塗装素材
に、あるいは予め下塗りを施さねばならないなど
の使用条件に或る種の制限を加えねばならぬこと
が多い。したがつて、こうした欠陥の少ないプラ
スチツクス用のウレタン系塗料の出現が当業界に
おける切なる要望となつている。 ところで、ラツカー系のものは古くからプラス
チツクス用塗料として使用されていて、被塗装素
材を侵すことも少なく、しかも速乾性で使い易い
という反面、塗膜性能、光沢または外観がウレタ
ン系のものに比して劣るし、架橋反応に与らない
ために、塗膜性能が、同様にウレタン系のものに
比して数段劣つているし、FRPまたはPBTなど
の耐熱性の比較的良好な素材向けには、加熱硬化
タイプたるアミノ樹脂併用系のものも使用されて
いるが、こうしたものとても、光沢、肉持感など
の点で、よりよいものが望まれている。 したがつて、こうしたラツカー系とウレタン系
との双方の欠陥を補うこともでき、しかもアミノ
樹脂併用系の欠陥にも改善しうるような塗料系の
出現が望まれているわけである。 これとは別に、エポキシ基含有アクリル共重合
体に乾性油脂肪酸を付加させて空気硬化性の樹脂
を得るという方法は既に英国特許第767476号明細
書に開示されており、またこのような方法によつ
て得られた樹脂が顔料に対する湿潤不足によつて
光沢不足となつている欠点を解消すべく提案され
たのが特開昭53−51232号および53−99231号公報
に記載されているような改良方法であると言えよ
う。 しかしながら、上記の如き各改良方法はいずれ
も、乾性油脂肪酸をアクリル樹脂中のグリシジル
基に付加せしめたのちに、さらに無水テトラヒド
ロフタル酸の如き無水ジカルボン酸でエステル化
せしめるという方法である処から、(1)アクリル共
重合体の製造と、(2)該共重合体への乾性油脂肪酸
の付加による変性と、さらに(3)該脂肪酸変性共重
合体と無水ジカルボン酸とのエステル化との三段
階からなる総反応時間の伸長化と、反応コントロ
ールの複雑化とを招来し、生産上のコストアツプ
化となるものであるために、好ましい方法である
とは言えない。 しかるに、本発明者らは上述した如き実状に鑑
み、より簡便な方法によつて、顔料に対する湿潤
性が良好であつて、しかも光沢にすぐれた乾性油
脂肪酸変性ビニル共重合体を得るべく、加えて該
変性共重合体を使用して、速乾性で光沢にも肉持
感にもすぐれ、しかも被塗装素材表面を侵しにく
いプラスチツクス塗装用の樹脂組成物を得るべく
鋭意検討した結果、本発明を完成させるに到つ
た。 すなわち、本発明はエポキシ基含有ビニルモノ
マー5〜25重量%、芳香族系ビニルモノマー0〜
60重量%、共重合可能な不飽和結合を有するアル
キド樹脂0〜10重量%、およびこれら上記の各ビ
ニルモノマーと共重合可能な他のビニルモノマー
5〜95重量%を共重合させ、次いでかくして得ら
れるエポキシ基含有ヒニル共重合体の100重量部
に対し、よう素価が100〜200なる乾性油脂肪酸を
5〜60重量部となる割合で付加せしめて得られる
変性ビニル共重合体(A)の60〜100重量%と、セル
ローズ誘導体(B)の0〜40重量%との混合物に対し
て、さらに該混合物の重量を基準として0〜10%
の紫外線吸収剤(C)を配合して成るか、あるいはさ
らにドライヤー(D)および/またはポリイソシアネ
ートもしくはアミノ樹脂(E)をも配合せしめて成
る、光沢、乾燥性および肉持感にすぐれ、しかも
被塗装素材表面塗膜を侵しにくいプラスチツクス
塗装用樹脂組成物を提供するものである。 ここにおいて、前記したよう素価が100〜200な
る乾性油脂肪酸として代表的なものには、綿実
油、大豆油、米糖油、脱水ひまし油、あまに油、
トール油または支那桐油などの天然油脂の脂肪酸
や、「ハイジエン」、「ハイジエンH」、「ハイジエ
ンS」、「SK共役脂肪酸#20」〔以上、綜研化学(株)
製品〕または「パモリーン(PAMOLYN)200、
300」(米国ハーキユレス社製品)の如き合成乾性
油脂肪酸などであるが、これらは単独であるいは
任意の割合で混合させて用いることができ、ま
た、かかる脂肪酸系のよう素価を調整するため
に、場合によつては、やし油脂肪酸、ひまし油脂
肪酸、オクチル酸、ラウリン酸、「バーサテイツ
ク酸」(オランダ国シエル社製の合成乾性油脂肪
酸)、ステアリン酸またはヒドロキシステアリン
酸などのよう素価が100未満の脂肪酸や飽和脂肪
酸を、得られる変性ビニル共重合体(A)の空気乾燥
性を損わない範囲内の量でならば、前掲した如き
乾性油脂肪酸と混合して使用することもできるの
は勿論である。 前掲の如き乾性油脂肪酸の使用量としては、前
記エポキシ基含有ビニル共重合体の100重量部に
対して5〜60重量部、好ましくは10〜50重量部と
なる割合が適当である。 この使用量が5重量部未満の場合には、目的変
性共重合体(A)が空気硬化性に乏しいものとなり、
塗膜も十分な三次元構造のものが得られなくなる
ために物性や耐溶剤性が劣化することになるし、
逆に60重量部を超える場合には、黄変し易くなつ
たり、耐候性も低下するようになる上に、得られ
る塗膜の架橋が進み過ぎる結果、可撓性が損なわ
れ、脆い塗膜となり、いずれも実用に供し得な
い。 次に、前記したエポキシ基含有ビニル共重合体
について述べることにすると、まずエポキシ基含
有ビニルモノマーとして代表的なものには、グリ
シジル(メタ)アクリレート、β−メチルグリシ
ジル(メタ)アクリレートもしくは(メタ)アリ
ルグリシジルエーテルをはじめ、(メタ)アクリ
ル酸、フマル酸、マレイン酸もしくはイタコン酸
の如き不飽和モノーないしはジカルボン酸、また
はかかる不飽和ジカルボン酸と一価アルコールと
のモノエステル類などのα,β−エチレン性不飽
和カルボン酸類や、「HA−MP」もしくは
「HOA−HS」〔以上、大阪有機化学(株)製のカルボ
キシル基含有アクリルモノマー〕などのカルボキ
シル基含有化合物、あるいはモノ−2−(メタ)
アクリロイルオキシエチルフタレートや、2−ヒ
ドロキシエチル(メタ)アクリレート、2−ヒド
ロキシプロピル(メタ)アクリレートもしくはジ
−2−ヒドロキシエチルフマレートなどの水酸基
含有ビニルモノマーとマレイン酸、フタル酸、テ
トラヒドロフタル酸、ヘキサヒドロフタル酸、ベ
ンゼントリカルボン酸、「ハイミツク酸」〔日立化
成工業(株)製品〕、ドデシニルこはく酸、こはく酸
またはテトラクロルフタル酸などのポリカルボン
酸(無水物)との等モル付加反応によつて得られ
る付加物などの如き各種の不飽和カルボン酸に、
「エプクロン200、400、441、850もしくは1050」
〔大日本インキ化学工業(株)製のエポキシ樹脂〕、
「エピコート828、1001もしくは1004」(シエル社
製のエポキシ樹脂)、「アラルダイト6071もしくは
6084」(スイス国チバ・ガイギー社製のエポキシ
樹脂)、「チツソノツク221」〔チツソ(株)製のエポキ
シ化合物〕または「デナコールEX−611」〔長瀬
産業(株)製のエポキシ化合物〕の如き、1分子中に
少なくとも2個のエポキシ基を有する各種のポリ
エポキシ化合物を、等モル比で付加反応せしめて
得られるエポキシ基含有重合性化合物などがあつ
て、これらは単独でまたは2種以上を混合して用
いることができるが、反応性、反応工程数、最終
生成物の粘度または価格などを考慮すれば、グリ
シジル(メタ)アクリレートやβ−メチルグリシ
ジル(メタ)アクリレートなどの比較的分子量の
低いタイプのモノマーが最も使い易い。 当該エポキシ基含有ビニルモノマーは5〜25重
量%なる範囲で用いられるが、当該モノマーの中
のエポキシ基は前掲した如き乾性油脂肪酸との反
応に与かるものである処から、当該モノマーの使
用量は主としてこの乾性油脂肪酸の使用量に依存
して決定されるべきことは言うまでもなく、通
常、この乾性油脂肪酸カルボキシル基の1当量当
り1.0〜1.25当量となる範囲のエポキシ基となる
割合で使用されるが、反応速度の点と、残存カル
ボキシル基が塗膜に及ぼす悪影響を予防しうる点
とから好ましい。 また、前記した共重合可能な不飽和結合を有す
るアルキド樹脂は、酸化チタン、弁柄の如き吸油
量の小さい顔料は言うに及ばず、とくにキナクリ
ドン系、フタロシアニン系、アゾ系などの如き有
機顔料やカーボン・ブラツクの如き分散性のよく
ない、吸油量の比較的大きい顔料の分散性を改善
したい場合に使用されるものであつて、その意味
において、当該アルキド樹脂は塗膜性能それ自体
には余り関与しないものと言える。 当該アルキド樹脂としては、油または脂肪酸で
変性されたもの、あるいはこれらによつて変性さ
れていない、いわゆるオイルフリー・アルキド樹
脂のいずれも用いられるが、本発明においては、
これら各アルキド樹脂のうち、特に各ビニルモノ
マーと共重合性ある不飽和結合を有するタイプの
ものが、本発明においては適している。 当該アルキド樹脂としては、オクチル酸、ラウ
リン酸、ステアリン酸もしくは「バーサテイツク
酸」の如き飽和脂肪酸;オレイン酸、リノール
酸、リノレイン酸、エレオステアリン酸もしくは
リシノール酸の如き不飽和脂肪酸;「パモリーン
200、300」、支那桐油(脂肪酸)、あまに油(脂肪
酸)、脱水ひまし油(脂肪酸)、トール油(脂肪
酸)、綿実油(脂肪酸)、大豆油(脂肪酸)、オリ
ーブ油(脂肪酸)、サフラワー油(脂肪酸)、ひま
し油(脂肪酸)もしくは米糖油(脂肪酸)の如き
(半)乾性油(脂肪酸)または水添やし油(脂肪
酸)、やし油(脂肪酸)もしくはパーム油(脂肪
酸)の如き不乾性油(脂肪酸)などの油または脂
肪酸の1種あるいは2種以上の混合物を使用し、
あるいは使用せずに、エチレングリコール、プロ
ピレングリコール、グリセリン、トリメチロール
エタン、トリメチロールプロパン、ネオペンチル
グリコール、1,6−ヘキサンジオール、1,
2,6−ヘキサントリオール、ペンタエリスリト
ールもしくはソルビトールの如き多価アルコール
類の1種あるいは2種以上と、安息香酸、p−t
−ブチル安息香酸、(無水)フタル酸、ヘキサヒ
ドロ(無水)フタル酸、テトラヒドロ(無水)フ
タル酸、フタル酸、テトラクロロ(無水)フタル
酸、ヘキサクロロ(無水)フタル酸、テトラブロ
モ(無水)フタル酸、トリメリツト酸、「ハイミ
ツク酸」、(無水)こはく酸、(無水)マレイン酸、
(無水)イタコン酸、フマル酸、アジピン酸、セ
バチン酸またはしゆう酸などのカルボン酸の1種
または2種以上とを常法により、さらに必要に応
じて、「カーデユラE」(シエル社製品)などの脂
肪酸のグリシジルエステルのようなモノエポキシ
化合物、「エピクロン200、400」、「エピコート
828、1001」のようなポリエポキシ化合物、ある
いはトリレンジイソシアネート、ヘキサメチレン
ジイソシアネート、イソホロンジイソシアネート
もしくは4,4′−メチレンビス(シクロヘキシル
イソシアネート)などのジイソシアネート類、こ
れらの各ジイソシアネート類と上記多価アルコー
ル類や水との付加反応により得られるポリイソシ
アネート類、またはジイソシアネート類同士の
(共)重合により得られるイソシアヌル環を有す
るポリイソシアネート類の1種もしくは2種以上
で、前記した多価アルコール類やカルボン酸の一
部を置き換えて、常法により反応させて得られる
ものが適当である。 そのさい、当該アルキド樹脂として共重合性の
不飽和結合を有しない、または少ない飽和脂肪酸
ないしは不乾性油(脂肪酸)変性タイプとか、あ
るいは油または脂肪酸で変性されていないオイル
フリー・アルキド樹脂なるタイプのものについて
は、他の各ビニルモノマーのグラフト点となるべ
き共重合性不飽和結合を、(無水)マレイン酸や
フマル酸などの不飽和カルボン酸を用いて当該ア
ルキド樹脂中に導入せしめることが必要であるこ
とは言うまでもない。 そして、このようにして得られる当該アルキド
樹脂は0〜10重量%の範囲で用いられるが、10重
量%を超えて多量に用いるときは耐溶剤性、耐汚
染性などが劣るようになつている。しかも重合時
において、当該アルキド樹脂中のカルボキシル基
と前記エポキシ基含有ビニルモノマー中のエポキ
シ基とが反応してゲル化し易くなるなどの欠点が
出てくるので好ましくない。 したがつて、当該アルキド樹脂の使用量として
は、上述した如き範囲内で、これらの基同士の反
応によつてゲル化が起こらないように酸価、油
長、共重合性不飽和結合の量ならびに当該アルキ
ド樹脂の分子量および得られる変性共重合体(A)の
分子量などを考慮して決定するのがよい。 次に、前記した芳香族系ビニルモノマーとして
代表的なものには、スチレン、α−メチルスチレ
ン、p−t−ブチルスチレンまたはビニルトルエ
ンなどがあるが、就中、スチレンが価格の点で最
も好ましい。 そして、当該芳香族系ビニルモノマーの使用量
としては60重量%を超えて多量に用いられるとき
は、得られる塗膜の耐候性が劣つて屋外用の塗料
用樹脂として不向きなものとなるから、使用する
場合には60重量%以内で光沢、肉持感および耐候
性などの如き各要求性能に応じて適宜設定される
べきである。光沢、肉持感、レベリング性および
耐候性のバランスからは10〜50重量%の範囲が好
ましい。 さらに、以上に掲げられたエポキシ基含有ビニ
ルモノマー、芳香族系ビニルモノマーおよび共重
合可能な不飽和結合を有するアルキド樹脂と共重
合可能な他のビニルモノマーの代表的にものを挙
げれば、メチル(メタ)アクリレート、エチル
(メタ)アクリレート、n−プロピル(メタ)ア
クリレート、i−プロピル(メタ)アクリレー
ト、n−ブチル(メタ)アクリレート、i−ブチ
ル(メタ)アクリレート、t−ブチル(メタ)ア
クリレート、2−エチルヘキシル(メタ)アクリ
レート、ラウリル(メタ)アクリレート、シクロ
ヘキシル(メタ)アクリレート、ベンジル(メ
タ)アクリレート、ジブロモプロピル(メタ)ア
クリレート、トリブロモフエニル(メタ)アクリ
レートまたはアルコキシアルキル(メタ)アクリ
レートの如き各種の(メタ)アクリレート類;マ
レイン類、フマル酸もしくはイタコン酸の如き不
飽和ジカルボン酸と1価アルコールとのジエステ
ル類;酢酸ビニル、安息香酸ビニルまたは「ベオ
バ」(シエル社製のビニルエステル)の如きビニ
ルエステル類;「ビスコートBF、BFM、3Fもし
くは3FM」〔大阪有機化学(株)製の含フツ素系アク
リルモノマー〕、パーフルオロシクロヘキシル
(メタ)アクリレート、ジパーフルオロキクロヘ
キシルフマレートまたはN−i−プロピルパーフ
ルオロオクタンスルホンアミドエチル(メタ)ア
クリレートの如き(パー)フルオロアルキル基含
有のビニルエステル類、ビニルエール類、(メタ)
アクリレート類もしくは不飽和カルボン酸エステ
ル類などの含フツ素化合物;あるいは(メタ)ア
クリロニトリル、塩化ビニル、塩化ビニリデン、
フツ化ビニルもしくはフツ化ビニリデンなどのオ
レフイン類である。 また、水酸基含有ビニルモノマーとして代表的
なものには2−ヒドロキシエチル(メタ)アクリ
レート、2−ヒドロキシプロピル(メタ)アクリ
レート、3−ヒドロキシプロピル(メタ)アクリ
レート、2−ヒドロキシブチル(メタ)アクリレ
ート、3−ヒドロキシブチル(メタ)アクリレー
ト、4−ヒドロキシブチル(メタ)アクリレー
ト、3−クロロ−2−ヒドロキシプロピル(メ
タ)アクリレート、ジ−2−ヒドロキシエチルフ
マレート、モノ−2−ヒドロキシエチル−モノブ
チルフマレートまたはポリエチレングリコールモ
ノ(メタ)アクリレートの如きα,β−エチレン
性不飽和カルボン酸のヒドロキシアルキルエステ
ル類;(メタ)アクリル酸、クロトン酸、マレイ
ン酸、フマル酸、イタコン酸もしくはシトラコン
酸の如き不飽和モノマーないしはジカルボン酸を
はじめ、これらのジカルボン酸と1価アルコール
とのモノエステル類などのα,β−エチレン性不
飽和カルボン酸;上記α,β−不飽和カルボン酸
ヒドロアルキルエステル類と前記した如き各種の
ポリカルボン酸(無水物)との付加物と、「カー
デユラE」、やし油脂肪酸グリシジルエステルも
しくはオクチル酸グリシジルエステルの如き1価
カルボン酸のモノグリシジルエステル類またはブ
チルグリシジルエーテル、エチレンオキシドもし
くはプロピレンオキシドの如きモノエポキシ化合
物と付加物;またはN−メチロール化アクリルア
ミドの如きメチロール基含有化合物あるいはヒド
ロキシエチルビニルエーテルなども使用できる
が、かかる水酸基含有ビニルモノマーの如き官能
基を含んだモノマー類にあつては、ゲル化に至ら
ぬように使用量を決定する必要があるのは無論で
あり、当該水酸基含有ビニルモノマー中の水酸基
と前記(β−メチル)グリシジル(メタ)アクリ
レート中の(β−メチル)グリシジル基との反応
によるゲル化が起こらぬようにその量を決定すべ
きである。 次に、前記したセルローズ誘導体(B)としては、
通常、塗料用として用いられるものであればいず
れも使用できるが、そのうちでも特に代表的なも
のを挙げればニトロセルローズ、セルローズアセ
テート、セルローズアセテートプロピオネート、
セルローズアセテートブチレート、メチルセルロ
ーズ、エチルセルローズまたはベンジルセルロー
ズなどである。 当該セルローズ誘導体は乾燥性、耐ガソリン性
および付着性などをさらにレベルアツプさせる必
要のある場合に用いればよいが、そのさいの使用
量としては40重量%以下、好ましくは30重量%以
下が適当であり、所望によりジブチルフタレート
またはジオクチルフタレートなどの如き公知慣用
の可塑剤を併用することを何ら妨げるものではな
い。 この使用量が40重量%を超える場合には耐汚染
性、耐水性および耐湿性などが目立つて低下する
ので好ましくない。 また、前記した紫外線吸収剤(C)は本発明組成物
の耐久性をさらに一層レベルアツプさせる必要の
ある場合に用いられる成分であり、その都度添加
混合せしめればよいが、その場合には前記変性共
重合体(A)とセルローズ誘導体(B)との総重量を基準
として0〜10%なる範囲で用いればよい。 その使用量が10%を超えて多く用いれば効果は
大きい反面、耐水性が低下したり、コスト面でも
不利になつてくることが多い。 当該紫外線吸収剤(C)の代表的なものを示せば、
ベンゾフエノン、2,4−ジヒドロベンゾフエノ
ン、2,2′,4,4′−テトラヒドロキシベンゾフ
エノン、2−ヒドロキシ−4−メトキシベンゾフ
エノン、2,2′−ジヒドロキシ−4,4′−ジメト
キシベンゾフエノン、2,2′−ジヒドロキシベン
ゾフエノン、2−ヒドロキシ−4−オクトキシベ
ンゾフエノン、2−ヒドロキシ−4−ドデシロキ
シベンゾフエノン、2−ヒドロキシ−4−メトキ
シ−5−スルホベンゾフエノン、5−クロロ−2
−ヒドロキシベンゾフエノン、2,2′−ジヒドロ
キシ−4,4′−ジメトキシ−5−スルホベンゾフ
エノン、2−ヒドロキシ−4−メトキシ−2′−カ
ルボキシベンゾフエノン、2−ヒドロキシ−4−
(2−ヒドロキシ−3−メチル−アクリロキシイ
ソプロポキシベンゾフエノン;2−(2′−ヒドロ
キシ−5′−メチル−フエニル)−ベンゾトリアゾ
ール、2−(2−ヒドロキシ−3,5−ジ−t−
アミル−フエニル)−2H−ベンゾトリアゾール、
2−(2′−ヒドロキシ−3′,5′−ジ−t−ブチル−
フエニル)ベンゾトリアゾール、2−(2′−ヒド
ロキシ−3′,5′−ジ−t−ブチル−5′−メチル−
フエニル)ベンゾトリアゾール、2−(2′−ヒド
ロキシ−3′,5′−ジ−t−ブチル−フエニル)−
5−クロロ−ベンゾトリアゾール、2−(2′−ヒ
ドロキシ−3′,5′−ジ−t−イソアミル−フエニ
ル)ベンゾトリアゾール、(2−ヒドロキシ−5
−t−ブチルフエニル)ベンゾトリアゾール;フ
エニルサリシレート、4−t−ブチル−フエニル
サリシレート、p−オクチル−フエニルサリシレ
ート;エチル−2−シアノ−3,3′−ジフエニル
−アクリレート、2−エチルヘキシル−2−シア
ノ−3,3′−ジフエニル−アクリレート;ヒドロ
キシ−5−メトキシ−アセトフエノン、2−ヒド
ロキシ−ナフトフエノン;2−エトキシエチル−
p−メトキシシンナメート;ニツケル−ビスオク
チルフエニルスルフアイド;4−ベンゾイルオキ
シ−2,2,6,6−テトラメチルピペリジン、
ビス−(2,2,6,6−テトラメチル−4−ピ
ペリジル)セバケートまたは「チヌビン292」(チ
バ・ガイギー社製品)などであり、これらは単独
の使用でも2種以上の併用でもよい。 さらに有効性を増すために、あるいは「スミラ
イザーBHT」〔住友化学工業(株)製品〕、「シーノツ
クスBCS」〔白石カルシウム(株)製品〕、「イルガノ
ツクス1010もしくは1076」(チバ・ガイギー社製
品)、「ノクライザーTNP」〔大内新興(株)製品〕ま
たは「アンチオキシダントKB」(西ドイツ国バ
イエル社製品)などの如き周知慣用の酸化防止剤
を併用することもできる。 次に、前記したドライヤー(D)としては、通常、
塗料用として慣用されているものであればいずれ
でもよいが、そのうちでも特に代表的なものとし
てはコバルト、バナジウム、マンガン、セリウ
ム、鉛、鉄、カルシウム、亜鉛、ジルコニウム、
セリウム、ニツケルもしくは錫などのナフテン酸
塩、オクチル酸塩または樹脂酸塩などであるが、
