JPH04221354A - Production of tert. butyl hydrazine - Google Patents

Production of tert. butyl hydrazine

Info

Publication number
JPH04221354A
JPH04221354A JP2412797A JP41279790A JPH04221354A JP H04221354 A JPH04221354 A JP H04221354A JP 2412797 A JP2412797 A JP 2412797A JP 41279790 A JP41279790 A JP 41279790A JP H04221354 A JPH04221354 A JP H04221354A
Authority
JP
Japan
Prior art keywords
buh
reaction
tert
mol
hydrazine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2412797A
Other languages
Japanese (ja)
Other versions
JP2988638B2 (en
Inventor
Masanori Sasaki
佐々木 正典
Masahiro Murotani
昌宏 室谷
Makoto Takeda
誠 武田
Takehiko Yoshie
吉江 武彦
Hiroaki Mukai
向井 宏昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbide Industries Co Inc
Original Assignee
Nippon Carbide Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbide Industries Co Inc filed Critical Nippon Carbide Industries Co Inc
Priority to JP2412797A priority Critical patent/JP2988638B2/en
Publication of JPH04221354A publication Critical patent/JPH04221354A/en
Application granted granted Critical
Publication of JP2988638B2 publication Critical patent/JP2988638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To industrially and advantageously obtain tert. butylhydrazine. CONSTITUTION:A hydrazine monohydrohalide salt is reacted with tert. butyl alcohol in the presence of phosphoric acid of 0.2-1.5mol based on 1mol hydrazine monohydrohalide salt to produce tert. butylhydrazine monohydrohalide salt.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はターシャリーブチルヒド
ラジンの工業的に有利な製造方法に関し、詳しくは、ヒ
ドラジンモノハロゲン化水素酸塩とターシャリーブチル
アルコールとを特定量範囲の燐酸の存在下に反応させる
ことを特徴とするターシャリーブチルヒドラジンの製造
方法に関するものである。 【0002】 【従来の技術】ターシャリーブチルヒドラジン(以下、
t−BuHと略記することがある)の製造法に関しては
、従来よりいくつかの提案が知られており、例えば特開
昭59−137453号公報には、「ヒドラジン・ハロ
ゲン化水素酸塩とターシャリーブタノールとをヒドラジ
ン・ジハロゲン化水素酸塩又はハロゲン化水素の存在下
に反応させることを特徴とするターシャリーブチルヒド
ラジン・ハロゲン化水素酸塩の製造方法。」に関して開
示されている。 【0003】上記提案によれば、ターシャリーブチルヒ
ドラジンモノハロゲン化水素酸塩(以下、t−BuH・
HXと略記することがある)を製造にあたり、ヒドラジ
ンモノハロゲン化水素酸塩(以下、H・HXと略記する
ことがある)に対して過剰のハロゲン化水素酸の存在が
必要不可欠の条件である。そして該提案では、確かにH
・HXに対するt−BuH・HXの生成収率は高いが、
反応系中の溶媒に対する該t−BuH・HXの溶解度が
極めて高いため、仕込のヒドラジン類に対する該t−B
uH・HXの実際の収得収率は約7%と極めて低くく、
それをカバーするため反応液のリサイクル再使用を提案
