JPH04221723A - Photodetecting mechanism - Google Patents

Photodetecting mechanism

Info

Publication number
JPH04221723A
JPH04221723A JP41350490A JP41350490A JPH04221723A JP H04221723 A JPH04221723 A JP H04221723A JP 41350490 A JP41350490 A JP 41350490A JP 41350490 A JP41350490 A JP 41350490A JP H04221723 A JPH04221723 A JP H04221723A
Authority
JP
Japan
Prior art keywords
optical fiber
light
fiber cable
receiving element
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41350490A
Other languages
Japanese (ja)
Inventor
Setsuo Kotado
古田土 節夫
Kenji Kuroda
憲治 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP41350490A priority Critical patent/JPH04221723A/en
Publication of JPH04221723A publication Critical patent/JPH04221723A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a photodetector which can detect the power of light of low level which enters from a light directly or through an optical fiber cable with good accuracy. CONSTITUTION:In order to remove an influence of heat of an optical fiber cable 2 where measured light enters, a temperature compensating optical fiber 4 is provided. In order to make the temperature compensating optical fiber 4 reach the same temperature of the optical fiber cable 2, the optical fiber 4 is thermally connected to the optical fiber cable 2 by a holder 9. Further, the radiation heat from each optical fiber is detected by the respective photodetecting elements 3, 5. A difference between the respective output is obtained by an electric processing to detect a light level of light from the optical fiber 2 to be found.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光源より入射される光
のパワー、特に光ファイバを介して入射される低レべル
、広ダイナミックレンジの光のパワーを検出できる光検
出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photodetection device capable of detecting the power of light incident from a light source, particularly the power of low-level, wide dynamic range light incident through an optical fiber.

【0002】0002

【従来の技術】光源からの光のパワーを検出する光検出
装置は、入射される光を電気信号に変換する受光素子を
備えている。光源から入射される光を電気信号に変換し
た後、所定のレベルに増幅して、例えば試験器である光
パワーメータ等に出力してその値が指示されるようにな
っている。
2. Description of the Related Art A photodetector for detecting the power of light from a light source includes a light receiving element that converts incident light into an electrical signal. After the light incident from the light source is converted into an electrical signal, it is amplified to a predetermined level and output to, for example, an optical power meter, which is a testing device, and its value is indicated.

【0003】また、この種の光検出装置を例えば、標準
光検出器として汎用機器の校正器に用いる。この場合、
標準光検出器には光源から直接平行光が入射される場合
と、光ファイバを介して入射される場合とがあり、図3
に示すように平行光光源23からの光パワーで標準検出
器24の値付けを標準光パワーメータ25で行う。
Furthermore, this type of photodetector is used, for example, as a standard photodetector in a calibrator for general-purpose equipment. in this case,
There are two types of standard photodetectors: parallel light is incident directly from a light source, and parallel light is incident through an optical fiber.
As shown in FIG. 2, the value of the standard detector 24 is determined using the optical power from the collimated light source 23 using the standard optical power meter 25.

【0004】さらに、図4に示すように平行光光源23
によって値付けされた値になるようにファイバ光源28
からの光パワーを光減衰器29で調整し、この状態で被
校正器である汎用検出器30に交換して汎用パワーメー
タ31により校正を行っている。
Furthermore, as shown in FIG.
The fiber light source 28
The optical power from the detector is adjusted by an optical attenuator 29, and in this state, the device to be calibrated is replaced with a general-purpose detector 30, and calibration is performed by a general-purpose power meter 31.

【0005】[0005]

【発明が解決しようとする課題】ところで、この種の装
置を他の装置と組み合わせて使用する場合、各装置はコ
ネクタ接続されるのが一般的であり、この操作はユーザ
の手によって行われる。
By the way, when this type of device is used in combination with other devices, each device is generally connected by a connector, and this operation is performed manually by the user.