その使用量としては慣用量の中から、このドライ
ヤーの種類、各成分の組み合わせあるいは要求性
能などに応じて適宜決定すればよい。 そのさいに、ベンゾイルパーオキシド、メチル
エチルケトンパーオキシドもしくは5−ブチルパ
ーベンゾエートなどの有機過酸化物を少量併用し
て当該ドライヤーの使用効果を高めることもでき
る。 また、顔料分散剤またはレベリング剤などの公
知慣用の塗料用添加剤を併用することもできる。 さらに、前記したポリイソシアネート(E)として
代表的なものには、トリレンジイソシアネート、
キシリレンジイソシアネートもしくはジフエニル
メタンジイソシアネートの如き芳香族ジイソシア
ネート;テトラメチレンジイソシアネート、ヘキ
サメチレンジイソシアネートもしくはトリメチル
ヘキサメチレンジイソシアネートの如き脂肪族ジ
イソシアネート;またはイソホロンジイソシアネ
ート、メチルシクロヘキサン−2,4−(ないし
は−2,6−)ジイソシアネート、4,4′−メチ
レンビス(シクロヘキシルイソシアネート)もし
くは1,3−ジ(イソシアネートメチル)シクロ
ヘキサンの如き脂環式ジイソシアネートなどの如
きジイソシアネート類、あるいはそれらの各ジイ
ソシアネート類と前記多価アルコール類、イソシ
アネート基と反応する官能基を有する低分子量の
ポリエステル系樹脂(油変性タイプのものも含
む。)、アクリル系共重合体(スチレンをコモノマ
ー成分とするものも含む。)または水などとの付
加物、さらにはビユレツト体あるいは上記した各
種ジイソシアネート類同士の(共)重合体(オリ
ゴマーも含む。)などがある。また、これらのポ
リイソシアネート類をメチルエチルケトンオキシ
ムまたはカプロラクタムなどの如き公知慣用のブ
ロツク化剤でブロツクしたものも素材や硬化条件
などによつては使用できる。 ところで、当該ポリイソシアネートを使用する
に当つては、紫外線に黄変したり、クラツクを生
じたりする芳香族ジイソシアネートやそれらの誘
導体の使用は耐候性の必要な屋外関係の上塗り用
としては不適当であり、専ら耐候性の余り必要と
されない屋内関係の上塗り用とかプライマーサー
フエーさーの如き下塗り塗料として適用である。
したがつて、こうした場合には、屋外関係の上塗
り塗料用としては耐候性の良い脂肪族ジイソシア
ネートや脂環式ジイソシアネート、あるいはそれ
らの各種誘導体などを用いればよい。 当該ポリイソシアネートの使用料としては、
OH/NCO=1/0.1〜1/1.2なる当量比の範囲
が適当である。 他方、FRP、FRTPまたはPBTなどの如き比
較的耐熱性の良好な素材の場合には硬化条件さえ
合致すれば、アミノ樹脂の使用も可能であるが、
かかるアミノ樹脂として代表的なものには、尿
素、グアナミン類、あるいはメラミンを始めとす
る各種トリアジン類とアルデヒドとの縮合反応に
より得られるものがありが、特にこれらの縮合反
応物をさらにメタノール、エタノール、n−ブタ
ノールまたはiso−ブタノールなどの低級アルコ
ールでアルキル化せしめたものが、相溶性ないし
は溶解性の点で好ましい。 当該アミノ樹脂の使用量としては、前記したそ
れぞれ(A)成分の60〜100重量%と(B)成分の40〜0
重量%とからなる混合物とこのアミノ樹脂との重
量比:前者混合物/後者樹脂=70〜95/5〜30な
る範囲内が、物性の面からは好ましい。また、こ
の場合においては焼付温度の低温化や硬化の促進
化のためには、燐酸やp−トルエンスルホン酸な
どの如き公知慣用の硬化触媒を、慣用量で使用す
ることもできる。さらに、当該アミノ樹脂の使用
のさいに、前掲された如きブロツクイソシアネー
トの少量を併用することもできる。 本発明組成物を調製するに当つては、まず、前
記エポキシ基含有ビニル共重合体(a−1)を、
通常は、溶液重合で調製したのち、次いでこの共
重合体(a−1)に前記した乾性油脂肪酸(a−
2)を付加せしめて目的とする脂肪酸変性ビニル
共重合体(A)を得るという操作が為されるが、この
第一段目の反応とも言うべき共重合反応において
は、共重合体(a−1)へのポリマー転化率が、
通常においては、95%以上確保されたのちであれ
ば、もはや該共重合反応の完結を待たずとも、乾
性油脂肪酸(a−2)を加え、第二段目の反応と
も言うべき付加反応を進めることができるので有
利である。 また、反応温度も格別制限を受けるものではな
く、共重合反応時には、前掲した如き各成分化合
物の重合に適した温度、つまり通常採用されてい
るような50〜140℃なる範囲の温度であればよく、
他方、付加反応時には前掲された如き各反応成分
の付加に適した温度、つまり110〜180℃なる範囲
の温度であればよく、とくに付加反応時において
は、この反応を促進せしめるべく高温となること
もできるので、これまた有利である。 さらに、付加反応を促進せしめるために、エポ
キシ基の開環反応用触媒を用いてもよく、その場
合には、公知慣用の触媒がいずれも使用できる
が、そのうちでも代表的なものにはトリエチルア
ミン、ジエチレントリアミンもしくはイミダゾー
ルの如き3級アミン類、BF3錯体または燐酸もし
くは硫酸の如き酸類などである。 また、重合を行なうに当つて用いられる重合開
始剤としては公知慣用のものであればいずれも使
用できるが、そのうちでも特に代表的なものを例
示すれば、アゾビスイソブチロニトリル、ベンゾ
イルパーオキシド、t−ブチルパーベンゾエー
ト、t−ブチルパーオクテート、ジ−t−ブチル
パーオキシドなである。 溶剤も公知慣用のものが使用できるが、そのう
ちでも特に代表的なものを挙げればトルエンもし
くはキシレンの如き芳香族系、酢酸エチル、酢酸
ブチルもしくはセロソルブアセテートの如きエス
テル系、メタノールもしくはブタノールの如きア
ルコール系、またはメチルエチルケトンもしくは
メチルイソブチルケトンの如きケトン系などであ
り、さらにはヘキサン、ヘプタン、シクロヘキサ
ン、メチルシクロヘキサン、石油ナフサまたはミ
ネラルスピリツトの如き脂肪族ないしは脂環式系
の溶剤も使用可能であり、とくに脂肪族系や脂環
式系溶剤はプラスチツクスの表面を侵しにくい塗
料を得るためには欠くべからざるものである。 かかる溶剤の種類、組み合わせ、そして使用量
としては、前記乾性油脂肪酸の使用量や、エポキ
シ基含有ビニル共重合体中のビニル部分の使用量
などを考慮の上で適宜決定することができる。 このようにして得られる乾性油脂肪酸変性ビニ
ル共重合体は、アルキド樹脂をグラフトさせた乾
性油脂肪酸変性ビニル共重合体という形をとつて
いる処から、アルキド樹脂の良好な顔料への湿潤
性によつてすぐれた光沢がもたらされるし、かか
る特長的な構造の故に、ドライヤーを配合するこ
とで空気硬化も可能であるといつた利点を有する
ものである。 また、本発明においてはエポキシ基含有ビニル
共重合体の調製中、つまりラジカル重合中にアル
キド樹脂が単にラジカル重合だけではなく、前記
特定量の範囲内でのアルキル樹脂中のカルボキシ
ル基が前記エポキシ基含有ビニルモノマー中のエ
ポキシ基との付加反応も進行する結果、得られる
変性共重合体(A)はその分子量分布も広いものであ
る処から、顔料分散性にもすぐれていると共に、
肉持感と素地との密着性にもすぐれるという特長
を有するものが得られるといつた利点もある。 本発明組成物は前述した如き当業界における
種々の要望に合致するものである。すなわち、本
発明のプラスチツクス塗装用樹脂組成物は、第三
のタイプのプラスチツクス塗装用塗料と言つてよ
く、変性共重合体(A)中に含有される乾性油脂肪酸
残基に基く酸化重合による架橋反応あるいは変性
共重合体(A)中に若干存在している水酸基と、それ
に対して配合されるポリイソシアネート(E)との架
橋反応、さらにはこれら両者の(並行)架橋反応
なる三つのタイプの架橋反応が、1種類の変性ビ
ニル共重合体(A)について、所望に応じて適用でき
るし、かつ、こうした架橋反応を通してすぐれた
性能を有する塗膜が得られるという特異な組成物
であるということができる。 そして、本発明組成物を適用することのできる
素材としては、ABS、「ノリル」、ポリカーボネ
ート、メラミン樹脂、ポリスチレン、尿素樹脂、
ポリエステル樹脂、ポリプロピレンまたはRIM、
ウレタンなどの如き単一成分で構成されているも
のから、多成分系で構成される混合系ないしは複
合系(各種ポリマー・アロイをも含む。)、あるい
はFRT、FRTPまたはFR−RIMなどの、いわゆ
る複合素材まで幅広く使用できる。 本発明組成物の必須構成成分としての前記変性
ビニル共重合体(A)には乾性油脂肪酸が導入されて
いるために、本発明組成物は全体として、ウレタ
ン系に使用されているアクリルポリオール用の溶
剤よりも溶解力の弱い溶剤(弱溶剤)に溶解され
易くなつている処から、弱溶剤を多量に使用でき
るという利点があり、したがつて被塗装素材表面
を侵しにくいプラスチツクス用塗料を与えること
ができる。 さらに、エポキシ基含有ビニル共重合体に乾性
油脂肪酸を付加反応せしめるという独得の手法に
より、本発明組成物の必須成分たる変性共重合体
(A)は水酸基を有することにもなるし、加えて本発
明においては、所要によりエポキシ基含有ビニル
モノマーの他にも、水酸基含有ビニルモノマーを
も併用することができる処から、このようにすれ
ば更に水酸基を含有せしめることもでき、その結
果、ポリイソシアネート(E)を配合せしめることに
よつてウレタン架橋硬化の手法も採れるし、さら
にはドライヤー(D)による酸化重合架橋硬化と、こ
のウレタン架橋硬化との二つの架橋反応による硬
化の手法も採れるといる利点がある。 次に、本発明を参考例、実施例および比較例に
より具体的に説明するが、以下において部および
%は特に断りのない限り、すべて重量基準である
ものとする。 参考例 1 〔変性ビニル共重合体(A)の調製例〕 温度計、還流冷却器、撹拌機および窒素ガス導
入口を備えた四ツ口フラスコに、キシレンの800
部、「ベツコゾールP−470−70」〔大日本インキ
化学工業(株)製の長油アルキド樹脂〕の71部および
ジ−t−ブチルパーオキシド(以下、DTBPOと
略記する。)の2部を仕込んで125℃に昇温し、同
温度になつた処で、スチレン(St)の400部、メ
チルメタクリレート(MMA)の300部、アクリ
ロニトリル(AN)の55部、グリシジルメタクリ
レート(GMA)の125部、エチルアクリレート
(EA)の70部、アゾビスイソブチロニトリル
(AIBN)の10部、t−ブチルパーオクテート
(TBPO)の7部およびt−ブチルパーベンゾエ
ート(TBPB)の4部からなる混合物を5時間
で滴下し、滴下終了後も同温度に5時間保持させ
て不揮発分(NV)が53.9%となつた処で、あま
に油脂肪酸の50部と大豆油脂肪酸の150部と2−
メチルイミダゾール(2MIZ)の0.2部とを加えて
同温度でグリシジル基とカルボキシル基との付加
反応を行なうと13時間にして、NVが60.3%で、
粘度(ガードナー;以下同様)がZ6で、酸価が
2.6なる脂肪酸変性ビニル共重合体の溶液を得た
が、このものにキシレンの400部を加えてNVを
50%に調整した。 かくして得られた樹脂溶液はNVが50.1%で、
粘度がY−Zで、色数(ガードナー;以下同様)
が5〜6で、ゲル・パーミエーシヨン・クロマト
グラフイー(GPC)による数平均分子量(以下、
Mnと略記する。)が8300なる透明な溶液であつ
た。以下、これを変性共重合体(A−1)と略記
する。 参考例 2 (同上) 参考例1と同様にフラスコに、「ベツコゾール
1343」(同上社製の中油アルキド樹脂)の200部、
ターペンの1300部およびDTBPOの3部を仕込ん
で120℃で昇温し、同温度でStの300部、MMAの
300部、GMAの200部、n−ブチルアクリレート
(BA)の100部、AIBNの15部、TBPOの10部お
よびTBPBの2部からなる混合物を5時間で滴
下し、さらに同温度に12時間保持して重合を続行
せしめてNVが42.0%なる、この段階ではターペ
ンに溶解していない白色ワツクス状のビニル共重
合体が得られた。 次いで、この共重合体に棉実油脂肪酸の100部
と脱水ひまし油脂肪酸の300部とを加えて150℃
で、酸価が約1となるまで反応せしめた処、NV
が50.8%で、粘度がZ−Z1で、酸価が1.1で、色
数が1〜2で、かつが7200なる透明な樹脂溶
液が得られた。以下、これを変性共重合体(A−
2)と略記する。 参考例 3 (同上) 参考例1と同様にフラスコに、キシレンの1200
部、「ベツコゾールP−470−70」の29部、
DTBPOの4部を仕込んで125℃に昇温して同温
度になつた処でStの200部、MMAの230部、
GMAの125部、BAの100部、n−ブチルメタク
リレート(BMA)の225部、2−ヒドロキシエ
チルメタクリレート(2−HEMA)の100部、
AIBNの5部、TBPOの3部およびTBPBの5部
からなる混合物を5時間で滴下し、さらに同温度
で重合を続行させてNVが44%になつた処で、あ
まに油脂肪酸の100部とサフラワー油脂肪酸の100
部とBF3エーテラートの0.02部とを加えて酸価1
付近まで反応させた処、NVが50.5%で、粘度が
Z4で、色数が2で、酸価が1.8で、水酸基価が35
で、かつが14000なる透明な樹脂溶液が得ら
れた。以下、これを変性共重合体(A−3)と略
記する。 参考例 4 (同上) 参考例1と同様のフラスコに、キシレンの1075
部、「ベツコゾールJ−571」(同上社製の長油ア
ルキド樹脂)の125部およびDTBPOの4部を仕
込んで125℃に昇温し、同温度になつた処で、St
の400部、BMAの200部、GMAの50部、2−
HEMAの100部、ANの50部、BAの100部、
TBPOの18部、TBPBの4部からなる混合物を
4時間で滴下し、12時間重合を続行させたのち
150℃に昇温して、脱水ひまし油脂肪酸の100部を
加えて酸価1付近まで付加反応を続行させた処、
NVが49.3%、粘度がZ1、酸価が1.2、水酸基価が
30、色数が5〜6、が11000なる透明な樹脂
溶液が得られた。以下、これを変性共重合体(A
−4)と略記する。 参考例 5 (同上) 還流冷却器の代わりに、水分分離器を付すよう
に変更させた以外は、参考例1と同様のフラスコ
に、イソフタル酸545部、アジピン酸248部、ネオ
ペンチルグリコール362部、トリメチロールプロ
パン276部およびフマル酸18部を仕込んでN2気流
中で、180℃で3時間反応させ、次いで2時間か
けて220℃まで昇温させて反応を続行せしめ、同
温度で固形分酸価が約6となつた時点で降温した
のち、キシレン/酢酸ブチル=50/50(重量比)
なる混合溶剤でNVを60%に希釈させて、粘度が
H−I、酸価が3.8、水酸基価が81、色数が2な
る重合性不飽和結合含有のオイルフリー・アルキ
ド樹脂溶液を得た。 次いで、この樹脂溶液の34部とキシレンの1200
部およびDTBPOの5部とを参考例1と同様のフ
ラスコに仕込んで125℃に昇温し、同温度になつ
た処でSt300部、MMA30部、t−ブチルメタク
リレート(t−BMA)100部、GMA125部、
BMA285部、2−HEMA40部、BA100部、
AIBN8部、TBPO3部およびTBPB5部からなる
混合物を5時間かけて滴下し、さらに同温度で重
合を継続せしめてNVが44%になつた処で、あま
に油脂肪酸の100部、サフラワー油脂肪酸の100部
およびBF3エーテラートの0.04部を加えて酸価1
付近まで反応させた処、NVが50.1%、粘度がY
−Z、酸価が1.9、色数が2、水酸基価が25で、
かつが12000なる透明な樹脂溶液が得られた。 以下、これを変性共重合体(A−5)と略記す
る。 参考例 6 (同上) Stの代わりに同量のt−BMAを用いるように
変更させた以外は、参考例2と同様にして、NV
が50.6%、粘度がY、色数が2、酸価が1.5で、
かつが7100なる透明な樹脂溶液を得た。以
下、これを変性共重合体(A−6)と略記する。 参考例 7 (同上) 200部のStの代わりに、100部のt−BMA、50
部のN−i−プロピルパーフルオロオクタンスル
ホンアミドエチルアクリレートおよび50部の「ビ
スコート8F」〔大阪有機化学(株)製のオクタフルオ
ロブチルメタクリレート〕を用いるように変更さ
せた以外は、参考例3と同様にしてNVが49.8%、
粘度がZ3、色数が2、酸価が1.7、水酸基価が35
で、かつが14000なる透明な樹脂溶液を得た。
以下、これを変性共重合体(A−7)と略記す
る。 参考例 8 (同上) 参考例1と同様のフラスコに、キシレンの818
部とDTBPOの2部とを仕込んで125℃で昇温し、
同温度になつてからは、BAの量を120部に変更
させた以外は、参考例1と同様に行なつてNVが
54.1%になつた処で、あまに油脂肪酸の50部と大
豆油脂肪酸の150部と2−MIZの0.2部とを加えて
酸価2.5付近まで付加反応を続けた。 次いで、ここへ400部のキシレンを加えてNV
を50%に調整させた処、NVが49.8%、粘度がY、
色数が5〜6、酸価が2.2で、かつが8000なる
透明な樹脂溶液が得られた。以下、これを変性共
重合体(A−8)と略記する。 参考例 9 (同上) 「ベツコゾール1343」の使用を一切欠如し、タ
ーペンの使用量を1400部とし、かつNVが41.8%
なる白色ワツクス状のビニル共重合体が得られる
ように変更させた以外は、参考例2と同様に行な
つた処、NVが50.1%、粘度がY−Z、酸価が
1.0、色数が1〜2で、かつが7000なる透明な
樹脂溶液が得られた。以下、これを変性共重合体
(A−9)と略記する。 参考例 10 (同上) 3.4部の重合性不飽和結合含有オイルフリー・
アルキド樹脂溶液の代わりに、20部のBMAと14
部のキシレンとを用い、かつフラスコへの初期仕
込量を1200部から1214部に、および滴下すべき
BMAの量を285部から305部に変更させた以外
は、参考例5と同様にしてNVが49.9%、粘度が
X−Y2、酸価が1.8、色数が1、水酸基価が25で、
かつが12000なる透明な樹脂溶液を得た。以
下、これを変性共重合体(A−10)と略記する。 参考例 11 (同上) 200部のStの代わりに同量のt−BMAを、29
部の「ベツコゾールP−470−70」の代わりにそ
れぞれ、20部のBMAと9部のキシレンを用いる
ように変更させ、なおかつ、これらのビニルモノ
マーおよび溶剤はいずれも初期仕込分としてでな
く、滴下分として用いるように変更させた以外
は、参考例3と同様にして、NVが50.0%、粘度
がZ2、色数が1、酸価が1.9、水酸基価が35でか
つ、が14000なる透明な樹脂溶液を得た。以
下、これを変性共重合体(A−11)と略記する。 実施例1〜30および比較例1、2 参考例1〜11で得られた変性共重合体(A−
1)〜(A−11)を用い、かつ第1表および第2
表に示されるような「タイペークCR−93」〔石原
産業(株)製ルチル型酸化チタン〕、6%ナフテン酸
コバルト/24%ナフテン酸鉛=50/50(重量比)
なるドライヤー、セルローズ誘導体、紫外線吸収
剤および/またはポリイソシアネートをも用いて
白エナメル塗料を調製した。ただし、比較例1お
よび2はそれぞれアクリルウレタン系プラスチツ
クス用塗料として市販されているものを使用した
場合の例である。 なお、このセルローズ誘導体としては、それぞ
れ1/4秒のニトロセルローズ(1/4″NC)と、
「CAB−551−0.2」〔米国イーストマン・コダツ
ク社製のセルローズ・アセテート・ブチレート
(CAB)〕とを用い、また紫外線吸収剤としては
「チヌビン292」/「チヌビン900」=50/50(重量
比)なる混合物(両「チヌビン」は西ドイツ国チ
バ・ガイギー社製品)を用い、ポリイソシアネー
トとしては「バーノツクDN−950」〔大日本イン
キ化学工業(株)製のヘキサメチレンジイソシアネー
ト系ポリイソシアネート〕と、「コロネートEH」
〔日本ポリウレタン工業(株)製のヘキサメチレンジ
イソシアネート系ポリイソシアネート〕とを用い
たが、実施例2および22においては2部のプチル
ベンジルフタレートなる可塑剤をも併用したし、
またセルローズ誘導体はいずれも40%メチルエチ
ルケトン溶液として用いた。 そして、白エナメルの塗料化は塗料用ワニスの
主剤成分たる変性共重合体(A)の100部と所定量の
「タイペークCR−93」とに、さらに30部のキシレ
ンと200部のガラスビーズとを加えてサンドミル
にて90分間練肉せしめることにより行なつて、35
%なるPWCとした。塗装のさいの希釈用シンナ
ーとしてはキシレン/ソルベツソ100/酢酸i−
ブチル=80/10/10(重量比)なる混合溶剤を用
いた。 次いで、塗装はスプレー塗装法によつたが、基
材としては、ABS板、「ノリル」製の板またはガ
ラス板を用い、硬化条件としては60℃に20分間な
る強制乾燥を採用し、各塗膜性能の試験はかかる
強制乾燥後7日間放置してから行なつたものであ
る。 なお、これら各使用素材のうち、ガラス板塗膜
物性のうちの光沢、鉛筆硬度および耐ガソリン性