しているが、時間・装置当りの生産量という観点からす
ると全く不十分なものであり、工業的に有利な方法とは
いい難く、また、製品の純度の点でも問題が有った。さ
らにこの提案には、本発明のように必須成分として燐酸
を存在させること及びそのことによる卓越した効果に関
してなどは何等の記載も示唆も存在しない。 【0004】本発明者らは、過剰のハロゲン化水素酸の
存在は必ずしも必要不可欠な条件ではなく、燐酸などの
含リン酸素酸の存在下でも同様な反応が進行することを
見出し、先に特許出願を行った(特開昭60−2370
59号)。この出願は、「ヒドラジン(NH2NH2)
と一価アルコール(ROH、但し式中、Rはアルキル基
を示す)とを、ハロゲン化水素酸(HX、但し式中、X
は Clもしくは Br原子を示す)の存在下もしくは
不存在下に、含リン酸素酸の存在下で反応させることを
特徴とするものアルキルヒドラジン(RNHNH2、但
し式中Rは上記したと同義)の製法。」について開示す
るもので、その実施例14には、水加ヒドラジン1モル
に対して、臭化水素酸1モル及びオルトリン酸0.1モ
ルの存在下でのt−BuHの合成に関して記載されてい
る。 【0005】この提案においは、目的化合物であるt−
BuH・HXの収得収率は34%とかなり改善されてい
るものの、該ハロゲン化水素酸塩の純度の点では94重
量%と必ずしも十分とはいい難かった。 【0006】 【発明が解決すべき課題】本発明者は上記従来技術の問
題点を解決すべく詳細な検討を行った結果、ハロゲン化
水素酸に変えて燐酸を用いると、該燐酸はH・HXとタ
ーシャリーブチルアルコール(以下、t−BuOHと略
記することがある)との反応における触媒として作用す
るとともに、該反応の溶媒となり、また、この燐酸に対
して、生成するt−BuH・HXは比較的溶けにくいが
、出発原料のヒドラジンモノハロゲン化水素酸塩は比較
的高い溶解度をもつため、該燐酸の使用量をある特定範
囲にすることにより、高純度のt−BuH・HXの結晶
を析出させることができ、この結晶を濾別、洗浄、乾燥
という簡単な操作を行うのみで純度98重量%以上のt
−BuH・HX結晶を50%以上の収得収率で得ること
ができることを見出し、本発明を完成するに至った。 【0007】 【課題を解決するための手段】本発明は、ヒドラジンモ
ノハロゲン化水素酸塩とターシャリーブチルアルコール
とを燐酸の存在下に反応させてターシャリーブチルヒド
ラジンを製造する方法において、燐酸をヒドラジンモノ
ハロゲン化水素酸塩1モルに対して 0.2〜1.5モ
ル存在させることを特徴とするターシャリーブチルヒド
ラジンの製造方法に関するものである。 【0008】以下、本発明を詳細に説明する。本発明の
出発原料であるH・HXとしては、例えば、ヒドラジン
のモノ塩化水素酸塩(以下、H・HClと略記すること
がある)、モノ臭化水素酸塩(以下、H・HBrと略記
することがある)、モノヨウ化水素酸塩、モノフッ化水
素酸塩等を例示することができ、H・HCl及びH・H
Brの使用が好ましい。 【0009】上記のH・HXは、そのまま塩の形で反応
に供してもいいが、これに限定されるものではなく、例
えば、ヒドラジン水溶液とハロゲン化水素酸水溶液の形
で供し、反応系中で中和し形成させたあと、必要に応じ
て所定の濃度に濃縮して用いてもよい。 【0010】本発明方法において使用するt−BuOH
は、通常市販されているものでよく、特に限定されない
が、反応を阻害するアルカリ等を含まず、また、ヒドラ
ジンと反応し有害な結果をもたすらさないものであれば
どの様なt−BuOHであっても使用できる。通常は9
5重量%純度のものが推賞できる。 【0011】上記t−BuOHの使用量は、H・HX1
モルに対して、一般に1〜2モル、好ましくは1.0〜
1.2モル程度であるのがよい。該使用量が該下限値以
上であれば、未反応のH・HXの生成t−BuH・HX
への混入を抑制することが可能となり、得られるt−B
uH・HXの純度の低下を防止することができるととも
に、良好な反応速度を保持することができるので好まし
く、一方、該上限値以下であれば、過剰なt−BuOH
のt−BuH・HXへの混入が抑制できるので好ましい
。 【0012】t−BuOHは、90〜130℃に保たれ
た反応系中に逐次添加するのが好ましい。この添加法に
よれば反応を常圧下で進行させることができ、オートク
レーブ等の特殊な反応装置を用いる必要もなく実際的で
ある。 また、反応に伴って生成する水の除去、反応温度の制御
、液組成の管理等を容易に行うことができる。 【0013】t−BuOHの逐次添加に際しては、反応
液を分析し、反応液中のH・HXとt−BuH・HXと
の組成モル比が0.3以下になるまで逐次添加し、反応
させることが好ましい。該モル比以下にすることにより
、出発原料H・HXの生成物t−BuH・HX結晶中へ
の混入を抑制することができ、純度の低下を防止できる
ので好ましい。 【0014】使用する燐酸は水溶液として反応系に加え