【0006】しかしながら、上述した光検出装置では、
光を検出する素子に熱電素子を用いていることから、周
囲の温度変化の影響を受けやすく、この温度変化が落ち
着くまで長時間を要していた。このため、装置内部に対
する周囲温度および個々の熱伝導特性が異なる光ファイ
バを介しての熱伝達を極力抑える必要があった。
However, in the above-mentioned photodetection device,
Since thermoelectric elements are used as elements for detecting light, they are susceptible to changes in ambient temperature, and it takes a long time for these temperature changes to settle down. Therefore, it is necessary to suppress heat transfer to the inside of the device as much as possible through the optical fibers, which have different ambient temperatures and individual heat conduction characteristics.

【0007】周囲温度および光ファイバからの熱伝達を
極力抑える方法としては、図5の断面図に示すような、
断熱材で受光素子を覆うと同時に、光検出素子から十分
離れた位置でコネクタ締結用ホルダを回す構造が考えら
れている(参考文献:黒田憲治他「高速・高精度光パワ
ーメータ」(電気学会研究会資料IM−90−57))
As a method of suppressing the ambient temperature and heat transfer from the optical fiber as much as possible, as shown in the cross-sectional view of FIG.
A structure has been considered in which the light-receiving element is covered with a heat insulating material and, at the same time, the connector fastening holder is rotated at a position sufficiently far from the light-detecting element (Reference: Kenji Kuroda et al., "High-speed, high-precision optical power meter" (Institute of Electrical Engineers of Japan) Study group materials IM-90-57))
.

【0008】しかしながら、図5の構造としても、微小
光レベルに対しては、光ファイバを介しての熱の影響が
無視できず、具体的には、最低検出レベルは約−20d
Bm迄しか実現出来ず、光計測技術へのニーズである、
光パワー測定のより高精度化の対応に対処出来ないでい
た。また、図6に示すように、同一形状の受光素子を2
個近接して配置し、一方を検出用に、他方を補償用に用
いることにより周囲の輻射熱からのノイズを低減し最低
検出レベルの向上を図る試みがなされているが同様の問
題を抱えていた(参考文献:鈴木泰幸他「光ファイバ出
射光用カロリメータ」(電気学会研究会資料IM−90
−56))。
However, even with the structure shown in FIG. 5, the influence of heat through the optical fiber cannot be ignored for very low light levels, and specifically, the lowest detection level is about -20d.
This can only be achieved up to Bm, and there is a need for optical measurement technology.
It was not possible to cope with the need for higher precision in optical power measurement. In addition, as shown in Fig. 6, two light receiving elements of the same shape are used.
Attempts have been made to reduce noise from surrounding radiant heat and improve the minimum detection level by arranging them close together and using one for detection and the other for compensation, but they had the same problem. (Reference: Yasuyuki Suzuki et al. “Calorimeter for optical fiber output light” (IEEJ study group material IM-90
-56)).

【0009】つまり、低レベル測定における測定精度を
高めるためには、ノイズ要因を小さくすることが必要不
可欠な条件である。光検出装置のノイズ要因として図7
に示す三の要因が考えられている。N1は光検出素子の
動作抵抗(600オーム)により発生するノイズであり
、N2はチョッパのオン抵抗(約200オーム)により
発生するノイズである。N1、N2は数1により計算さ
れる。
In other words, in order to improve measurement accuracy in low-level measurements, it is essential to reduce noise factors. Figure 7 as a noise factor in the photodetector
The following three factors are considered. N1 is noise generated by the operating resistance (600 ohms) of the photodetector, and N2 is noise generated by the on-resistance (approximately 200 ohms) of the chopper. N1 and N2 are calculated using Equation 1.

【0010】0010

【数1】[Math 1]

【0011】計算により、N1=1.7nV、N2=1
.0nVであり、さらに、プリアンプの発生ノイズN3
は実測により、N2=1.7nVの結果が得られている
。よって、総合ノイズNsは数2で示される。
By calculation, N1=1.7nV, N2=1
.. 0nV, and furthermore, the noise generated by the preamplifier N3
As a result of actual measurements, a result of N2=1.7 nV has been obtained. Therefore, the total noise Ns is expressed by Equation 2.