と、各乾燥性の試験とに用いたし、ABS板は塗
膜物性のうちの「付着」試験と、各耐候性と、さ
らに基材に対する樹脂溶液の影響をみる試験との
用いたし、「ノリル」製の板は塗膜物性のうちの
「付着」試験と、基材に対する樹脂溶液の影響を
みる試験とに用いた。 そして、各試験項目のうち、「付着」試験はゴ
バン目を切つたのち、つまりクロスカツトを入れ
たのちセロフアン・テープ剥離せしめたものであ
るし、「耐ガソリン性」の試験はレギユラー・ガ
ソリンに2時間浸漬後の塗膜の軟化と変色の程
度、およびブリスターの有無などの目視判定から
総合的に評価したものであるし、「耐候性」の試
験はサンシヤイン・ウエザオ・メーターにて1500
時間曝露した場合と、宮崎市において2年間屋外
曝露した場合とにおける、それぞれの光沢保持率
(%)を以て表示したものであるし、「乾燥性」の
試験は指触乾燥(単位:分)と、塗膜表面上に4
枚重ねのガーゼを載せ、その上にさらに100gの
分銅を1分間載せたのちのガーゼ跡を目視判定に
よつたものとの2通りを行なつたものであるが、
この乾燥性の判定評価基準は下記によつたもので
ある。 ◎…ガーゼ跡全くなし ○…ガーゼ跡少々あり △…ガーゼ跡かなりあり ×…著しくガーゼ跡あり 各実施例および比較列の結果は、実施例1〜20
については第1表に、実施例21〜30および比較例
1、2については第2表にそれぞれ分けて示す
が、比較列1および2だけはそれぞれの表に示し
た。
The present invention relates to a new and useful resin composition for coating plastics, and more specifically, it contains a specific drying oil-fatty acid-modified vinyl copolymer as an essential component, a cellulose derivative, an ultraviolet absorber, and a dryer and/or The present invention also relates to a resin composition for coating plastics, which also contains a polyisocyanate or an amino resin, and has excellent gloss, drying properties, and texture, and is less likely to attack the surface of the material to be coated, that is, the surface of plastics. Consumption of plastics as lightweight or energy-saving materials continues to increase in various fields such as automobiles, home appliances, and miscellaneous goods. Furthermore, from the point of view of adding high value, it is possible to apply coating to the surface of the material.
It is commonly practiced. Currently, paints for plastics include:
There are lutzker-based materials that do not participate in cross-linking reactions, urethane-based materials that involve cross-linking reactions, and even those that are mixed with amino resins for heat-resistant materials. Among these, urethane-based materials Because it is low-temperature curable and has excellent coating performance, demand is increasing for both top coating and undercoating applications. However, even with this urethane-based paint, polystyrene, ABS,
For coated materials with poor solvent resistance, such as polycarbonate or "Noryl" (polyphenylene oxide manufactured by General Electric Company, USA), whitening phenomenon, occurrence of solvent cracks, and damage to the surface of the coated material may occur. Although the coating film performance is good, it is often necessary to impose certain restrictions on the materials to be coated that can be used or on the conditions of use, such as the need to apply an undercoat beforehand. Therefore, there is a strong desire in the industry for a urethane paint for plastics that has fewer defects. By the way, lacquer-based paints have been used as paints for plastics for a long time, and while they are less likely to attack the material being coated and are quick-drying and easy to use, they are not as good in terms of film performance, gloss, or appearance as those of urethane-based paints. Since it does not participate in the crosslinking reaction, the coating performance is also several orders of magnitude inferior to urethane-based materials, and materials with relatively good heat resistance such as FRP or PBT For this purpose, heat-curing type products that are combined with amino resins are also used, but it is desired that these products be better in terms of gloss, texture, etc. Therefore, there is a desire for a coating system that can compensate for the deficiencies of both lacquer-based and urethane-based paints, and that can also improve the deficiencies of amino resin combination systems. Separately, a method of obtaining an air-curable resin by adding a drying oil fatty acid to an epoxy group-containing acrylic copolymer has already been disclosed in British Patent No. 767476; In order to solve the problem that the resulting resin lacks gloss due to insufficient wetting to the pigment, methods such as those described in JP-A-53-51232 and JP-A-53-99231 were proposed. It can be said that this is an improved method. However, in each of the above improvement methods, the drying oil fatty acid is added to the glycidyl group in the acrylic resin, and then esterified with dicarboxylic anhydride such as tetrahydrophthalic anhydride. (1) production of an acrylic copolymer, (2) modification by addition of a drying oil fatty acid to the copolymer, and (3) esterification of the fatty acid-modified copolymer with dicarboxylic anhydride. This method cannot be said to be a preferable method because it lengthens the total reaction time consisting of several steps and complicates reaction control, resulting in increased production costs. However, in view of the above-mentioned actual situation, the present inventors added a drying oil-fatty acid-modified vinyl copolymer that has good wettability to pigments and excellent gloss by a simpler method. As a result of extensive research into using the modified copolymer to obtain a resin composition for coating plastics that is quick-drying, has excellent gloss and texture, and does not easily attack the surface of the material to be coated, the present invention has been developed. I have reached the point where I have completed it. That is, the present invention uses 5 to 25% by weight of an epoxy group-containing vinyl monomer and 0 to 25% by weight of an aromatic vinyl monomer.
60% by weight, 0 to 10% by weight of an alkyd resin having copolymerizable unsaturated bonds, and 5 to 95% by weight of other vinyl monomers copolymerizable with each of the above-mentioned vinyl monomers, and then the thus obtained A modified vinyl copolymer (A) obtained by adding 5 to 60 parts by weight of a drying oil fatty acid having an iodine value of 100 to 200 to 100 parts by weight of the epoxy group-containing vinyl copolymer (A). 60 to 100% by weight and 0 to 40% by weight of cellulose derivative (B), and further 0 to 10% based on the weight of the mixture
It has excellent gloss, dryness and texture, and is made by blending an ultraviolet absorber (C), or further blending a dryer (D) and/or a polyisocyanate or amino resin (E). To provide a resin composition for coating plastics that does not easily attack the coating film on the surface of a material to be coated. Here, typical drying oil fatty acids with an iodine value of 100 to 200 include cottonseed oil, soybean oil, rice sugar oil, dehydrated castor oil, linseed oil,
Fatty acids from natural oils and fats such as tall oil or Chinese tung oil, "Hi-Jien", "Hi-Jien H", "Hi-Jien S", and "SK Conjugated Fatty Acid #20" [all manufactured by Soken Chemical Co., Ltd.]
product] or “PAMOLYN 200,
Synthetic drying oil fatty acids such as ``300'' (product of Hercules Co., Ltd., USA), etc., can be used alone or in combination in any proportion, and in order to adjust the iodine value of such fatty acid systems. , in some cases with an iodine value such as coconut oil fatty acids, castor oil fatty acids, octylic acid, lauric acid, ``versateic acid'' (synthetic drying oil fatty acid manufactured by Siel, Netherlands), stearic acid or hydroxystearic acid. Fatty acids or saturated fatty acids having a molecular weight of less than 100% can be used in combination with drying oil fatty acids such as those listed above, as long as the amount is within a range that does not impair the air drying properties of the resulting modified vinyl copolymer (A). Of course. The appropriate amount of the drying oil fatty acid to be used is 5 to 60 parts by weight, preferably 10 to 50 parts by weight, based on 100 parts by weight of the epoxy group-containing vinyl copolymer. If the amount used is less than 5 parts by weight, the purpose-modified copolymer (A) will have poor air curing properties,
Since the paint film cannot have a sufficient three-dimensional structure, its physical properties and solvent resistance will deteriorate.
On the other hand, if the amount exceeds 60 parts by weight, yellowing becomes more likely and weather resistance decreases, and as a result of excessive crosslinking of the resulting coating film, flexibility is lost and the coating film becomes brittle. Therefore, neither of these methods can be put to practical use. Next, we will discuss the above-mentioned epoxy group-containing vinyl copolymers. First, typical epoxy group-containing vinyl monomers include glycidyl (meth)acrylate, β-methylglycidyl (meth)acrylate, and (meth)acrylate. α,β- such as allyl glycidyl ether, unsaturated mono- or dicarboxylic acids such as (meth)acrylic acid, fumaric acid, maleic acid or itaconic acid, or monoesters of such unsaturated dicarboxylic acids and monohydric alcohols. Ethylenically unsaturated carboxylic acids, carboxyl group-containing compounds such as "HA-MP" or "HOA-HS" [all of which are carboxyl group-containing acrylic monomers manufactured by Osaka Organic Chemical Co., Ltd.], or mono-2-(meth) )
Hydroxyl group-containing vinyl monomers such as acryloyloxyethyl phthalate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, or di-2-hydroxyethyl fumarate and maleic acid, phthalic acid, tetrahydrophthalic acid, hexa By equimolar addition reaction with polycarboxylic acids (anhydrides) such as hydrophthalic acid, benzenetricarboxylic acid, "hymic acid" (product of Hitachi Chemical Co., Ltd.), dodecynylsuccinic acid, succinic acid, or tetrachlorophthalic acid. For various unsaturated carboxylic acids such as adducts obtained by