るのが好ましい。燐酸の濃度は特に限定されないが、通
常10〜100重量%の範囲の任意の濃度が推賞できる
。該濃度がこれより薄い場合には反応に先立ち、あるい
は反応させながら、蒸留等の操作により反応系外に水を
除去し、同様な効果を発揮する濃度にすることできる。 【0015】燐酸の使用量は、出発原料のH・HX1モ
ルに対して0.2モル〜1.5モル、好ましくは0.4
〜0.6モルの範囲である。該使用量が、該下限値未満
と少なすぎては、触媒効果が薄く反応に時間がかかり、
生成する結晶の純度も悪くなるので好ましくなく、一方
、該上限値を超えて多過ぎては、生成するt−BuH・
HXの溶解量が多くなり、収得収率が低くくなるので好
ましくない。 【0016】本発明方法における反応は、大気圧条件下
で行うことができ、特に加圧条件を採用する必要はない
が、望むならば加圧条件を採用することもでき、例えば
、大気圧〜約15kg/cm2の如き圧力条件が例示で
きる。 【0017】本発明方法における反応温度としては90
〜130℃が好適に使用でき、好ましくは100〜11
0℃が推奨出来る。反応温度が該下限値以上であれば、
適度な反応速度を有しており、一方、該上限値以下であ
れば、t−BuOHのイソブチレンへの副反応を抑制す
ることができるので好ましい。 【0018】反応時間は、通常は5時間程度である。反
応装置の能力によってはさらに短時間に反応を終了させ
ることも可能であるが、反応時間は反応液中のH・HX
とt−BuH・HXの組成モル比によって決定するのが
実際的である。 【0019】また、反応の実施は反応液を管理すること
により、濾液のリサイクル再使用を行い、さらに生産性
の向上を図ることもできる。 【0020】かくして得られたt−BuH・HXは、例
えば、適宜のアルカリ性化合物を加えて中和し、所望に
より、形成されるアルカリ塩を濾別し、蒸溜して遊離の
t−BuHを採取することができる。利用可能なアルカ
リ化合物としては、例えば、水酸化ナトリウム、水酸化
カリウム、水酸化カルシウム、水酸化バリウム等のアル
カリ金属またはアルカリ土類金属の水酸化物;例えば、
炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸
塩;などを挙げることができる。 【0021】反応形式は、例えば、回分式、半回分式、
連続式のいずれの態様で実施してもよい。 【0022】 【実施例】以下、実施例及び比較例により、本発明の実
施状態について更に詳しく説明する。 【0023】実施例1 300mlのセパラブルフラスコにH・HCl 68.
5g(1.00モル)及び32重量%燐酸水溶液61.
3g(0.20モル)を仕込み、加熱攪拌下、t−Bu
OH 74.1g(1.00モル)を100〜105℃
で5時間かけ滴下した。滴下終了後、更に30分間同温
度で攪拌した後得られた溶液を液体クロマトグラフで分
析したところ、t−BuH・HClの生成収率は76.
9%であった。この溶液を20℃まで冷却し、析出した
結晶を遠心分離器にて分離脱水した。さらに10gの水
を噴霧し洗浄処理し、t−BuH・HClの湿結晶を得
た。これを50℃に保った真空乾燥器(2Torr以下
)で乾燥したところ、純度99.1重量%(H・HCl
 0.6重量%含有)の結晶を単離収率42.6%(仕
込H・HCl基準)で得た。 【0024】実施例2〜3及び比較例1〜2実施例1に
おいて、燐酸水溶液の使用量を変える以外はほぼ同様に
して反応を行い、同様に処理してt−BuH・HCl結
晶を単離して得た。使用した燐酸水溶液の量並びにt−
BuH・HClの生成収率及びt−BuH・HCl結晶
の単離収率を第1表に示す。 【0025】比較例3 実施例1と同様の装置に、H・HCl 68.5g(1
.00モル)及び29重量%塩酸水溶液150.9g(
1.20モル)を仕込み、加熱攪拌下、t−BuOH 
74.1g(1.00モル)を100〜105℃で  
時間かけ滴下した。滴下終了後、更に30分間同温度で
攪拌した後得られた溶液を液体クロマトグラフで分析し
たところ、t−BuH・HClの生成収率は72.2%
であった。 この溶液を、以下実施例1と同様に処理してt−BuH
・HCl結晶を単離して得た。使用した塩酸水溶液の量
並びにt−BuH・HClの生成収率及びt−BuH・
HCl結晶の単離収率を第1表に示す。 【0026】実施例4 実施例1と同様の装置に、H・HBr 113.0g(
1.00モル)と85重量%燐酸水溶液57.6g(0
.50モル)を仕込み、攪拌下加熱し均一溶液としt−
BuOH 74.1g(1.00モル)を100〜10
5℃で 3.5時間かけ滴下した。滴下終了後、更に3
0分間同温度で攪拌した後得られた溶液を液体クロマト
グラフで分析したところ、t−BuH・HBrの生成収
率は85.8%であった。この溶液に水を50g加え2
0℃まで冷却し、以下実施例1と同様に処理して、t−