【0012】0012

【数2】[Math 2]

【0013】つまり、三つの要因からのノイズは2.6
nVであるので、他のノイズ要因が無い場合は、−30
dBm(300nV)を1%の精度で検出することがで
きることになる。しかし、実際は−20dBmまでしか
1%の精度で検出するできない。これは従来の図5およ
び図6の構成では、上記三つの要因の他の要因、つまり
、光ファイバケーブルから伝播される熱輻射の影響を十
分に除去していないからである。本発明は、これらの問
題点をなくするために、周囲の温度変化があっても、測
定精度に影響しない、光検出装置を提供することを課題
とする。
[0013] In other words, the noise from the three factors is 2.6
Since it is nV, if there are no other noise factors, -30
This means that dBm (300 nV) can be detected with an accuracy of 1%. However, in reality, it is possible to detect only -20 dBm with an accuracy of 1%. This is because the conventional configurations shown in FIGS. 5 and 6 do not sufficiently eliminate the influence of other factors than the above three factors, that is, the influence of thermal radiation propagated from the optical fiber cable. In order to eliminate these problems, it is an object of the present invention to provide a photodetection device that does not affect measurement accuracy even if there is a change in ambient temperature.

【0014】[0014]

【課題を解決するための手段】本発明は、上記課題を解
決するために、計測する光を入射する光ファイバケーブ
ル2の熱による影響を除去するため、光ファイバケーブ
ル2と同一の温度となる温度補償用光ファイバ4を備え
る。さらに、光ファイバケーブル2の光量および熱によ
る輻射熱を検出する受光素子3と、温度補償用光ファイ
バ4の熱による輻射熱を検出する受光素子5を備えた。 さらに、それぞれの出力を電気的処理により差をとり、
求める光量による輻射熱、すなわち光レベルを検出する
。具体的には、以下(a)から(e)の構成とした。
[Means for Solving the Problems] In order to solve the above problems, the present invention eliminates the influence of heat on the optical fiber cable 2 through which the light to be measured is incident, so that the temperature becomes the same as that of the optical fiber cable 2. A temperature compensation optical fiber 4 is provided. Furthermore, a light receiving element 3 for detecting the amount of light and radiant heat from the optical fiber cable 2 and a light receiving element 5 for detecting radiant heat from the temperature compensating optical fiber 4 were provided. Furthermore, the difference between each output is calculated by electrical processing,
Detects the radiant heat due to the desired amount of light, that is, the light level. Specifically, the following configurations (a) to (e) were adopted.

【0015】(a)光ファイバケーブル2を介して入射
される光を受光する第1の受光素子3と、(b)光ファ
イバケーブル2の熱の影響を除去するための温度補償用
光ファイバ4と、(c)温度補償用光ファイバ4を光フ
ァイバケーブル2と熱的に接触させる手段9と、(d)
温度補償用光ファイバ4の輻射熱を受ける第2の受光素
子5と、(e)第1の受光素子3と第2の受光素子5と
のそれぞれの出力信号の差を検出する手段6(以下、単
に「検出する手段6」という)を備えた。
(a) a first light receiving element 3 that receives light incident through the optical fiber cable 2; and (b) a temperature compensating optical fiber 4 for removing the influence of heat on the optical fiber cable 2. (c) means 9 for thermally contacting the temperature compensating optical fiber 4 with the optical fiber cable 2; and (d)
a second light receiving element 5 receiving radiant heat from the temperature compensation optical fiber 4; and (e) means 6 for detecting the difference in output signals of the first light receiving element 3 and the second light receiving element 5 (hereinafter referred to as (simply referred to as "detecting means 6").