"Epcron 200, 400, 441, 850 or 1050"
[Epoxy resin manufactured by Dainippon Ink and Chemicals Co., Ltd.]
"Epicote 828, 1001 or 1004" (epoxy resin manufactured by Ciel), "Araldite 6071 or
6084” (epoxy resin manufactured by Ciba Geigy, Switzerland), “Chitsusonok 221” (epoxy compound manufactured by Chitsuso Corporation), or “Denacol EX-611” (epoxy compound manufactured by Nagase Sangyo Co., Ltd.), There are epoxy group-containing polymerizable compounds obtained by addition-reacting various polyepoxy compounds having at least two epoxy groups in one molecule in equimolar ratios, and these can be used alone or in combination of two or more. However, considering reactivity, number of reaction steps, viscosity or price of the final product, relatively low molecular weight types such as glycidyl (meth)acrylate and β-methylglycidyl (meth)acrylate are recommended. These monomers are the easiest to use. The epoxy group-containing vinyl monomer is used in a range of 5 to 25% by weight, but since the epoxy group in the monomer participates in the reaction with the drying oil fatty acid as mentioned above, the amount of the monomer used is limited. Needless to say, it should be determined mainly depending on the amount of the drying oil fatty acid used, and it is usually used in a ratio that provides epoxy groups in the range of 1.0 to 1.25 equivalents per 1 equivalent of the drying oil fatty acid carboxyl group. However, it is preferable from the viewpoint of reaction rate and the possibility of preventing the adverse effects of residual carboxyl groups on the coating film. In addition, the above-mentioned alkyd resin having a copolymerizable unsaturated bond can be used not only for pigments with low oil absorption such as titanium oxide and Bengara, but also for organic pigments such as quinacridone, phthalocyanine, and azo. It is used when it is desired to improve the dispersibility of pigments with relatively high oil absorption and poor dispersibility, such as carbon black, and in that sense, the alkyd resin has little effect on coating film performance itself. It can be said that it is not involved. As the alkyd resin, either one modified with oil or fatty acid, or a so-called oil-free alkyd resin that is not modified with these can be used, but in the present invention,
Among these alkyd resins, those having an unsaturated bond copolymerizable with each vinyl monomer are particularly suitable in the present invention. The alkyd resins include saturated fatty acids such as octylic acid, lauric acid, stearic acid or "versatynic acid"; unsaturated fatty acids such as oleic acid, linoleic acid, linoleic acid, eleostearic acid or ricinoleic acid;
200, 300'', Chinese tung oil (fatty acid), linseed oil (fatty acid), dehydrated castor oil (fatty acid), tall oil (fatty acid), cottonseed oil (fatty acid), soybean oil (fatty acid), olive oil (fatty acid), safflower oil ( semi-drying oils (fatty acids) such as castor oil (fatty acids) or rice sugar oil (fatty acids) or non-drying oils such as hydrogenated coconut oil (fatty acids), coconut oil (fatty acids) or palm oil (fatty acids) Using one type or a mixture of two or more types of oil or fatty acids such as oil (fatty acid),
Or without using ethylene glycol, propylene glycol, glycerin, trimethylolethane, trimethylolpropane, neopentyl glycol, 1,6-hexanediol, 1,
One or more polyhydric alcohols such as 2,6-hexanetriol, pentaerythritol or sorbitol, and benzoic acid, p-t
-butylbenzoic acid, phthalic anhydride, hexahydrophthalic acid, tetrahydrophthalic acid, phthalic acid, tetrachlorophthalic acid, hexachlorophthalic acid, tetrabromophthalic acid, trimellitic acid, "hymic acid", (anhydrous) succinic acid, (anhydrous) maleic acid,
(anhydrous) one or more carboxylic acids such as itaconic acid, fumaric acid, adipic acid, sebacic acid or oxalic acid in a conventional manner, and if necessary, "Carduura E" (product of Ciel Co., Ltd.) Monoepoxy compounds such as glycidyl esters of fatty acids such as "Epicron 200, 400", "Epicoat"
828, 1001" or diisocyanates such as tolylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate or 4,4'-methylenebis(cyclohexyl isocyanate), each of these diisocyanates and the above polyhydric alcohols, One or more types of polyisocyanates obtained by addition reaction with water or polyisocyanates having an isocyanuric ring obtained by (co)polymerization of diisocyanates, including the polyhydric alcohols and carboxylic acids mentioned above. A suitable product is one obtained by replacing a part of the compound and reacting it by a conventional method. In this case, the alkyd resin should be of a saturated fatty acid or non-drying oil (fatty acid) modified type that does not have copolymerizable unsaturated bonds or has a small amount, or an oil-free alkyd resin that is not modified with oil or fatty acids. For those products, it is necessary to introduce copolymerizable unsaturated bonds that serve as grafting points for other vinyl monomers into the alkyd resin using an unsaturated carboxylic acid such as (anhydrous) maleic acid or fumaric acid. Needless to say, it is. The alkyd resin obtained in this way is used in a range of 0 to 10% by weight, but when used in a large amount exceeding 10% by weight, solvent resistance, stain resistance, etc. are inferior. . Moreover, during polymerization, the carboxyl group in the alkyd resin and the epoxy group in the epoxy group-containing vinyl monomer react with each other, resulting in undesirable problems such as easy gelation. Therefore, the amount of the alkyd resin to be used is within the range described above, with the acid value, oil length, and amount of copolymerizable unsaturated bonds being adjusted so that gelation does not occur due to reactions between these groups. It is preferable to determine the molecular weight by taking into consideration the molecular weight of the alkyd resin and the molecular weight of the resulting modified copolymer (A). Next, typical examples of the aromatic vinyl monomers mentioned above include styrene, α-methylstyrene, pt-butylstyrene, and vinyltoluene, among which styrene is the most preferred in terms of price. . If the aromatic vinyl monomer is used in a large amount exceeding 60% by weight, the resulting coating film will have poor weather resistance and will be unsuitable as an outdoor paint resin. When used, it should be set within 60% by weight depending on the required performance such as gloss, texture, and weather resistance. From the viewpoint of the balance of gloss, texture, leveling properties, and weather resistance, a range of 10 to 50% by weight is preferable. Furthermore, representative vinyl monomers that can be copolymerized with the epoxy group-containing vinyl monomers, aromatic vinyl monomers, and alkyd resins having copolymerizable unsaturated bonds include methyl ( meth)acrylate, ethyl(meth)acrylate, n-propyl(meth)acrylate, i-propyl(meth)acrylate, n-butyl(meth)acrylate, i-butyl(meth)acrylate, t-butyl(meth)acrylate, Such as 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, cyclohexyl (meth)acrylate, benzyl (meth)acrylate, dibromopropyl (meth)acrylate, tribromophenyl (meth)acrylate or alkoxyalkyl (meth)acrylate various (meth)acrylates; maleic compounds; diesters of unsaturated dicarboxylic acids such as fumaric acid or itaconic acid with monohydric alcohols; Vinyl esters such as "Viscoat BF, BFM, 3F or 3FM" [fluorine-containing acrylic monomer manufactured by Osaka Organic Chemical Co., Ltd.], perfluorocyclohexyl (meth)acrylate, diperfluorocyclohexyl fumarate or N- (per)fluoroalkyl group-containing vinyl esters, vinyl ales, (meth)acrylate such as i-propyl perfluorooctane sulfonamide ethyl (meth)acrylate;
Fluorine-containing compounds such as acrylates or unsaturated carboxylic acid esters; or (meth)acrylonitrile, vinyl chloride, vinylidene chloride,
These are olefins such as vinyl fluoride or vinylidene fluoride. Typical hydroxyl group-containing vinyl monomers include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, and 3-hydroxypropyl (meth)acrylate. -Hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 3-chloro-2-hydroxypropyl (meth)acrylate, di-2-hydroxyethyl fumarate, mono-2-hydroxyethyl-monobutyl fumarate or hydroxyalkyl esters of α,β-ethylenically unsaturated carboxylic acids such as polyethylene glycol mono(meth)acrylate; unsaturated such as (meth)acrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid or citraconic acid. Monomers or dicarboxylic acids, α,β-ethylenically unsaturated carboxylic acids such as monoesters of these dicarboxylic acids and monohydric alcohols; α,β-unsaturated carboxylic acid hydroalkyl esters as described above; Adducts with various polycarboxylic acids (anhydrides) and monoglycidyl esters of monohydric carboxylic acids such as "Carduura E", coconut oil fatty acid glycidyl ester or octylic acid glycidyl ester, or butyl glycidyl ether, ethylene oxide or propylene Monoepoxy compounds and adducts such as oxides; or compounds containing methylol groups such as N-methylolated acrylamide, or hydroxyethyl vinyl ether can also be used; however, in the case of monomers containing functional groups such as vinyl monomers containing hydroxyl groups, Of course, it is necessary to determine the amount used so as not to cause gelation, and the hydroxyl group in the hydroxyl group-containing vinyl monomer and the (β-methyl)glycidyl in the (β-methyl)glycidyl (meth)acrylate. The amount should be determined so that gelation does not occur due to reaction with groups. Next, as the cellulose derivative (B) described above,