BuH・HBrの湿結晶を得、これを同様に乾燥して、
純度98.3重量%のt−BuH・HBrの結晶が、単
離収率61.0%(仕込H・HBr基準)で得られた。 【0027】 【表1】 【0028】実施例5 実施例1と同様の装置を用い、実施例1で得られた母液
及び洗液を合わせ(計138.0g)反応液を加熱濃縮
し、洗浄水及び反応で生成した量の水を留去した後、単
離収得したt−BuH・HClと等モルのH・HCl 
29.2g(0.426モル)を加え、仕込反応液[仕
込反応液中のt−BuH・HCl及びH・HCl(以下
、ヒドラジン成分ということがある)の合計モル数を1
.00モルとする]を調整した。加熱攪拌下、100〜
105℃で3時間かけてt−BuOHを31.6g(0
.426モル)滴下した。 【0029】滴下終了後、更に 30分間同温度で攪拌
した後、得られた溶液を液体クロマトグラフで分析した
ところ反応液中にt−BuH・HClは0.758モル
存在していた。この溶液を20℃まで冷却し、析出した
結晶を遠心分離器にフィードして分離脱水し、さらに1
0gの水を噴霧して洗浄処理し、t−BuH・HClの
湿結晶を得た。これを50℃に保った真空乾燥器(2T
orr以下)中で乾燥して、純度98.7重量%の結晶
46.8gを得た。単離収率は、仕込み反応液中のヒド
ラジン成分に対して37.6%、追加したH・HClに
対して 88.3%であった。 【0030】以下同様の処理を計3回繰り返した。結果
を表2に示す。 【表2】 【0031】 【発明の効果】前記の実施例及び比較例の結果から明ら
かなとおり、燐酸の使用量が、H・HX1モルに対して
0.2モル未満と少な過ぎる場合には、反応速度、t−
BuH・HX生成収率とも不十分であり、したがってt
−BuH・HX結晶の単離収率も低いレベルとなった。 (比較例1) 【0032】また、燐酸の使用量が、H・HX1モルに
対して1.5モルを超えて多過ぎる場合には、t−Bu
H・HX生成収率は十分高かったが、該t−BuH・H
Xが反応系中の燐酸に溶解するため、該t−BuH・H
X結晶の単離収率は低くなった。(比較例2) 【0033】さらに、燐酸を使用せず、ハロゲン化水素
酸のみを用いた場合には、ヒドラジンハロゲン化水素酸
塩の析出による単離t−BuH・HX結晶の純度の低下
などのために、該ハロゲン化水素酸濃度をあまり高くす
ることができず、したがって反応速度もあまり早くなら
ず、何よりも生成した該t−BuH・HXの高水溶性に
起因して、該t−BuH・HX結晶の単離収率は極めて
低いものであった。(比較例3)     【0034】これに対して、本発明方法に従い燐酸の使
用量を、H・HX1モルに対して0.2〜1.5モルの
範囲内とすることによって、高反応速度、高生成収率で
t−BuH・HXを得ることができ、しかも、卓越した
単離収率で高純度のt−BuH・HX結晶を収得するこ
とができた。(実施例1〜4)
Description: [0001] The present invention relates to an industrially advantageous method for producing tert-butyl hydrazine, and more specifically, the present invention relates to an industrially advantageous method for producing tert-butyl hydrazine. The present invention relates to a method for producing tert-butylhydrazine, which comprises reacting the following in the presence of a specific amount of phosphoric acid. [Prior Art] Tert-butylhydrazine (hereinafter referred to as
Regarding the production method of t-BuH (sometimes abbreviated as t-BuH), several proposals have been known in the past. ``A method for producing tert-butylhydrazine hydrohalide, which comprises reacting hydrazine dihydrohalide with libbutanol in the presence of hydrazine dihydrohalide or hydrogen halide.'' According to the above proposal, tert-butylhydrazine monohydrohalide (hereinafter referred to as t-BuH.
