JPH04221010A - Method for removing cu in molten iron alloy - Google Patents

Method for removing cu in molten iron alloy

Info

Publication number
JPH04221010A
JPH04221010A JP2412793A JP41279390A JPH04221010A JP H04221010 A JPH04221010 A JP H04221010A JP 2412793 A JP2412793 A JP 2412793A JP 41279390 A JP41279390 A JP 41279390A JP H04221010 A JPH04221010 A JP H04221010A
Authority
JP
Japan
Prior art keywords
molten iron
iron alloy
slag
alkali
alkaline earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2412793A
Other languages
Japanese (ja)
Inventor
Hiroyuki Katayama
裕之 片山
Naoki Tokumitsu
徳光 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2412793A priority Critical patent/JPH04221010A/en
Publication of JPH04221010A publication Critical patent/JPH04221010A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To efficiently remove the Cu in a molten iron alloy among the troublemaking tramp elements when scrap steel is melted to obtain a molten steel having a low content of impurities. CONSTITUTION:A slag contg. a molten iron alloy and the sulfides or sulfates of alkali or alkaline earth metals is formed, and the chlorides of alkali or alkaline earth metals are added to the slag to volatilize the Cu in the molten iron alloy as copper chloride through the slag layer. The trouble conventionally caused, when the molten iron alloy is brought into contact with a sulfide slag or chlorine is brought into direct contact with the molten iron alloy, is eliminated by this invention, and decoppering refining is practically performed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、鉄鋼スクラップを溶解
して不純物含有量の低い溶鋼を得ようとする場合に、特
に問題となるトランプエレメントのうち、Cuを除去す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing Cu from tramp elements, which is a particular problem when melting steel scrap to obtain molten steel with a low impurity content.

【0002】0002

【従来の技術】最近、鉄源としてスクラップの使用比率
が増加する傾向にある。その中で、スクラップの成分的
な品質において、トランプエレメント、特にCuとSn
の増加が問題になっている。このうちCuは、配線など
の異物として鉄鋼スクラップに混入するものと、耐候性
鋼のように合金成分として含まれるものが主なソースで
ある。溶鋼中のCu成分は、高くなると熱間加工性の阻
害など鋼材製造工程で悪影響を及ぼすので、鋼種に応じ
て許容上限値が定められている。しかしながら、一旦溶
鋼中に入ったCuを精練によって除去することは容易で
はない。従来、工業的にスクラップからCuを除去する
のに、スクラップの固体処理、すなわち、固体状態での
単体分離と選別による方法に依存してきた。しかし、C
uの汚染が進行するにつれ、上記処理だけでは不十分と
なり、溶鋼から直接、精練によって除去できるようにな
ることが強く望まれている。溶鋼からのCuの除去方法
としては、これをアルカリあるいはアルカリ土類金属の
硫化物、ないしは硫酸塩を含むスラグによって処理し、
Cuを硫化銅としてスラグに固定する方法が古くから研
究されている。しかし、この方法の欠点は、スラグの精
練能が小さいことからCuを除くための必要スラグ量が
多いことである。例えば、Cuを50%除去するのに必
要なスラグは100kg/t以上にものぼる。このよう
に多量のスラグが必要で、しかも精練対象がCuの除去
だけということであるので、精練費用が高すぎ、実用に
供することができなかった。また、これ以外の精練方法
としては、溶融鉄合金を塩素ガス、あるいは加熱により
塩素ガスを発生する物質(塩化鉄など)で処理し、Cu
を揮発しやすいCuCl2として除去する方法が知られ
ている。しかし、この方法の欠点は、Cuも蒸発するが
、鉄も塩素によって蒸発することにあり、結果的に溶融
鉄合金中のCu濃度を効率的に下げることができないこ
とが問題である。
BACKGROUND OF THE INVENTION Recently, there has been an increasing trend in the use of scrap as an iron source. Among them, in terms of the component quality of scrap, playing card elements, especially Cu and Sn.
is becoming a problem. Among these, the main sources of Cu are those mixed into steel scrap as foreign matter such as wiring, and those included as an alloy component such as in weathering steel. If the Cu content in molten steel becomes high, it will have an adverse effect on the steel manufacturing process, such as inhibiting hot workability, so an upper limit of the permissible value is determined depending on the steel type. However, it is not easy to remove Cu once it has entered molten steel by scouring. Conventionally, industrial removal of Cu from scrap has relied on solid treatment of scrap, that is, a method of separating and sorting the scrap in a solid state. However, C
As U contamination progresses, the above treatment alone becomes insufficient, and it is strongly desired to be able to remove it directly from molten steel by scouring. A method for removing Cu from molten steel is to treat it with slag containing sulfides or sulfates of alkali or alkaline earth metals,
A method of fixing Cu to slag as copper sulfide has been studied for a long time. However, a drawback of this method is that the amount of slag required to remove Cu is large because the slag scouring ability is small. For example, the amount of slag required to remove 50% of Cu is as much as 100 kg/t or more. Since such a large amount of slag is required and the only object of scouring is the removal of Cu, the scouring cost is too high and it could not be put to practical use. In addition, as another method of scouring, molten iron alloy is treated with chlorine gas or a substance that generates chlorine gas when heated (such as iron chloride), and Cu
A method is known in which CuCl2 is removed as it easily volatizes. However, a drawback of this method is that although Cu is also evaporated, iron is also evaporated by chlorine, and as a result, the problem is that the Cu concentration in the molten iron alloy cannot be efficiently lowered.