【0016】[0016]

【作用】このように構成された光検出装置によれば、第
1の受光素子3で光ファイバケーブル2を介して入射さ
れる光の輻射熱P1と、光ファイバケーブル2の熱その
ものによる輻射熱P2の和を受け、検出電圧V1を出力
する。
[Operation] According to the photodetecting device configured as described above, the first light receiving element 3 detects the radiant heat P1 of the light incident through the optical fiber cable 2 and the radiant heat P2 due to the heat of the optical fiber cable 2 itself. It receives the sum and outputs the detection voltage V1.

【0017】また、第2の受光素子5で温度補償用光フ
ァイバ4の熱そのものによる輻射熱P3を受け、検出電
圧V2を出力する。ここで、光ファイバケーブル2と温
度補償用光ファイバ4は熱的に接続されているので、P
2とP3は等しい。 P1+P2=V1・・・(3) P3=P2=V2・・・(4) P1=V1−V2・・・(5) 数5より、光ファイバケーブル2の熱そのものによる輻
射熱P2の影響を受けずに、光の輻射熱P1を検出する
手段6で検出することができる。
Further, the second light-receiving element 5 receives radiant heat P3 due to the heat of the temperature-compensating optical fiber 4, and outputs a detection voltage V2. Here, since the optical fiber cable 2 and the temperature compensation optical fiber 4 are thermally connected, P
2 and P3 are equal. P1+P2=V1...(3) P3=P2=V2...(4) P1=V1-V2...(5) From equation 5, it is not affected by the radiant heat P2 due to the heat of the optical fiber cable 2 itself. In addition, the radiant heat P1 of the light can be detected by the means 6 for detecting it.

【0018】ここで、同一温度における第1の受光素子
3と第2の受光素子5の輻射熱の出力を、等しくするた
め、予め検出する手段6は校正されている。
Here, in order to equalize the radiant heat output of the first light receiving element 3 and the second light receiving element 5 at the same temperature, the detecting means 6 is calibrated in advance.

【0019】[0019]

【実施例】以下、本発明の一実施例を図面を用いて説明
する。図1および図2は、本発明の一実施例の構成図で
、図1は光検出器の断面模式図を、また図2は受光素子
の模式図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 and 2 are block diagrams of an embodiment of the present invention, with FIG. 1 being a schematic cross-sectional view of a photodetector, and FIG. 2 being a schematic diagram of a light-receiving element.

【0020】コネクタ1Aを備えた光ファイバケーブル
2を介して入射される光を検出する光検出装置は、光フ
ァイバケーブル2を介して入射される光量を検出する第
1の受光素子3と、光ファイバケーブル2と熱的に接触
している温度補償用光ファイバ4と、該温度補償用光フ
ァイバ4の輻射熱を検出する第2の受光素子5と、前記
第1の受光素子3と前記第2の受光素子5とから構成さ
れ、各受光素子および光ファイバの先端部は、図1に示
すように各断熱ジャケット7、8で覆われ周囲の熱的じ
ょう乱を受けにくい構造となっている。
[0020] A photodetection device for detecting light incident through the optical fiber cable 2 equipped with the connector 1A includes a first light receiving element 3 for detecting the amount of light incident through the optical fiber cable 2, and a light receiving element 3 for detecting the amount of light incident through the optical fiber cable 2. A temperature-compensating optical fiber 4 that is in thermal contact with the fiber cable 2, a second light-receiving element 5 that detects the radiant heat of the temperature-compensating optical fiber 4, the first light-receiving element 3, and the second light-receiving element 3. Each light receiving element and the tip of the optical fiber are covered with heat insulating jackets 7 and 8, as shown in FIG. 1, so that they are not susceptible to surrounding thermal disturbances.

【0021】第1の受光素子3と第2の受光素子5は、
図2に示すように、同一特性を有する光吸収体11A、
11B、カスケード結合された各薄膜熱電対12A−1
2B、13A−13B、14A−14B、15A−16
Bおよび電極16A、16B、16C、16D、16E
とから構成され、同一基板10上に集積化されている。
The first light receiving element 3 and the second light receiving element 5 are
As shown in FIG. 2, a light absorber 11A having the same characteristics,
11B, each cascaded thin film thermocouple 12A-1
2B, 13A-13B, 14A-14B, 15A-16
B and electrodes 16A, 16B, 16C, 16D, 16E
and are integrated on the same substrate 10.