When producing hydrazine monohydrohalide (sometimes abbreviated as H . And in this proposal, it is true that H
・Although the production yield of t-BuH・HX with respect to HX is high,
Since the solubility of the t-BuH・HX in the solvent in the reaction system is extremely high, the t-BuH・HX has a very high solubility in the solvent in the reaction system.
The actual yield of uH・HX is extremely low at about 7%.
To overcome this problem, recycling and reuse of the reaction solution has been proposed, but it is completely insufficient from the viewpoint of time and production volume per unit, and it is difficult to say that it is an industrially advantageous method. There were also problems with the purity of the product. Furthermore, this proposal does not include any description or suggestion regarding the presence of phosphoric acid as an essential component as in the present invention and the outstanding effects thereof. [0004] The present inventors discovered that the presence of an excess of hydrohalic acid is not necessarily an indispensable condition, and that a similar reaction proceeds even in the presence of a phosphorous oxygen acid such as phosphoric acid. An application was filed (Japanese Unexamined Patent Publication No. 60-2370)
No. 59). This application is based on “Hydrazine (NH2NH2)
and a monohydric alcohol (ROH, in which R represents an alkyl group), hydrohalic acid (HX, in which X
represents a Cl or Br atom) in the presence or absence of a phosphorous-containing oxygen acid. . ", and Example 14 thereof describes the synthesis of t-BuH in the presence of 1 mole of hydrobromic acid and 0.1 mole of orthophosphoric acid per mole of hydrazine hydrate. There is. [0005] This proposal is based on the target compound t-
Although the yield of BuH.HX was considerably improved to 34%, the purity of the hydrohalide salt was 94% by weight, which was not necessarily sufficient. Problems to be Solved by the Invention As a result of detailed studies in order to solve the above-mentioned problems of the prior art, the present inventor found that when phosphoric acid is used instead of hydrohalic acid, the phosphoric acid becomes H. It acts as a catalyst in the reaction between HX and tertiary butyl alcohol (hereinafter sometimes abbreviated as t-BuOH), and also serves as a solvent for the reaction, and also acts as a solvent for the reaction between HX and tertiary butyl alcohol (hereinafter sometimes abbreviated as t-BuOH). is relatively difficult to dissolve, but the starting material, hydrazine monohydrohalide, has a relatively high solubility. By controlling the amount of phosphoric acid used within a certain range, highly pure t-BuH.HX crystals can be obtained. can be precipitated, and by simply performing the simple operations of filtering, washing, and drying these crystals, t with a purity of 98% by weight or more can be obtained.
-BuH.HX crystals can be obtained with a yield of 50% or more, and the present invention has been completed. Means for Solving the Problems The present invention provides a method for producing tert-butylhydrazine by reacting hydrazine monohydrohalide and tert-butyl alcohol in the presence of phosphoric acid. The present invention relates to a method for producing tert-butylhydrazine, characterized in that it is present in an amount of 0.2 to 1.5 moles per mole of hydrazine monohydrohalide. The present invention will be explained in detail below. Examples of H/HX, which is a starting material of the present invention, include hydrazine monohydrochloride (hereinafter sometimes abbreviated as H.HCl), monohydrobromide (hereinafter abbreviated as H.HBr) ), monohydriodide, monohydrofluoride, etc., H.HCl and H.H.