【0003】0003

【発明が解決しようとする課題】以上のような事情に鑑
み、本発明においては溶融鉄合金中に含まれるCuを効
率的に除去する方法を提供しようとするものである。
SUMMARY OF THE INVENTION In view of the above circumstances, it is an object of the present invention to provide a method for efficiently removing Cu contained in a molten iron alloy.

【0004】0004

【課題を解決するための手段】上記の課題を、本発明に
おいては、溶融鉄合金と、アルカリあるいはアルカリ土
類金属の硫化物、ないしは硫酸塩を含むスラグを形成せ
しめ、該スラグにアルカリあるいはアルカリ土類金属の
塩化物を添加することにより、 溶融鉄合金中のCuを
スラグ層を経由させて塩化銅として揮散させることによ
って解決している。
[Means for Solving the Problems] In the present invention, the above problem is solved by forming a slag containing a molten iron alloy and an alkali or alkaline earth metal sulfide or sulfate, and adding an alkali or alkali to the slag. This problem is solved by adding earth metal chloride to volatilize Cu in the molten iron alloy through the slag layer as copper chloride.

【0005】[0005]

【作用】本発明を実施するのに用いる設備の一例を図1
に示す。この設備の反応容器1には、処理対象の溶解炉
から供給される溶融鉄合金2が連続的に供給、排出され
る。 この反応容器1において、溶融鉄合金2は底吹き
ガス3によって撹拌される。底吹きには窒素のような非
酸化性のガスが用いられ、撹拌によってスラグ‐メタル
間反応を促進するのが目的である。ただし、底吹きが強
すぎてメタルがスラグによってカバーされなくなり露出
するようになると、雰囲気の塩素と溶融鉄の直接反応が
起こって好ましくない。したがって、メタル面の露出が
起きないように底吹きガス量とスラグ量の関係を調節す
る必要がある。溶融鉄合金のCは3%以上にすることが
望ましい。その理由は、溶融鉄中のCuの活量係数を大
きくしてCuの除去効率をあげるためである。溶融鉄合
金に添加するフラックスは、溶融鉄合金中のCuと反応
させてCuを硫化銅とし、これをスラグに捕捉させるた
めのもので、アルカリ金属あるいはアルカリ土類金属の
硫化物の1種あるいは2種以上を含んでいることが必要
で、CaS系、Na2S系のものが用いられる。なお、
溶融鉄合金がCを3%以上含有している条件では、ナト
リウムあるいはカルシウムの硫酸塩を加えた場合も硫酸
塩の分解が起こって硫化物が生成し、同様の効果が得ら
れる。スラグの精練能力、すなわち、スラグとメタル間
のCuの分配比は、スラグ中の硫化物活量に比例する。 なお、本発明においては、従来のバッチ処理とは異なり
、フラックスを添加して一旦スラグを生成させると、C
uはスラグに蓄積されずに最終的には揮散してしまうの
で、スラグ成分のうち変化したもの(特に硫化物ないし
は硫酸塩)をフラックス添加によって補充するだけでよ
い。以上のように、スラグと溶融鉄合金の反応により、
Cuが溶融鉄合金からスラグに移行する。本発明におい
ては、このアルカリあるいはアルカリ土類金属の硫化物
ないしは硫酸塩を含むスラグ5にアルカリ金属、あるい
はアルカリ土類金属の塩化物4を添加し、該スラグによ
って溶融鉄合金と雰囲気とが遮断された状態で、塩素と
銅を接触反応させる。これによって、例えばNaClを
添加した場合、Cu2S+2NaCl→2CuCl↑+
Na2S    ・・・・・(1)の反応が起こり、ス
ラグの脱銅能を低下させないで、スラグからCuの除去
が行なわれる。
[Operation] Figure 1 shows an example of equipment used to carry out the present invention.
Shown below. A molten iron alloy 2 supplied from a melting furnace to be treated is continuously supplied and discharged to a reaction vessel 1 of this equipment. In this reaction vessel 1, molten iron alloy 2 is stirred by bottom blowing gas 3. A non-oxidizing gas such as nitrogen is used for bottom blowing, and the purpose is to promote the reaction between slag and metal