Any material that is normally used for paints can be used, but the most representative ones include nitrocellulose, cellulose acetate, cellulose acetate propionate,
Cellulose acetate butyrate, methylcellulose, ethylcellulose or benzylcellulose. The cellulose derivative may be used when it is necessary to further improve drying properties, gasoline resistance, adhesion properties, etc., but in that case, the appropriate amount to be used is 40% by weight or less, preferably 30% by weight or less. However, this does not preclude the use of known and commonly used plasticizers such as dibutyl phthalate or dioctyl phthalate, if desired. If the amount used exceeds 40% by weight, stain resistance, water resistance, moisture resistance, etc. will be noticeably reduced, which is not preferable. Further, the above-mentioned ultraviolet absorber (C) is a component used when it is necessary to further increase the durability of the composition of the present invention, and may be added and mixed each time, but in that case, the above-mentioned It may be used in an amount of 0 to 10% based on the total weight of the modified copolymer (A) and cellulose derivative (B). If the amount used exceeds 10%, the effect is great, but the water resistance often decreases and it becomes disadvantageous in terms of cost. Typical UV absorbers (C) are:
Benzophenone, 2,4-dihydrobenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'- Dimethoxybenzophenone, 2,2'-dihydroxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone, 2-hydroxy-4-methoxy-5- Sulfobenzophenone, 5-chloro-2
-Hydroxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sulfobenzophenone, 2-hydroxy-4-methoxy-2'-carboxybenzophenone, 2-hydroxy-4-
(2-hydroxy-3-methyl-acryloxyisopropoxybenzophenone; 2-(2'-hydroxy-5'-methyl-phenyl)-benzotriazole, 2-(2-hydroxy-3,5-di-t) −
amyl-phenyl)-2H-benzotriazole,
2-(2'-hydroxy-3',5'-di-t-butyl-
phenyl)benzotriazole, 2-(2'-hydroxy-3',5'-di-t-butyl-5'-methyl-
phenyl)benzotriazole, 2-(2'-hydroxy-3',5'-di-t-butyl-phenyl)-
5-chloro-benzotriazole, 2-(2'-hydroxy-3',5'-di-t-isoamyl-phenyl)benzotriazole, (2-hydroxy-5
-t-butylphenyl)benzotriazole; phenyl salicylate, 4-t-butyl-phenyl salicylate, p-octyl-phenyl salicylate; ethyl-2-cyano-3,3'-diphenyl-acrylate, 2-ethylhexyl-2 -cyano-3,3'-diphenyl-acrylate; hydroxy-5-methoxy-acetophenone, 2-hydroxy-naphthophenone; 2-ethoxyethyl-
p-methoxycinnamate; nickel-bisoctylphenyl sulfide; 4-benzoyloxy-2,2,6,6-tetramethylpiperidine,
These include bis-(2,2,6,6-tetramethyl-4-piperidyl) sebacate or "Tinuvin 292" (product of Ciba Geigy), and these may be used alone or in combination of two or more. In order to further increase the effectiveness, "Sumilizer BHT" [product of Sumitomo Chemical Co., Ltd.], "Seanox BCS" [product of Shiraishi Calcium Co., Ltd.], "Irganox 1010 or 1076" (product of Ciba Geigy), A well-known and commonly used antioxidant such as "Noklyzer TNP" (manufactured by Ouchi Shinko Co., Ltd.) or "Antioxidant KB" (manufactured by Bayer AG, West Germany) can also be used in combination. Next, the dryer (D) described above is usually
Any material commonly used for paints may be used, but the most representative ones include cobalt, vanadium, manganese, cerium, lead, iron, calcium, zinc, zirconium,
naphthenates, octylates or resinates such as cerium, nickel or tin;
The amount to be used may be appropriately determined from conventional amounts depending on the type of dryer, the combination of each component, the required performance, etc. At this time, a small amount of an organic peroxide such as benzoyl peroxide, methyl ethyl ketone peroxide or 5-butyl perbenzoate may be used in combination to enhance the effectiveness of the dryer. In addition, known and commonly used paint additives such as pigment dispersants or leveling agents can also be used in combination. Furthermore, typical polyisocyanates (E) mentioned above include tolylene diisocyanate,
Aromatic diisocyanates such as xylylene diisocyanate or diphenylmethane diisocyanate; aliphatic diisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate or trimethylhexamethylene diisocyanate; or isophorone diisocyanate, methylcyclohexane-2,4-(or -2,6-) ) Diisocyanates such as diisocyanate, cycloaliphatic diisocyanates such as 4,4'-methylenebis(cyclohexyl isocyanate) or 1,3-di(isocyanatemethyl)cyclohexane, or each of these diisocyanates and the polyhydric alcohols and isocyanates. low-molecular-weight polyester resins (including oil-modified types) having functional groups that react with groups, acrylic copolymers (including those containing styrene as a comonomer component), or adducts with water, etc. Furthermore, there are also biuret bodies and (co)polymers (including oligomers) of the various diisocyanates mentioned above. Furthermore, polyisocyanates blocked with known and commonly used blocking agents such as methyl ethyl ketone oxime or caprolactam can also be used depending on the material and curing conditions. By the way, when using the polyisocyanate, aromatic diisocyanates and their derivatives, which yellow or crack when exposed to ultraviolet rays, are not suitable for outdoor topcoats that require weather resistance. Yes, it is mainly used as a top coat for indoor applications where weather resistance is not required, or as an undercoat paint such as Primer Surfer.
Therefore, in such cases, aliphatic diisocyanates, alicyclic diisocyanates, or various derivatives thereof, which have good weather resistance, may be used as top coats for outdoor use. The usage fee for the polyisocyanate is as follows:
A suitable equivalent ratio range is OH/NCO=1/0.1 to 1/1.2. On the other hand, in the case of materials with relatively good heat resistance such as FRP, FRTP, or PBT, amino resins can be used as long as the curing conditions are met.
Typical such amino resins include those obtained by the condensation reaction of urea, guanamines, or various triazines such as melamine with aldehydes. , n-butanol or iso-butanol are preferred from the viewpoint of compatibility or solubility. The amount of the amino resin used is 60 to 100% by weight of the component (A) and 40 to 0% by weight of the component (B).
From the viewpoint of physical properties, the weight ratio of the amino resin to the mixture consisting of % by weight of the former mixture/latter resin is preferably within the range of 70 to 95/5 to 30. Further, in this case, in order to lower the baking temperature and accelerate curing, a conventionally known curing catalyst such as phosphoric acid or p-toluenesulfonic acid may be used in a conventional amount. Furthermore, when using the amino resin, small amounts of blocked isocyanates such as those listed above may also be used. In preparing the composition of the present invention, first, the epoxy group-containing vinyl copolymer (a-1) is
Usually, after preparing by solution polymerization, this copolymer (a-1) is then added to the drying oil fatty acid (a-1).
2) to obtain the target fatty acid-modified vinyl copolymer (A), but in this copolymerization reaction, which can be called the first stage reaction, the copolymer (a- The polymer conversion rate to 1) is
Normally, after securing 95% or more, the drying oil fatty acid (a-2) is added to carry out the addition reaction, which can be called the second stage reaction, without waiting for the completion of the copolymerization reaction. This is advantageous because it allows you to move forward. In addition, the reaction temperature is not particularly limited, and during the copolymerization reaction, as long as it is at a temperature suitable for polymerizing each component compound as mentioned above, that is, a temperature in the range of 50 to 140°C, which is usually adopted. often,
On the other hand, during the addition reaction, any temperature suitable for the addition of each reaction component as listed above, that is, a temperature in the range of 110 to 180°C, is sufficient. In particular, during the addition reaction, the temperature may be high to promote this reaction. This is also advantageous since it can also be done. Furthermore, in order to promote the addition reaction, a catalyst for the ring-opening reaction of epoxy groups may be used. In that case, any known and commonly used catalyst can be used, but typical examples include triethylamine, triethylamine, These include tertiary amines such as diethylenetriamine or imidazole, BF 3 complexes, or acids such as phosphoric acid or sulfuric acid. Furthermore, as the polymerization initiator used in the polymerization, any known and commonly used initiator can be used, but among them, particularly representative ones include azobisisobutyronitrile and benzoyl peroxide. , t-butyl perbenzoate, t-butyl peroctate, di-t-butyl peroxide. Known and commonly used solvents can be used, but the most representative ones include aromatic solvents such as toluene or xylene, ester solvents such as ethyl acetate, butyl acetate or cellosolve acetate, and alcoholic solvents such as methanol or butanol. or ketones such as methyl ethyl ketone or methyl isobutyl ketone, and aliphatic or alicyclic solvents such as hexane, heptane, cyclohexane, methyl cyclohexane, petroleum naphtha or mineral spirits can also be used, especially Aliphatic and alicyclic solvents are indispensable in order to obtain paints that do not easily attack the surface of plastics. The types, combinations, and amounts of such solvents can be appropriately determined in consideration of the amount of the drying oil fatty acid used, the amount of the vinyl moiety in the epoxy group-containing vinyl copolymer, and the like. The thus obtained drying oil fatty acid-modified vinyl copolymer is in the form of a drying oil fatty acid-modified vinyl copolymer grafted with an alkyd resin, and therefore has good pigment wettability of the alkyd resin. This gives an excellent gloss, and because of this unique structure, it has the advantage of being able to be air-cured by adding a dryer. In addition, in the present invention, during the preparation of the epoxy group-containing vinyl copolymer, that is, during radical polymerization, the alkyd resin is not only radically polymerized, but also the carboxyl group in the alkyl resin within the specified amount range is converted into the epoxy group. As a result of the addition reaction with the epoxy group in the vinyl monomer contained, the resulting modified copolymer (A) has a wide molecular weight distribution, and has excellent pigment dispersibility.
There is also the advantage of being able to obtain a product that has features such as a feeling of texture and excellent adhesion to the base material. The composition of the present invention meets the various needs in this industry as described above. That is, the resin composition for coating plastics of the present invention can be said to be the third type of coating material for coating plastics, and is an oxidative polymerization based on the drying oil fatty acid residue contained in the modified copolymer (A). The crosslinking reaction between the hydroxyl groups slightly present in the modified copolymer (A) and the polyisocyanate (E) blended therewith, and the (parallel) crosslinking reaction of both of them. It is a unique composition in that a type of crosslinking reaction can be applied to one type of modified vinyl copolymer (A) as desired, and a coating film with excellent performance can be obtained through such crosslinking reaction. It can be said that. Materials to which the composition of the present invention can be applied include ABS, "Noryl", polycarbonate, melamine resin, polystyrene, urea resin,
polyester resin, polypropylene or RIM,
From those composed of a single component such as urethane, to mixed or composite systems composed of multi-component systems (including various polymer alloys), or so-called so-called such as FRT, FRTP or FR-RIM. Can be used in a wide range of materials, including composite materials. Since a drying oil fatty acid is introduced into the modified vinyl copolymer (A) as an essential component of the composition of the present invention, the composition of the present invention as a whole is suitable for use in acrylic polyols used in urethane systems. Since it is easily dissolved in solvents (weak solvents) that have a weaker solubility than other solvents, it has the advantage of being able to use large amounts of weak solvents, making it possible to create paints for plastics that do not attack the surface of the material to be coated. can give. Furthermore, by using a unique method of adding a drying oil fatty acid to an epoxy group-containing vinyl copolymer, the modified copolymer, which is an essential component of the composition of the present invention, can be produced.
(A) also has a hydroxyl group, and in addition, in the present invention, in addition to the epoxy group-containing vinyl monomer, a hydroxyl group-containing vinyl monomer can also be used in combination. Furthermore, it is possible to contain hydroxyl groups, and as a result, by incorporating polyisocyanate (E), a method of urethane crosslinking and curing can be adopted, and furthermore, oxidative polymerization and crosslinking curing with a dryer (D) and this urethane crosslinking can be performed. It has the advantage of being able to use a method of curing that involves two crosslinking reactions: curing and curing. Next, the present invention will be specifically explained with reference to Reference Examples, Examples, and Comparative Examples. In the following, all parts and percentages are based on weight unless otherwise specified. Reference Example 1 [Preparation example of modified vinyl copolymer (A)] In a four-necked flask equipped with a thermometer, reflux condenser, stirrer, and nitrogen gas inlet, 800 g of xylene was added.
1 part, 71 parts of "Betucosol P-470-70" [long oil alkyd resin manufactured by Dainippon Ink and Chemicals Co., Ltd.] and 2 parts of di-t-butyl peroxide (hereinafter abbreviated as DTBPO). After charging, the temperature was raised to 125℃, and when the temperature reached the same temperature, 400 parts of styrene (St), 300 parts of methyl methacrylate (MMA), 55 parts of acrylonitrile (AN), and 125 parts of glycidyl methacrylate (GMA) were added. , a mixture consisting of 70 parts of ethyl acrylate (EA), 10 parts of azobisisobutyronitrile (AIBN), 7 parts of t-butyl peroctate (TBPO) and 4 parts of t-butyl perbenzoate (TBPB). was added dropwise over a period of 5 hours, and kept at the same temperature for 5 hours after the dropwise addition, until the non-volatile content (NV) reached 53.9%.
When 0.2 parts of methylimidazole (2MIZ) was added and the addition reaction between glycidyl and carboxyl groups was carried out at the same temperature, the NV was 60.3% after 13 hours.
The viscosity (Gardner; the same applies hereafter) is Z 6 , and the acid value is
A solution of a fatty acid-modified vinyl copolymer named 2.6 was obtained, and 400 parts of xylene was added to this solution to convert NV.
Adjusted to 50%. The resin solution thus obtained had an NV of 50.1%,
Viscosity is Y-Z, number of colors (Gardner; same below)
is 5 to 6, and the number average molecular weight by gel permeation chromatography (GPC) (hereinafter referred to as
Abbreviated as Mn. ) was a clear solution of 8300. Hereinafter, this will be abbreviated as modified copolymer (A-1). Reference example 2 (same as above) In the same way as reference example 1, add “Betucosol” to the flask.
200 parts of "1343" (medium oil alkyd resin manufactured by the same company),
1300 parts of turpentine and 3 parts of DTBPO were charged and heated to 120℃, and at the same temperature 300 parts of St and 3 parts of MMA were added.
A mixture of 300 parts of GMA, 200 parts of GMA, 100 parts of n-butyl acrylate (BA), 15 parts of AIBN, 10 parts of TBPO, and 2 parts of TBPB was added dropwise over 5 hours, and the mixture was kept at the same temperature for another 12 hours. Then, the polymerization was continued and the NV was 42.0%. At this stage, a white wax-like vinyl copolymer was obtained which was not dissolved in the turpentine. Next, 100 parts of cottonseed oil fatty acid and 300 parts of dehydrated castor oil fatty acid were added to this copolymer and heated at 150°C.
After reacting until the acid value reached approximately 1, NV
A transparent resin solution was obtained with a viscosity of Z-Z 1 , an acid value of 1.1, a color number of 1 to 2, and a length of 7200. Hereinafter, this will be referred to as a modified copolymer (A-
It is abbreviated as 2). Reference example 3 (same as above) In the same way as reference example 1, add 1200 g of xylene to the flask.
part, 29 parts of "Betsukosol P-470-70",
After charging 4 parts of DTBPO and raising the temperature to 125℃, at the same temperature, 200 parts of St, 230 parts of MMA,
125 parts of GMA, 100 parts of BA, 225 parts of n-butyl methacrylate (BMA), 100 parts of 2-hydroxyethyl methacrylate (2-HEMA),
A mixture consisting of 5 parts of AIBN, 3 parts of TBPO, and 5 parts of TBPB was added dropwise over 5 hours, and the polymerization was continued at the same temperature until the NV reached 44%. and 100% of safflower oil fatty acids
part and 0.02 part of BF 3 etherate to give an acid value of 1
When the reaction was carried out to a point near the
Z 4 , number of colors is 2, acid value is 1.8, hydroxyl value is 35
A clear resin solution with a weight of 14,000 was obtained. Hereinafter, this will be abbreviated as modified copolymer (A-3). Reference example 4 (same as above) In a flask similar to reference example 1, add 1075 xylene.
1 part, 125 parts of "Betsukosol J-571" (long oil alkyd resin made by the same company) and 4 parts of DTBPO were heated to 125℃, and at the same temperature, St.
400 copies, BMA 200 copies, GMA 50 copies, 2-
100 copies of HEMA, 50 copies of AN, 100 copies of BA,
A mixture consisting of 18 parts of TBPO and 4 parts of TBPB was added dropwise over 4 hours, and the polymerization was continued for 12 hours.
The temperature was raised to 150°C, 100 parts of dehydrated castor oil fatty acid was added, and the addition reaction was continued until the acid value reached around 1.
NV is 49.3%, viscosity is Z 1 , acid value is 1.2, hydroxyl value is
A transparent resin solution with a color number of 5 to 6 and 11,000 was obtained. Hereinafter, this will be referred to as a modified copolymer (A
-4). Reference Example 5 (Same as above) 545 parts of isophthalic acid, 248 parts of adipic acid, and 362 parts of neopentyl glycol were placed in the same flask as in Reference Example 1, except that a water separator was attached instead of the reflux condenser. , 276 parts of trimethylolpropane and 18 parts of fumaric acid were charged and reacted at 180°C for 3 hours in a N 2 stream.Then, the temperature was raised to 220°C over 2 hours to continue the reaction, and the solid content was reduced at the same temperature. After cooling down when the acid value reaches approximately 6, xylene/butyl acetate = 50/50 (weight ratio)
By diluting NV to 60% with a mixed solvent of . Then 34 parts of this resin solution and 1200 parts of xylene
1 part and 5 parts of DTBPO were placed in a flask similar to Reference Example 1 and heated to 125°C, and when the temperature reached the same temperature, 300 parts of St, 30 parts of MMA, 100 parts of t-butyl methacrylate (t-BMA), GMA 125 division,
285 copies of BMA, 40 copies of 2-HEMA, 100 copies of BA,
A mixture consisting of 8 parts of AIBN, 3 parts of TBPO, and 5 parts of TBPB was added dropwise over 5 hours, and the polymerization was continued at the same temperature until the NV reached 44%. and 0.04 parts of BF 3 etherate to give an acid value of 1
When the reaction reached the vicinity, NV was 50.1% and viscosity was Y.
-Z, acid value is 1.9, color number is 2, hydroxyl value is 25,
A clear resin solution of 12,000 ml was obtained. Hereinafter, this will be abbreviated as modified copolymer (A-5). Reference Example 6 (Same as above) NV was prepared in the same manner as Reference Example 2 except that the same amount of t-BMA was used instead of St.
is 50.6%, viscosity is Y, color number is 2, acid value is 1.5,
A clear resin solution of Katsuga 7100 was obtained. Hereinafter, this will be abbreviated as modified copolymer (A-6). Reference example 7 (same as above) Instead of 200 copies of St, 100 copies of t-BMA, 50
Reference Example 3 except that 1 part of Ni-propyl perfluorooctane sulfonamide ethyl acrylate and 50 parts of "Viscoat 8F" [octafluorobutyl methacrylate manufactured by Osaka Organic Chemical Co., Ltd.] were used. Similarly, NV was 49.8%,
Viscosity is Z 3 , color number is 2, acid value is 1.7, hydroxyl value is 35
A clear resin solution with a weight of 14,000 was obtained.
Hereinafter, this will be abbreviated as modified copolymer (A-7). Reference example 8 (same as above) In a flask similar to reference example 1, add xylene 818
1 part and 2 parts of DTBPO were charged and the temperature was raised to 125°C.
After reaching the same temperature, the same procedure as in Reference Example 1 was performed except that the amount of BA was changed to 120 parts, and NV was
When the concentration reached 54.1%, 50 parts of linseed oil fatty acid, 150 parts of soybean oil fatty acid and 0.2 part of 2-MIZ were added and the addition reaction was continued until the acid value reached around 2.5. Next, add 400 parts of xylene to NV
When adjusted to 50%, NV was 49.8%, viscosity was Y,
A transparent resin solution with a color number of 5 to 6, an acid value of 2.2, and a weight of 8000 was obtained. Hereinafter, this will be abbreviated as modified copolymer (A-8). Reference example 9 (same as above) Abstains from the use of "Betucosol 1343", uses 1400 parts of turpentine, and NV is 41.8%
The procedure was carried out in the same manner as in Reference Example 2, except that a white wax-like vinyl copolymer was obtained. NV was 50.1%, viscosity was Y-Z, and acid value
A transparent resin solution with a color number of 1.0, a color number of 1 to 2, and a size of 7000 was obtained. Hereinafter, this will be abbreviated as modified copolymer (A-9). Reference example 10 (same as above) Oil-free oil containing 3.4 parts of polymerizable unsaturated bonds
Instead of alkyd resin solution, 20 parts BMA and 14
of xylene, and the initial charge in the flask should be increased from 1200 parts to 1214 parts, and added dropwise.
The same procedure as Reference Example 5 was carried out except that the amount of BMA was changed from 285 parts to 305 parts. NV was 49.9%, viscosity was X-Y 2 , acid value was 1.8, color number was 1, and hydroxyl value was 25. ,
A clear resin solution with a weight of 12000 was obtained. Hereinafter, this will be abbreviated as modified copolymer (A-10). Reference example 11 (same as above) Instead of 200 parts of St, the same amount of t-BMA, 29
20 parts of BMA and 9 parts of xylene were used in place of 1 part of "Betucosol P-470-70", and both of these vinyl monomers and solvents were added dropwise rather than as an initial charge. The procedure was the same as in Reference Example 3 , except that it was changed to be used as a minute. A resin solution was obtained. Hereinafter, this will be abbreviated as modified copolymer (A-11). Examples 1 to 30 and Comparative Examples 1 and 2 Modified copolymers obtained in Reference Examples 1 to 11 (A-
1) to (A-11), and Table 1 and 2.
"Tiepeke CR-93" [Rutile type titanium oxide manufactured by Ishihara Sangyo Co., Ltd.] as shown in the table, 6% cobalt naphthenate / 24% lead naphthenate = 50/50 (weight ratio)
White enamel paints were also prepared using dryers, cellulose derivatives, UV absorbers and/or polyisocyanates. However, Comparative Examples 1 and 2 are examples in which commercially available paints for acrylic urethane plastics were used. In addition, these cellulose derivatives include 1/4s nitrocellulose (1/4″NC) and
"CAB-551-0.2" [cellulose acetate butyrate (CAB) manufactured by Eastman Kodatsu, USA] was used, and as the ultraviolet absorber "Tinuvin 292" / "Tinuvin 900" = 50/50 (weight (ratio) (both ``Tinuvin'' are products of Ciba-Geigy, West Germany) were used, and the polyisocyanate was ``Burnock DN-950'' [hexamethylene diisocyanate-based polyisocyanate manufactured by Dainippon Ink & Chemicals Co., Ltd.]. , "Coronate EH"
[Hexamethylene diisocyanate polyisocyanate manufactured by Nippon Polyurethane Industry Co., Ltd.] was used, but in Examples 2 and 22, 2 parts of a plasticizer called butylbenzyl phthalate was also used,
In addition, all cellulose derivatives were used as 40% methyl ethyl ketone solutions. To make the white enamel into a paint, 100 parts of the modified copolymer (A), which is the main component of the paint varnish, and a predetermined amount of "Tiepeke CR-93" were added, as well as 30 parts of xylene and 200 parts of glass beads. and kneaded it in a sand mill for 90 minutes.35
% PWC. Xylene/Solbetsuso 100/acetic acid i- is used as a diluting thinner for painting.
A mixed solvent of butyl = 80/10/10 (weight ratio) was used. Next, the painting was done by spray painting, using ABS board, "Noryl" board or glass board as the base material, and forced drying at 60℃ for 20 minutes as the curing condition. Membrane performance tests were conducted after the membrane was allowed to stand for 7 days after forced drying. Of these materials, we tested the gloss, pencil hardness, gasoline resistance, and drying properties of the physical properties of the glass coating film, and the ABS board was used for the "adhesion" test of the physical properties of the coating film. In addition, the "Noryl" board was tested for the "adhesion" of the physical properties of the coating film and the effect of the resin solution on the base material. It was used for the visual test. Among the test items, the ``adhesion'' test involves making a cross cut, then peeling off the cellophane tape, and the ``gasoline resistance'' test involves applying two coats of regular gasoline to the tape. It is a comprehensive evaluation based on visual judgment such as the degree of softening and discoloration of the paint film after soaking for a period of time, and the presence or absence of blisters.
It shows the gloss retention rate (%) when exposed for hours and when exposed outdoors for 2 years in Miyazaki City, and the "drying" test is based on dryness to the touch (unit: minutes). , 4 on the coating surface
Two layers of gauze were placed on top of each other, and a 100g weight was placed on top of the gauze for 1 minute, and the gauze marks were then visually judged.
The evaluation criteria for this dryness were as follows. ◎... No gauze marks at all ○... Some gauze marks △... Quite a few gauze marks ×... Significant gauze marks The results of each example and comparison column are as follows:
Examples 21 to 30 and Comparative Examples 1 and 2 are shown separately in Table 2, but only comparison columns 1 and 2 are shown in each table.

【表】【table】

【表】【table】

【表】【table】

【表】 実施例31〜40および比較例3〜6 まず、「アクリデイツク44−198」〔大日本イン
キ化学工業(株)製のアクリルポリオール〕と「バー
ノツクDN−950」(同上社製のイソシアネート化
合物)とをOH/NCO=1/1なる当量比となる
ようにして、シアニン・ブルーで青色に着色し、
かつ「アルペースト1109AM」〔東洋アルミニウ
ム(株)製のアルミ・ペースト〕をも加えて10%の
PWCにして下地塗料を調製し、次いでこれを
ABS板上にエアースプレーにてメタリツク・ベ
ース・コートせしめたのち、第3表に示すような
配合割合でトツプ・クリヤーを調製し〔但し、希
釈シンナーとしてはキシレン/ソルベツソ100/
酢酸i−ブチル=80/10/10(重量比)を用い
た。〕、エアースプレーにクリヤー・コートを行な
い、1時間セツテイングさせたのち、60℃に20分
間強制乾燥を行なつて硬化塗膜を得た。 つまり、このシリーズの各実施例および比較例
は、いわゆる”2コート・1ベーク系”について
のものである。 しかるに、この強制乾燥後7日間放置させてか
ら、それぞれの塗膜について性能評価を行なつ
た。 各試験項目のうち、光沢、硬度、エリクセン、
耐衝撃性、耐ガソリン性および耐候性は既説した
通りのものであるが、相剥ぎ性および仕上がり外
観については下記の如き要領によつたものであ
る。 すなわち、「相剥ぎ性」はゴバン目を切つたの
ち、つまりクロスカツトを入れたのち、セロフア
ン・テープによる剥離を行なつて、トツプコート
とベースコートとの層間付着性をチエツクしてな
されるものであり、次の評価判定基準によつた。 ◎…異状なし ×…剥れあり 他方、「仕上がり外観」は塗面のメタルむら、
正面ヅヤ、透しヅヤおよび肉持感を目視により総
的に判断したものであり、次の評価判定基準によ
つた。 ◎…優秀 ○…良好 △…普通 ×…不良 以上の結果は、まとめて第3表に示す。 なお、比較例3、4、5および6はそれぞれ市
販アスリルウレタン系プラスチツクス用塗料を用
いた場合の例である。
[Table] Examples 31 to 40 and Comparative Examples 3 to 6 First, "Acrydik 44-198" [acrylic polyol manufactured by Dainippon Ink and Chemicals Co., Ltd.] and "Burnock DN-950" (isocyanate compound manufactured by the same company) ) and OH/NCO = 1/1 equivalence ratio, and colored blue with cyanine blue,
Also, ``Alpaste 1109AM'' [aluminum paste manufactured by Toyo Aluminum Co., Ltd.] was added to give 10%
Prepare base paint as PWC, then apply this
After applying a metallic base coat to the ABS board using air spray, a top clear was prepared using the proportions shown in Table 3.
i-Butyl acetate = 80/10/10 (weight ratio) was used. ], a clear coat was applied by air spray, and after setting for 1 hour, forced drying was performed at 60°C for 20 minutes to obtain a cured coating. In other words, each of the Examples and Comparative Examples in this series relates to a so-called "two-coat, one-bake system." However, after being allowed to stand for 7 days after this forced drying, the performance of each coating film was evaluated. Of each test item, gloss, hardness, Erichsen,
The impact resistance, gasoline resistance and weather resistance are as described above, but the removability and finished appearance are as follows. In other words, "removability" is determined by making crosscuts, peeling off with cellophane tape, and checking the interlayer adhesion between the top coat and base coat. The following evaluation criteria were used. ◎…No abnormalities ×…Peeling On the other hand, “finished appearance” shows metal unevenness on the painted surface,
Frontal appearance, sheer appearance, and fleshiness were comprehensively judged by visual inspection, and were based on the following evaluation criteria. ◎...Excellent○...Good△...Average ×...Poor The above results are summarized in Table 3. Comparative Examples 3, 4, 5 and 6 are examples in which commercially available asuryl urethane paints for plastics were used.

【表】 実施例41〜47および比較例7〜10 このシリーズの各実施例および比較例は顔料分
散性についての検討を行なうためのものであつ
て、まずエナメルベースはいずれも、下記の如き
所定のPWCになるように変性共重合体(A−1)
〜(A−11)の100部に対して各顔料を秤取し、
さらに30部のキシレンと200部のガラスビーズを
各別に加えてサンドミルにて2時間混練せしめて
調製し、次いでそれぞれの練肉エナメルベース
に、そこに用いた変性共重合体の固型分に対して
4%の、6%ナフテン酸コバルト/24%ナフテン
酸鉛=50/50(重量比)なる混合物を加えて各種
の塗料を調製した。 白…「タイペークCR−93」、PWC:35% 黒…「ロイヤル・スペクトラ・マーク」(米国
コロンビア・カーボン社製のカーボン・ブラツ
ク)、PWC:30% 赤…「フアーストゲン・スーパーレツドBN」
〔大日本インキ化学工業(株)製のキナクリドン系
顔料〕PWC:10% 緑…「フアーストゲン・グリーンS」(同上社製
のシアニン・グリーン)、PWC:10% 次いで、それぞれの塗料について顔料分散性の
検討を行なつたが、そのうち、まず塗料のチキソ
性および顔料の凝集の有無についての評価判定基
準は次の通りである。 ◎…異状なし ×…チキソ性または凝集があり、分散性不良 次に、四色混合系のスプレー/流し塗りの色差
(△E)は白/黒/赤/緑=100/5/5/5(重
量比)なる割合で、上記の各色エナメルワニスを
混合し、さらに6%ナフテン酸コバルト/24%ナ
フテン酸鉛=50/50(重量比)なる混合物を加え
て調製された四色混合系塗料を各別にブリキ板上
にまずスプレー塗装し、次いで指触乾燥せしめた
のち流し塗りせしめた塗板について色差(△E)
を測定することにより行なわれるが、この値が小
さいほど色素が小さく、したがつて顔料分散性が
良好であるといえる。 以上の結果を、まとめて第4表に示すが、酸化
チタン(「タイペークCR−93」)を用いた場合の
チキソ性および顔料の凝集は、各実施例および比
較例ともに認められなかつたので、同表には示し
ていない。
[Table] Examples 41 to 47 and Comparative Examples 7 to 10 Each of the Examples and Comparative Examples in this series is for examining pigment dispersibility. Modified copolymer (A-1) to give a PWC of
Weigh each pigment against 100 parts of ~(A-11),
Further, 30 parts of xylene and 200 parts of glass beads were separately added and kneaded for 2 hours in a sand mill, and then each kneaded enamel base was mixed with the solid content of the modified copolymer used therein. Various paints were prepared by adding 4% of a mixture of 6% cobalt naphthenate/24% lead naphthenate = 50/50 (weight ratio). White..."Typaque CR-93", PWC: 35% Black..."Royal Spectra Mark" (carbon black manufactured by Columbia Carbon, USA), PWC: 30% Red..."Fast Gen Super Red BN"
[Quinacridone pigment manufactured by Dainippon Ink and Chemicals Co., Ltd.] PWC: 10% Green... "Fast Gen Green S" (cyanine green manufactured by the same company), PWC: 10% Next, pigment dispersibility of each paint was determined. First, the evaluation criteria for the thixotropy of the paint and the presence or absence of pigment aggregation are as follows. ◎...No abnormality ×...There is thixotropy or aggregation, poor dispersibility Next, the color difference (△E) of the four-color mixture spray/flow coating is white/black/red/green = 100/5/5/5 A four-color mixed paint prepared by mixing the above-mentioned enamel varnishes in the following ratio (weight ratio) and further adding a mixture of 6% cobalt naphthenate/24% lead naphthenate = 50/50 (weight ratio). Color difference (△E) for the coated plates that were first spray-painted on each tin plate separately, then allowed to dry to the touch, and then flow-painted.
It can be said that the smaller this value is, the smaller the pigment is, and therefore the better the pigment dispersibility. The above results are summarized in Table 4. Thixotropy and pigment aggregation were not observed when titanium oxide ("Tiepeque CR-93") was used in both Examples and Comparative Examples. Not shown in the table.

【表】 実施例 48〜53 さらに、基材としてFRP板を、架橋剤成分と
してブロツク化ポリイソシアネートまたはアミノ
樹脂を用いて、第5表に示されるような塗料配合
で、実施例1〜30と同様の塗料化条件および塗装
条件で塗料化し、塗装した塗膜を、「スーパーベ
ツカミンL−117−60」〔大日本インキ化学工業(株)
製のブチル化メラミン樹脂;不揮発分=60%〕の
単独使用系およびこれと「バーノツク16−419」
〔同上社製のヘキサメチレンジイソシアネート型
ブロツク化ポリイソシアネート;不揮発分=72
%、再生イソシアネート分=5%〕との併用系の
場合には140℃×30分間、「バーノツク16−419」
の単独使用系の場合には130℃×30分間なる焼付
条件で焼げ付けて硬化塗膜を得た。 次いで、かくして得られるそれぞれの塗膜につ
いて性能評価を行なつた処を、同表にまとめて示
す。
[Table] Examples 48 to 53 Furthermore, Examples 1 to 30 were prepared using FRP board as the base material and blocked polyisocyanate or amino resin as the crosslinking agent component, and with the paint formulation shown in Table 5. A coating film made into a paint and painted under similar paint conditions and painting conditions was used as "Super Betsucomin L-117-60" [Dainippon Ink & Chemicals Co., Ltd.]
Butylated melamine resin produced by Manufacturer; non-volatile content = 60%] used alone, and this and "Burnok 16-419"
[Hexamethylene diisocyanate type blocked polyisocyanate manufactured by the same company; non-volatile content = 72
%, recycled isocyanate content = 5%], 140℃ x 30 minutes, "Barnock 16-419"
In the case of a single use system, a cured coating film was obtained by baking under the baking conditions of 130°C for 30 minutes. Next, the performance evaluation of each coating film thus obtained is summarized in the same table.

【表】【table】

Claims (1)

【特許請求の範囲】 1 (A) エポキシ基含有ビニルモノマー5〜25重
量%、芳香族系ビニルモノマー0〜60重量%、
共重合可能な不飽和結合を有するアルキド樹脂
0〜10重量%、およびこれらと共重合可能な他
のビニルモノマー5〜95重量%を共重合させ、
次いでかくして得られるエポキシ基含有ビニル
共重合体(a−1)の100重量部に対して、よ
う素価が100〜200なる乾性油脂肪酸(a−2)
を5〜60重量部となる割合で付加せしめて得ら
れる変性ビニル共重合体の60〜100重量%と、 (B) セルローズ誘導体の0〜40重量% とからなる混合物に対して、さらに該混合物の
重量を基準として (C) 紫外線吸収剤の0〜10重量%を配合せしめて
成るか、あるいはさらに (D) ドライヤーおよび/または (E) ポリイソシアネートもしくはアミノ樹脂 をも配合せしめて成る、光沢、乾燥性および肉持
感にすぐれた、しかも被塗装素材表面を侵入しに
くいプラスチツクス塗装用樹脂組成物。
[Claims] 1 (A) 5 to 25% by weight of an epoxy group-containing vinyl monomer, 0 to 60% by weight of an aromatic vinyl monomer,
Copolymerizing 0 to 10% by weight of an alkyd resin having a copolymerizable unsaturated bond and 5 to 95% by weight of another vinyl monomer copolymerizable with these,
Next, a drying oil fatty acid (a-2) having an iodine value of 100 to 200 is added to 100 parts by weight of the epoxy group-containing vinyl copolymer (a-1) thus obtained.
(B) 60 to 100% by weight of a modified vinyl copolymer obtained by adding 5 to 60 parts by weight of a cellulose derivative, and 0 to 40% by weight of (B) a cellulose derivative; based on the weight of (C) 0 to 10% by weight of an ultraviolet absorber, or also (D) a dryer and/or (E) a polyisocyanate or an amino resin. A resin composition for coating plastics that has excellent drying properties and texture, and does not easily penetrate the surface of the material to be coated.
JP1949684A 1984-02-07 1984-02-07 Resin composition for coating plastic Granted JPS60163937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1949684A JPS60163937A (en) 1984-02-07 1984-02-07 Resin composition for coating plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1949684A JPS60163937A (en) 1984-02-07 1984-02-07 Resin composition for coating plastic

Publications (2)

Publication Number Publication Date
JPS60163937A JPS60163937A (en) 1985-08-26
JPH0422172B2 true JPH0422172B2 (en) 1992-04-15

Family

ID=12000978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1949684A Granted JPS60163937A (en) 1984-02-07 1984-02-07 Resin composition for coating plastic

Country Status (1)

Country Link
JP (1) JPS60163937A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5564592B1 (en) * 2013-03-19 2014-07-30 大日本塗料株式会社 Resin composition and coated body using the same
WO2014087698A1 (en) * 2012-12-04 2014-06-12 大日本塗料株式会社 Coated article and resin composition used in same
JP5560317B2 (en) * 2012-12-04 2014-07-23 大日本塗料株式会社 Painted body
JP5787452B2 (en) * 2014-06-16 2015-09-30 大日本塗料株式会社 Resin composition and coated body using the same
JP6874236B2 (en) * 2016-03-18 2021-05-19 ナガセケムテックス株式会社 Resin composition for coating
JP7061048B2 (en) * 2018-08-27 2022-04-27 ベック株式会社 Color coating agent

Also Published As

Publication number Publication date
JPS60163937A (en) 1985-08-26

Similar Documents

Publication Publication Date Title
US4020216A (en) Coating composition for flexible substrates
US5384367A (en) Carbamate urea or urethane-functional epoxy acrylic with polyacid
US4273690A (en) Coating compositions of an alkyd-acrylic graft copolymer
JPH03174479A (en) Coating compound based on water
US3844993A (en) Floor mop having pivotable handle for changing directions air-drying coating composition of an acrylic enamel and an isocyanate cross-linking agent
US20060100353A1 (en) Coating compositions for basecoats containing acrylic branched polymers
US5965670A (en) Curable-film forming compositions having improved mar and acid etch resistance
JPS6032856A (en) Resin composition for coating compound for repairing automobile
KR100486798B1 (en) Scratch-Resistant Coating Composition
JPH0422172B2 (en)
US5981652A (en) One-liquid low temperature hardenable type colored enamel paint and clear paint
JP2853121B2 (en) Resin composition for paint
JP2961804B2 (en) Resin composition for paint
JPH0778197B2 (en) Resin composition for wood coatings
CN110773402B (en) Multilayer coating and method of forming the same
JP3166772B2 (en) Coating method
JPH0261514B2 (en)
JPS60250072A (en) Coating composition for building material
JPH04246483A (en) Coating composition
JP3370411B2 (en) Coating method
JP2878667B2 (en) Painting method and substrate
JPH02142867A (en) Topcoating material for scratch prevention and coating film thereof
JPH1180662A (en) Resin composition for coating
JP2808115B2 (en) Paint resin
JP3760214B2 (en) Thermosetting coating composition