Preference is given to using Br. [0009] The above H/HX may be directly subjected to the reaction in the form of a salt, but is not limited to this. For example, it may be provided in the form of an aqueous hydrazine solution and an aqueous solution of hydrohalic acid, and then added to the reaction system. After neutralization and formation, it may be used after being concentrated to a predetermined concentration, if necessary. t-BuOH used in the method of the present invention
Any commercially available t- may be used, and there is no particular limitation, but any t- Even BuOH can be used. Usually 9
A product with a purity of 5% by weight is recommended. [0011] The amount of t-BuOH used is H.HX1
Generally 1 to 2 mol, preferably 1.0 to 2 mol
The amount is preferably about 1.2 mol. If the usage amount is above the lower limit value, unreacted H・HX is generated t-BuH・HX
The resulting t-B
This is preferable because it is possible to prevent a decrease in the purity of uH・HX and maintain a good reaction rate.On the other hand, if it is below the upper limit, excess t-BuOH
This is preferable because it can suppress the mixing of t-BuH.HX with t-BuH.HX. [0012] t-BuOH is preferably added sequentially to the reaction system maintained at 90 to 130°C. According to this addition method, the reaction can proceed under normal pressure, and there is no need to use a special reaction device such as an autoclave, which is practical. Further, it is possible to easily remove water generated during the reaction, control the reaction temperature, manage the liquid composition, etc. [0013] When adding t-BuOH sequentially, analyze the reaction solution, and add sequentially until the composition molar ratio of H.HX and t-BuH.HX in the reaction solution becomes 0.3 or less, and allow the reaction to occur. It is preferable. By setting the molar ratio below the above, it is possible to suppress the starting material H.HX from being mixed into the product t-BuH.HX crystals, and to prevent a decrease in purity, which is preferable. The phosphoric acid used is preferably added to the reaction system as an aqueous solution. The concentration of phosphoric acid is not particularly limited, but any concentration within the range of 10 to 100% by weight can be recommended. If the concentration is lower than this, water can be removed from the reaction system by distillation or the like prior to or during the reaction to achieve a concentration that produces the same effect. The amount of phosphoric acid used is 0.2 to 1.5 mol, preferably 0.4 mol to 1 mol of H.HX as the starting material.
~0.6 mol. If the amount used is too small (less than the lower limit), the catalytic effect will be weak and the reaction will take a long time.
This is not preferable because the purity of the crystals produced will be poor. On the other hand, if the amount exceeds the upper limit, the produced t-BuH.
This is not preferable because the amount of HX dissolved increases and the yield decreases. The reaction in the method of the present invention can be carried out under atmospheric pressure conditions, and although it is not necessary to particularly adopt pressurized conditions, pressurized conditions can be adopted if desired, for example, at atmospheric pressure to An example of the pressure condition is about 15 kg/cm2. The reaction temperature in the method of the present invention is 90
~130°C can be suitably used, preferably 100~11
0℃ is recommended. If the reaction temperature is above the lower limit,
It is preferable that it has an appropriate reaction rate and that it is below the upper limit because it can suppress the side reaction of t-BuOH to isobutylene. The reaction time is usually about 5 hours. Depending on the capacity of the reactor, it is possible to complete the reaction in a shorter time, but the reaction time is
It is practical to determine it by the compositional molar ratio of and t-BuH.HX. Furthermore, by managing the reaction solution during the reaction, the filtrate can be recycled and reused to further improve productivity. The t-BuH.HX thus obtained is neutralized, for example, by adding an appropriate alkaline compound, and if desired, the alkali salt formed is filtered off and distilled to collect free t-BuH. can do. Usable alkali compounds include, for example, alkali metal or alkaline earth metal hydroxides such as sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide;
Examples include alkali metal carbonates such as sodium carbonate and potassium carbonate. [0021] The reaction format is, for example, batch type, semi-batch type,
It may be carried out in any continuous mode. [Examples] Hereinafter, the state of implementation of the present invention will be explained in more detail with reference to Examples and Comparative Examples. Example 1 H.HCl was added to a 300 ml separable flask.
5 g (1.00 mol) and 32% by weight aqueous phosphoric acid solution 61.
3g (0.20 mol) of t-Bu was charged and heated while stirring.
74.1g (1.00mol) of OH at 100-105℃
It was dripped for 5 hours. After the addition was completed, the solution was stirred at the same temperature for another 30 minutes and analyzed by liquid chromatography, and the yield of t-BuH.HCl was 76.
It was 9%. This solution was cooled to 20°C, and the precipitated crystals were separated and dehydrated using a centrifuge. Further, 10 g of water was sprayed and washed to obtain wet crystals of t-BuH.HCl. When this was dried in a vacuum dryer kept at 50°C (2 Torr or less), the purity was 99.1% by weight (H・HCl
Crystals containing 0.6% by weight) were obtained with an isolated yield of 42.6% (based on the charged H.HCl). Examples 2 to 3 and Comparative Examples 1 to 2 The reaction was carried out in almost the same manner as in Example 1 except that the amount of the phosphoric acid aqueous solution used was changed, and t-BuH.HCl crystals were isolated by the same treatment. I got it. The amount of phosphoric acid aqueous solution used and t-
Table 1 shows the production yield of BuH.HCl and the isolation yield of t-BuH.HCl crystals. Comparative Example 3 Into the same apparatus as in Example 1, 68.5 g of H.HCl (1
.. 00 mol) and 150.9 g of 29% by weight aqueous hydrochloric acid solution (
1.20 mol) and t-BuOH under heating and stirring.