through stirring. However, if the bottom blow is so strong that the metal is no longer covered by the slag and becomes exposed, a direct reaction between the chlorine in the atmosphere and the molten iron will occur, which is undesirable. Therefore, it is necessary to adjust the relationship between the amount of bottom-blown gas and the amount of slag so that the metal surface is not exposed. It is desirable that the C content of the molten iron alloy be 3% or more. The reason for this is to increase the activity coefficient of Cu in molten iron and increase the efficiency of removing Cu. The flux added to the molten iron alloy is used to react with the Cu in the molten iron alloy to convert the Cu into copper sulfide, which is captured in the slag. It is necessary to contain two or more types, and CaS-based and Na2S-based ones are used. In addition,
Under conditions where the molten iron alloy contains 3% or more of C, when sodium or calcium sulfate is added, the sulfate decomposes and sulfide is produced, producing the same effect. The refining ability of the slag, that is, the distribution ratio of Cu between the slag and the metal, is proportional to the sulfide activity in the slag. In addition, in the present invention, unlike conventional batch processing, once flux is added and slag is generated, C
Since u is not accumulated in the slag and eventually volatilizes, it is only necessary to replenish changed slag components (especially sulfides or sulfates) by adding flux. As mentioned above, due to the reaction between slag and molten iron alloy,
Cu is transferred from the molten iron alloy to the slag. In the present invention, an alkali metal or alkaline earth metal chloride 4 is added to the slag 5 containing the alkali or alkaline earth metal sulfide or sulfate, and the slag blocks the molten iron alloy from the atmosphere. Under this condition, chlorine and copper undergo a contact reaction. By this, for example, when adding NaCl, Cu2S+2NaCl→2CuCl↑+
Na2S...The reaction (1) occurs, and Cu is removed from the slag without reducing the copper removal ability of the slag.

【0006】[0006]

【実施例】図1に示すような設備を用い、表1に示す成
分、温度の溶融鉄合金を30t/hの速度で流した。
EXAMPLE Using the equipment shown in FIG. 1, a molten iron alloy having the composition and temperature shown in Table 1 was flowed at a rate of 30 t/h.