【0022】従って、検出する手段6は、第1および第
2の各受光素子3、5に設けられた薄膜熱電対からの出
力信号(V1、V2)が互いに逆向きになるように結線
することにより出力信号の差(V1−V2)を検出する
ことができる。
Therefore, the detecting means 6 should be wired so that the output signals (V1, V2) from the thin film thermocouples provided on each of the first and second light receiving elements 3, 5 are in opposite directions. It is possible to detect the difference (V1-V2) between the output signals.

【0023】光ファイバケーブル2と温度補償用光ファ
イバ4とを熱的に接触する手段9としては熱伝導のよい
物体、例えば金属からなるホルダー9を用いることによ
り容易に実現できる。このときホルダーの表面は熱不導
体、例えば、ガラスや有機物体で覆うことにより、ハン
ドリング時の熱的じょう乱をより小さくすることができ
る。
The means 9 for thermally contacting the optical fiber cable 2 and the temperature-compensating optical fiber 4 can be easily realized by using a holder 9 made of a material with good thermal conductivity, for example, metal. At this time, by covering the surface of the holder with a heat insulating material such as glass or an organic substance, thermal disturbance during handling can be further reduced.

【0024】なお、上記した受光素子3、5は通常の半
導体プロセスを用いることにより比較的容易に作製する
ことができる。そのため、受光素子3、5は同一特性と
なる。
It should be noted that the above-mentioned light receiving elements 3 and 5 can be manufactured relatively easily by using a normal semiconductor process. Therefore, the light receiving elements 3 and 5 have the same characteristics.

【0025】また、上記実施例の他に検出する手段6と
して、■、■がある。■受光素子3、5の出力信号をア
ナログ的な差動増幅器により検出する手段。■受光素子
3、5の出力信号をデイジタル信号に変換した後、ソフ
ト演算により検出する手段。特に、■の手段を用いるこ
とにより、低レベルでない光量を検出する場合は、ソフ
ト処理を切り換えにより、2本の光ファイバケーブルを
介して同時に入射される光量を検出することができる。 また、同様な手段により2本以上の光検出装置を容易に
構成することができる。
In addition to the above-mentioned embodiments, there are also detection means 6 such as (1) and (2). ■Means for detecting the output signals of the light receiving elements 3 and 5 using an analog differential amplifier. (2) Means for converting the output signals of the light receiving elements 3 and 5 into digital signals and then detecting them by software calculation. In particular, when using the method (2) to detect a light amount that is not at a low level, it is possible to detect the amount of light incident simultaneously via two optical fiber cables by switching the software processing. Further, two or more photodetecting devices can be easily constructed using similar means.

【0026】また、実施例は、光ファイバケーブルを介
した光の光量を検出する場合の例を説明したが、光源が
ビームの場合も本発明は、周りから入射するビーム以外
の熱輻射を除去するため、同様な効果があることはいう
までもない。
Further, in the embodiment, an example was explained in which the amount of light transmitted through an optical fiber cable is detected, but even when the light source is a beam, the present invention can remove thermal radiation other than the beam incident from the surroundings. Therefore, it goes without saying that similar effects can be obtained.

【0027】さらに、回路系も含めて、同一温度におけ
る受光素子3と受光素子5の輻射熱の出力を、等しくす
るため、予め検出する手段6を校正する方法は、光ファ
イバケーブル2と、温度補償用光ファイバ4を挿入する
コネクタ1A、1Bを相互に入替えて出力が同一になる
ように校正することができる。また、受光素子3と受光
素子5にそれぞれ直流ヒータを内蔵し、正確な既知の直
流電力を供給し、受光素子3と受光素子5の検出電圧を
校正できる。
Furthermore, in order to equalize the radiant heat outputs of the light receiving elements 3 and 5 at the same temperature, including the circuit system, a method for calibrating the detecting means 6 in advance includes the optical fiber cable 2 and temperature compensation. The connectors 1A and 1B into which the optical fiber 4 is inserted can be interchanged to calibrate the outputs to be the same. Further, each of the light receiving elements 3 and 5 has a built-in DC heater, and by supplying accurate known DC power, the detected voltages of the light receiving elements 3 and 5 can be calibrated.

【0028】[0028]

【発明の効果】以上、説明したように本発明の光検出装
置によれば、光ファイバケーブル2と同一の温度となる
温度補償用光ファイバ4を備え、それぞれの光ファイバ
の輻射熱をそれぞれの受光素子で受け、それぞれの出力
信号の差を検出する手段6を備えた。そのため、光ファ
イバケーブル2の熱そのものによる輻射熱P2の影響を
受けずに、光の輻射熱P1を検出する手段6で検出する
ことができる。具体的には、温度によるレベルの安定化
を待たないで、光レベル−30dBmまで、1%以下の
高精度で検出可能となった。
As described above, according to the photodetecting device of the present invention, the temperature-compensating optical fiber 4 which has the same temperature as the optical fiber cable 2 is provided, and the radiant heat of each optical fiber is transferred to each received light. Means 6 is provided for detecting the difference between the output signals received by the elements. Therefore, the means 6 for detecting the radiant heat P1 of light can be detected without being affected by the radiant heat P2 due to the heat of the optical fiber cable 2 itself. Specifically, it has become possible to detect light levels down to -30 dBm with high accuracy of 1% or less without waiting for the level to stabilize due to temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の構成図。FIG. 1 is a configuration diagram of the present invention.

【図2】本発明の受光素子の構成図[Fig. 2] Configuration diagram of the light receiving element of the present invention

【図3】汎用機器の校正を行う場合の装置構成を示す図
FIG. 3 is a diagram showing an apparatus configuration when calibrating general-purpose equipment.

【図4】汎用機器の校正を行う場合の装置構成を示す図
FIG. 4 is a diagram showing an apparatus configuration when calibrating general-purpose equipment.

【図5】従来の光センサの断面図。FIG. 5 is a cross-sectional view of a conventional optical sensor.

【図6】従来の光センサの断面図。FIG. 6 is a cross-sectional view of a conventional optical sensor.

【図7】光検出装置のノイズ要因。FIG. 7: Noise factors in the photodetector.

【符号の説明】[Explanation of symbols]

1A  コネクタ。 1B  コネクタ。 2  光ファイバケーブル。 3  第1の受光素子。 4  温度補償用光ファイバ。 5  第2の受光素子。 6  出力信号の差を検出する手段。 9  熱的に接触する手段(ホルダー)。 1A connector. 1B connector. 2. Optical fiber cable. 3 First light receiving element. 4. Optical fiber for temperature compensation. 5 Second light receiving element. 6. Means for detecting the difference in output signals. 9. Means for thermal contact (holder).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  コネクタ(1)を備えた光ファイバケ
ーブル(2)を介して入射される光を検出する光検出装
置において、前記光ファイバケーブル(2)を介して入
射される光量を検出する第1の受光素子(3)と、前記
光ファイバケーブル(2)の熱の影響を除去するための
温度補償用光ファイバ(4)と、前記温度補償用光ファ
イバ(4)を前記光ファイバケーブル(2)と熱的に接
触させる手段(9)と、該温度補償用光ファイバ(4)
の輻射熱を検出する第2の受光素子(5)と、前記第1
の受光素子(3)と前記第2の受光素子(5)との出力
信号の差を検出する手段(6)とを備えたことを特徴と
する光検出装置。
1. A photodetector for detecting light incident through an optical fiber cable (2) equipped with a connector (1), which detects the amount of light incident through the optical fiber cable (2). A first light-receiving element (3), a temperature-compensating optical fiber (4) for removing the influence of heat on the optical fiber cable (2), and a temperature-compensating optical fiber (4) connected to the optical fiber cable. (2), a means (9) for thermally contacting the temperature-compensating optical fiber (4);
a second light receiving element (5) that detects the radiant heat of the first light receiving element (5);
A photodetection device comprising means (6) for detecting a difference in output signals between the light receiving element (3) and the second light receiving element (5).
JP41350490A 1990-12-21 1990-12-21 Photodetecting mechanism Pending JPH04221723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41350490A JPH04221723A (en) 1990-12-21 1990-12-21 Photodetecting mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41350490A JPH04221723A (en) 1990-12-21 1990-12-21 Photodetecting mechanism

Publications (1)

Publication Number Publication Date
JPH04221723A true JPH04221723A (en) 1992-08-12

Family

ID=18522134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41350490A Pending JPH04221723A (en) 1990-12-21 1990-12-21 Photodetecting mechanism

Country Status (1)

Country Link
JP (1) JPH04221723A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1363113A2 (en) * 2002-05-13 2003-11-19 Bartec GmbH Temperature measurement device using an optical fiber
US6980708B2 (en) 2002-05-13 2005-12-27 Bartec Gmbh Device for fibre optic temperature measurement with an optical fibre

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196430A (en) * 1982-05-12 1983-11-15 Horiba Ltd Radiation thermometer
JPS60249018A (en) * 1984-05-24 1985-12-09 Matsushita Electric Ind Co Ltd Infrared optical fiber device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196430A (en) * 1982-05-12 1983-11-15 Horiba Ltd Radiation thermometer
JPS60249018A (en) * 1984-05-24 1985-12-09 Matsushita Electric Ind Co Ltd Infrared optical fiber device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1363113A2 (en) * 2002-05-13 2003-11-19 Bartec GmbH Temperature measurement device using an optical fiber
EP1363113A3 (en) * 2002-05-13 2004-09-29 Bartec GmbH Temperature measurement device using an optical fiber
US6980708B2 (en) 2002-05-13 2005-12-27 Bartec Gmbh Device for fibre optic temperature measurement with an optical fibre

Similar Documents

Publication Publication Date Title
US6129673A (en) Infrared thermometer
US5717608A (en) Electro-optical board assembly for measuring the temperature of an object surface from infra-red emissions thereof, including an automatic gain control therefore
US6538250B2 (en) Microbolometer focal plane array with controlled bias
KR100668025B1 (en) Temperature correction processing apparatus
EP1953513A1 (en) Calibrating method of current detection type thermocouple or the like, calibration method of offset of operational amplifier, current detection type thermocouple, infrared sensor and infrared detector
KR101229605B1 (en) Method and system for measuring and compensating for the case temperature variations in a bolometer based system
US20130022075A1 (en) Temperature sensor having means for in-situ calibration
Eppeldauer et al. Opto-mechanical and electronic design of a tunnel-trap Si radiometer
CN111307324B (en) Method for compensating APD temperature drift in Raman distributed optical fiber temperature measurement system
JPH04221723A (en) Photodetecting mechanism
CN112461363A (en) Offset nulling for optical power meters
Hobbs et al. Quantitative thermal imaging using single-pixel Si APD and MEMS mirror
US4061917A (en) Bolometer
US20070176768A1 (en) Thermocouple microwave power sensor
Bruening Spectral irradiance scales based on filtered absolute silicon photodetectors
CN105823555B (en) A kind of continuous thz laser device for testing power
JP2002043610A (en) High gain photoelectric converter
US6677570B1 (en) Wide dynamic range optical power detector
JPS61259580A (en) Thermopile
Eppeldauer et al. Photocurrent measurement of PC and PV HgCdTe detectors
JPH01110225A (en) Infrared radiation meter
JPS6171326A (en) Photodetector
RU128322U1 (en) MULTI-CHANNEL CALORIMETRIC SPECTROMETER
JP2844788B2 (en) Optical measuring instrument
Hao et al. Study on the infrared lens-free irradiation thermometer based on InGaAs detector at NIM