74.1g (1.00mol) at 100-105℃
It dripped over time. After the addition was completed, the solution was stirred at the same temperature for another 30 minutes and analyzed by liquid chromatography, and the yield of t-BuH HCl was 72.2%.
Met. This solution was treated in the same manner as in Example 1 to obtain t-BuH.
- HCl crystals were isolated and obtained. The amount of hydrochloric acid aqueous solution used, the production yield of t-BuH・HCl, and the t-BuH・
The isolated yield of HCl crystals is shown in Table 1. Example 4 Into the same apparatus as in Example 1, 113.0 g of H.HBr (
1.00 mol) and 57.6 g of 85% by weight phosphoric acid aqueous solution (0
.. 50 mol) and heated with stirring to make a homogeneous solution.
BuOH 74.1g (1.00 mol) from 100 to 10
The mixture was added dropwise at 5°C over 3.5 hours. After dropping, add 3 more
After stirring at the same temperature for 0 minutes, the resulting solution was analyzed by liquid chromatography, and the yield of t-BuH•HBr was 85.8%. Add 50g of water to this solution 2
Cooled to 0°C and treated in the same manner as in Example 1 to obtain t-
Wet crystals of BuH/HBr were obtained and dried in the same manner,
Crystals of t-BuH•HBr with a purity of 98.3% by weight were obtained at an isolated yield of 61.0% (based on the charged H•HBr). [Table 1] Example 5 Using the same apparatus as in Example 1, the mother liquor and washing liquid obtained in Example 1 were combined (138.0 g in total), and the reaction liquid was concentrated by heating and washed. After distilling off water and the amount of water produced in the reaction, equimolar H.HCl to the isolated and obtained t-BuH.HCl.
29.2 g (0.426 mol) was added, and the total number of moles of t-BuH・HCl and H・HCl (hereinafter sometimes referred to as hydrazine component) in the charged reaction solution was 1
.. 00 mol] was adjusted. Under heating and stirring, 100~
31.6 g of t-BuOH (0
.. 426 mol) was added dropwise. After the addition was completed, the mixture was stirred at the same temperature for another 30 minutes, and the resulting solution was analyzed by liquid chromatography, and it was found that 0.758 mol of t-BuH.HCl was present in the reaction solution. This solution was cooled to 20°C, the precipitated crystals were fed to a centrifuge, separated and dehydrated, and further 1
Washing treatment was performed by spraying 0 g of water to obtain wet crystals of t-BuH.HCl. This was kept in a vacuum dryer (2T) kept at 50℃.
46.8 g of crystals with a purity of 98.7% by weight were obtained. The isolation yield was 37.6% based on the hydrazine component in the charged reaction solution and 88.3% based on the added H.HCl. [0030] The same process was repeated three times in total. The results are shown in Table 2. [Table 2] [Effect of the invention] As is clear from the results of the above examples and comparative examples, when the amount of phosphoric acid used is too small, less than 0.2 mol per 1 mol of H. , reaction rate, t-
Both BuH and HX production yields are insufficient, so t
The isolation yield of -BuH·HX crystals was also at a low level. (Comparative Example 1) In addition, if the amount of phosphoric acid used is too large, exceeding 1.5 mol per 1 mol of H.HX, t-Bu
Although the H.HX production yield was sufficiently high, the t-BuH.H
Since X dissolves in phosphoric acid in the reaction system, the t-BuH・H
The isolated yield of X crystals was low. (Comparative Example 2) Furthermore, when only hydrohalic acid was used without using phosphoric acid, the purity of isolated t-BuH/HX crystals decreased due to precipitation of hydrazine hydrohalide, etc. Therefore, the concentration of the hydrohalic acid cannot be made very high, and therefore the reaction rate is not very fast. Above all, due to the high water solubility of the produced t-BuH. The isolation yield of BuH·HX crystals was extremely low. (Comparative Example 3) On the other hand, by adjusting the amount of phosphoric acid used in the range of 0.2 to 1.5 mol per 1 mol of H.HX according to the method of the present invention, high reaction rate, It was possible to obtain t-BuH.HX with a high production yield, and moreover, it was possible to obtain highly purified t-BuH.HX crystals with an excellent isolation yield. (Examples 1 to 4)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ヒドラジンモノハロゲン化水素酸塩と
ターシャリーブチルアルコールとを燐酸の存在下に反応
させてターシャリーブチルヒドラジンを製造する方法に
おいて、燐酸をヒドラジンモノハロゲン化水素酸塩1モ
ルに対して 0.2〜1.5モル存在させることを特徴
とするターシャリーブチルヒドラジンの製造方法。
Claim 1: A method for producing tert-butylhydrazine by reacting hydrazine monohydrohalide and tert-butyl alcohol in the presence of phosphoric acid, in which phosphoric acid is added to 1 mole of hydrazine monohydrohalide. A method for producing tert-butylhydrazine, characterized in that the amount of tert-butylhydrazine is present in an amount of 0.2 to 1.5 mol.