【表1】 反応容器の共通操業条件は次の通りである。 初期の供給フラックス;Na2SO4    2.3t
連続供給フラックス  ;Na2S(0.7t/h)+
Na2SO4(0.3t/h) 底吹き条件;  N2,ポーラスプラグを通して  5
00Nm3/h 以上のような操業を行なったとき、各種の塩化物供給条
件における反応後のメタル中Cuの経時変化を図2に示
す。塩化ソーダ、あるいは塩化カルシウムを添加した場
合に雰囲気中へのCuの揮発が進行し、定常的に溶融鉄
合金の脱Cuが進むことがわかる。なお、脱Cu率が5
0%の場合の、鉄ロスは2%で、溶融鉄合金に直接塩素
を作用させる場合に比べると、鉄ロスは1/5以下に低
減している。また、硫化物添加だけの場合に比べて、フ
ラックスの原単位を1/3に低減できる。以上のように
、本発明を実施することによって、従来の硫化物スラグ
と接触させるだけの場合に見られる問題、並びに塩素を
直接、溶融鉄合金に接触させる場合に見られる問題の両
方を解決し、実用工程で脱Cu精練が可能となる。
[Table 1] Common operating conditions for the reaction vessel are as follows. Initial supply flux; Na2SO4 2.3t
Continuous supply flux; Na2S (0.7t/h)+
Na2SO4 (0.3t/h) Bottom blowing conditions; N2, through porous plug 5
00 Nm3/h When the above-described operation was carried out, the time-dependent changes in Cu in the metal after reaction under various chloride supply conditions are shown in FIG. It can be seen that when sodium chloride or calcium chloride is added, the volatilization of Cu into the atmosphere progresses, and the removal of Cu from the molten iron alloy progresses steadily. In addition, the Cu removal rate is 5
In the case of 0%, the iron loss is 2%, which is reduced to 1/5 or less compared to when chlorine is directly applied to the molten iron alloy. Furthermore, compared to the case of only adding sulfide, the basic unit of flux can be reduced to 1/3. As described above, by carrying out the present invention, both the problems encountered when contacting only conventional sulfide slag and the problems encountered when chlorine is brought into direct contact with molten iron alloy can be solved. , it becomes possible to remove Cu in a practical process.

【0007】[0007]

【発明の効果】本発明を実施することによって、Cuを
不純物として含むスクラップを溶解して得られる溶融鉄
合金を効率的に脱Cuすることができ、トランプエレメ
ント汚染の問題を解決できることから工業的な効果が大
きい。
Effects of the Invention By carrying out the present invention, it is possible to efficiently remove Cu from the molten iron alloy obtained by melting scrap containing Cu as an impurity, and the problem of contamination of playing cards elements can be solved. The effect is great.

【0008】[0008]

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明を実施するのに用いる設備の一例を示す
図である。
FIG. 1 is a diagram showing an example of equipment used to implement the present invention.

【図2】塩素源添加条件が連続排出される溶融鉄合金の
反応後メタル中%Cuの変化に及ぼす影響を示す。
FIG. 2 shows the influence of chlorine source addition conditions on the change in %Cu in the post-reaction metal of continuously discharged molten iron alloy.

【符号の説明】[Explanation of symbols]

1  反応容器 2  溶融鉄合金 3  底吹きガス 4  アルカリ金属あるいはアルカリ土類金属の塩化物
5   アルカリあるいはアルカリ土類金属の硫化物な
いしは硫酸塩を含むスラグ。
1 Reaction vessel 2 Molten iron alloy 3 Bottom blowing gas 4 Alkali metal or alkaline earth metal chloride 5 Slag containing alkali or alkaline earth metal sulfide or sulfate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】   溶融鉄合金と、アルカリあるいはア
ルカリ土類金属の硫化物、ないしは硫酸塩を含むスラグ
を形成せしめ、該スラグにアルカリあるいはアルカリ土
類金属の塩化物を添加することにより、溶融鉄合金中の
Cuをスラグ層を経由させて塩化銅として拡散させるこ
とを特徴とする溶融鉄合金中のCuの除去方法。
[Claim 1] Molten iron is produced by forming a slag containing a molten iron alloy and an alkali or alkaline earth metal sulfide or sulfate, and adding an alkali or alkaline earth metal chloride to the slag. A method for removing Cu from a molten iron alloy, which comprises diffusing Cu in the alloy as copper chloride through a slag layer.
JP2412793A 1990-12-21 1990-12-21 Method for removing cu in molten iron alloy Withdrawn JPH04221010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2412793A JPH04221010A (en) 1990-12-21 1990-12-21 Method for removing cu in molten iron alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2412793A JPH04221010A (en) 1990-12-21 1990-12-21 Method for removing cu in molten iron alloy

Publications (1)

Publication Number Publication Date
JPH04221010A true JPH04221010A (en) 1992-08-11

Family

ID=18521562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2412793A Withdrawn JPH04221010A (en) 1990-12-21 1990-12-21 Method for removing cu in molten iron alloy

Country Status (1)

Country Link
JP (1) JPH04221010A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190011A (en) * 2007-02-06 2008-08-21 Chiba Inst Of Technology Method for removing copper in form of copper iodide from copper-containing molten iron
JP2008190010A (en) * 2007-02-06 2008-08-21 Chiba Inst Of Technology Method for removing copper from copper-containing molten iron
JP2010163650A (en) * 2009-01-15 2010-07-29 Jfe Steel Corp Method for removing copper in molten pig iron
JP2011523979A (en) * 2008-05-13 2011-08-25 ソルト エクストラクション アクテボラグ Method for chlorinating resources containing recoverable metals
IT201900010359A1 (en) 2019-06-28 2020-12-28 Danieli Off Mecc METHOD OF REMOVING COPPER FROM STEEL AND RELATIVE ADDITIVE

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190011A (en) * 2007-02-06 2008-08-21 Chiba Inst Of Technology Method for removing copper in form of copper iodide from copper-containing molten iron
JP2008190010A (en) * 2007-02-06 2008-08-21 Chiba Inst Of Technology Method for removing copper from copper-containing molten iron
JP2011523979A (en) * 2008-05-13 2011-08-25 ソルト エクストラクション アクテボラグ Method for chlorinating resources containing recoverable metals
JP2010163650A (en) * 2009-01-15 2010-07-29 Jfe Steel Corp Method for removing copper in molten pig iron
IT201900010359A1 (en) 2019-06-28 2020-12-28 Danieli Off Mecc METHOD OF REMOVING COPPER FROM STEEL AND RELATIVE ADDITIVE
WO2020260524A1 (en) 2019-06-28 2020-12-30 Danieli & C. Officine Meccaniche S.P.A. Method to remove copper from steel, and corresponding additive

Similar Documents

Publication Publication Date Title
KR20040097364A (en) Process for the treatment or removal of impurities in a hydrometallurgical extraction process
US4571260A (en) Method for recovering the metal values from materials containing tin and/or zinc
JPH04221010A (en) Method for removing cu in molten iron alloy
US1804054A (en) Method of treating materials containing lead
EP0408549A1 (en) Method for the purification of silicon
US4404026A (en) Process for separation of dross elements combining sodium addition to molten bullion followed by controlled solidification of casting
US3607232A (en) Refining lead
US1945074A (en) Recovery of selenium
US4318737A (en) Copper refining and novel flux therefor
US4316742A (en) Copper refining
US2235423A (en) Process for separating tin from lead
JPS6049701B2 (en) Method for removing arsenic and/or copper in molten metal
US2237129A (en) Method for purifying tinny leads and lead-tin alloys
JPH04236731A (en) Method for recovering noble metal from decoppered slime
US1978537A (en) Process of refining metals
US161831A (en) Improvement in processes of purifying galvanizers dross
US845819A (en) Treatment of alloys to alter their composition.
SU947209A1 (en) Method for removing copper from slags of lead batch melting
US2111032A (en) Method of purifying fused metals
US476091A (en) Process of purifying
US2115299A (en) Process for refining lead alloys
JPS63203727A (en) Treatment of lead electrolysis slime
Mimura et al. Direct Production of Pure Molybdenum Metal From Molybdenite Concentration(MoS sub 2) by Using a Plasma-Arc Melting Method
JPS63238225A (en) Method for refining blister copper
JPS58151434A (en) Extracting method of noble metal

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980312