JP2412797A 1990-12-21 1990-12-21 Method for producing tertiary butyl hydrazine Expired - Fee Related JP2988638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2412797A JP2988638B2 (en) 1990-12-21 1990-12-21 Method for producing tertiary butyl hydrazine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2412797A JP2988638B2 (en) 1990-12-21 1990-12-21 Method for producing tertiary butyl hydrazine

Publications (2)

Publication Number Publication Date
JPH04221354A true JPH04221354A (en) 1992-08-11
JP2988638B2 JP2988638B2 (en) 1999-12-13

Family

ID=18521564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2412797A Expired - Fee Related JP2988638B2 (en) 1990-12-21 1990-12-21 Method for producing tertiary butyl hydrazine

Country Status (1)

Country Link
JP (1) JP2988638B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104820056A (en) * 2015-05-14 2015-08-05 吉林化工学院 Method for measuring tert-butyl hydrazine hydrochloride by use of pre-column derivatization-high performance liquid chromatography
CN108569981A (en) * 2018-06-07 2018-09-25 上海试四化学品有限公司 A kind of preparation method of Tertiary butyl hydrazine hydrochloride
CN109053485A (en) * 2018-09-26 2018-12-21 吉林化工学院 A kind of purifying process of Tertiary butyl hydrazine hydrochloride

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104820056A (en) * 2015-05-14 2015-08-05 吉林化工学院 Method for measuring tert-butyl hydrazine hydrochloride by use of pre-column derivatization-high performance liquid chromatography
CN108569981A (en) * 2018-06-07 2018-09-25 上海试四化学品有限公司 A kind of preparation method of Tertiary butyl hydrazine hydrochloride
CN109053485A (en) * 2018-09-26 2018-12-21 吉林化工学院 A kind of purifying process of Tertiary butyl hydrazine hydrochloride

Also Published As

Publication number Publication date
JP2988638B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
JPH04221354A (en) Production of tert. butyl hydrazine
US5306835A (en) Method for producing octadienols
JPS6157308B2 (en)
JPH0737436B2 (en) Method for producing carbodihydrazide
KR100350173B1 (en) Process for the preparation of diesters of phosphonocarboxylic acid derivatives
JPH0250088B2 (en)
JP3011493B2 (en) Method for producing 4-alkyl-3-thiosemicarbazide
JP2782883B2 (en) Method for producing tertiary olefin
JPH0244472B2 (en)
JP2903500B2 (en) Method for producing 4-hydroxy-3,5,6-trifluorophthalic acid
JP2915515B2 (en) Process for producing O-methylisourea sulfate
US5523472A (en) Process for the preparation of 5-fluoroanthranilic acid
JP2735737B2 (en) Method for producing dialkyl dicarbonate
JPH09143169A (en) Production of 4,6-diamino-1,3,5-triazin-2-yl-benzoic acids
JPH0725745B2 (en) Method for producing amine compound
JP4024882B2 (en) Method for producing tertiary butyl hydrazine / hydrohalide
JPH0525119A (en) Production of p-toluenesulfonylacetic acid
JP2915516B2 (en) Production method of O-methylisourea sulfate
JPH0625090A (en) Production of neopentyl glycol hydroxypivarate
US4987266A (en) Process for the manufacture of nitrophenetole
JP3276523B2 (en) Method for producing diguanamines
JPS62288102A (en) Production of dicyanamide metal salt
JPH0560460B2 (en)
JP3205975B2 (en) Method for producing pyrazinecarboxamide
JPH05320126A (en) Production of 2-amino-5-nitrothiobenzamide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees