JPH0422076B2 - - Google Patents

Info

Publication number
JPH0422076B2
JPH0422076B2 JP57231537A JP23153782A JPH0422076B2 JP H0422076 B2 JPH0422076 B2 JP H0422076B2 JP 57231537 A JP57231537 A JP 57231537A JP 23153782 A JP23153782 A JP 23153782A JP H0422076 B2 JPH0422076 B2 JP H0422076B2
Authority
JP
Japan
Prior art keywords
signal
color
frequency
color saturation
contour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57231537A
Other languages
Japanese (ja)
Other versions
JPS59123388A (en
Inventor
Seiji Hashimoto
Tsutomu Takayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57231537A priority Critical patent/JPS59123388A/en
Publication of JPS59123388A publication Critical patent/JPS59123388A/en
Publication of JPH0422076B2 publication Critical patent/JPH0422076B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Color Television Image Signal Generators (AREA)
  • Processing Of Color Television Signals (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明はカラー撮像装置の改良に関する。[Detailed description of the invention] (Technical field) The present invention relates to improvements in color imaging devices.

(従来技術) 従来、例えば第1図に示される様にR(赤)、
Cy(シアン)、G(緑)の繰り返し配列から成るス
トライプ・フイルターを固体撮像素子の受光部前
面に設けると共に、撮像素子の画素ピツチに各色
フイルターを1対1に対応させたものが知られて
いる。
(Prior Art) Conventionally, for example, as shown in FIG. 1, R (red),
It is known that a stripe filter consisting of a repeating arrangement of Cy (cyan) and G (green) is provided in front of the light receiving section of a solid-state image sensor, and each color filter is arranged in a one-to-one correspondence to the pixel pitch of the image sensor. There is.

この様なフイルターを用いた撮像素子の水平読
み出しクロツク周波数をRとすると、各色信号の
キヤリアは第2図に示される如く同じ1/3R
置に2/3πづつ位相がずれた状態で存在する。
If the horizontal readout clock frequency of an image sensor using such a filter is R , the carriers of each color signal exist at the same 1/3 R position with a phase shift of 2/3π as shown in Figure 2. .

そして色飽和度ゼロの被写体を撮像した特に、
撮像素子出力が各色成分について均等に得られる
様に撮像素子、色フイルター等から成る系の総合
的分光特性を設定すれば、第2図示の1/3R
存在する各色の側波帯信号のベクトルは互いに打
ち消される事になり、輝度信号として用いるベー
スバンド成分に対する側波帯成分の混入、所謂
「折り返し歪」が無くなる。
Especially when photographing a subject with zero color saturation,
If the overall spectral characteristics of the system consisting of the image sensor, color filters, etc. are set so that the image sensor output is obtained equally for each color component, the sideband signals of each color existing in 1/3 R shown in Figure 2 can be The vectors cancel each other out, and so-called "aliasing distortion", which is the mixing of sideband components into the baseband component used as the luminance signal, is eliminated.

本来この様なバランス効果は無彩色の被写体に
対してのみ得られるものであるが、通常撮像され
る被写体は色飽和度の低いものが多いので、実用
上は各色信号のナイキスト周波数以上の周波数帯
域で信号処理を行つている。
Originally, this kind of balance effect can only be obtained for achromatic subjects, but since most of the subjects that are normally imaged have low color saturation, in practice it is necessary to use a frequency band above the Nyquist frequency of each color signal. Performs signal processing.

然し乍ら色飽和度の高い被写体が画面に入つて
来た場合には、サンプリング周波数が1/3R
落ち込んでしまうのでナイキスト周波数も1/
6R迄低下する。従つてこの1/6R以上の空間周
波数成分を有する被写体像に対しては折り返し歪
が生じ画質の劣化が著しい。
However, if a subject with high color saturation enters the screen, the sampling frequency will drop to 1/3 R , and the Nyquist frequency will also drop to 1/3.
It drops to 6 R. Therefore, for a subject image having a spatial frequency component of 1/6 R or more, aliasing distortion occurs and the image quality deteriorates significantly.

一方視覚的には色飽和度の高い被写体に対して
はそれ程高い解像度は必要ない事が知られてい
る。
On the other hand, it is known that such a high resolution is not necessary for visually photographed subjects with high color saturation.

(目的) 本発明はこの様な背景に鑑み為されたもので、
色飽和度の高い被写体に対してもモアレ等の発生
しない改良された撮像装置を提供する事を目的と
している。
(Purpose) The present invention has been made in view of this background.
It is an object of the present invention to provide an improved imaging device that does not generate moiré or the like even for subjects with high color saturation.

(実施例) そのために本発明の実施例では、撮像手段の出
力する電気信号から形成された赤色信号と輝度又
は輝度に相当する信号とのレベルの差又は比を演
算し、この演算出力により輝度信号の輪郭補償手
段の周波数特性を制御する構成としている。
(Embodiment) For this purpose, in an embodiment of the present invention, the level difference or ratio between the red signal formed from the electrical signal output from the imaging means and the brightness or a signal corresponding to the brightness is calculated, and the brightness is calculated based on the calculation output. The configuration is such that the frequency characteristics of the signal contour compensation means are controlled.

以下本発明を第3図示の実施例に基づき詳述す
る。
The present invention will be explained in detail below based on the embodiment shown in the third diagram.

図中1は固体撮像素子であつて、CCDやMOS
型XYアドレス方式のものなどを適用可能である
勿論撮像管であつても良い。2は固体撮像素子1
の出力信号からクロツク成分を除去するためのロ
ー・パス・フイルターである。
1 in the figure is a solid-state image sensor, such as CCD or MOS
An XY address system or the like can be applied, and of course an image pickup tube may also be used. 2 is a solid-state image sensor 1
This is a low pass filter for removing clock components from the output signal of the

4はγ補正回路であつて、擬似Y信号に対して
γ補正をかける為のものである。5は本発明に係
る輪郭補償手段としての輪郭補償回路で輝度信号
の高域成分を制御するものである。
Reference numeral 4 denotes a γ correction circuit for applying γ correction to the pseudo Y signal. Reference numeral 5 denotes a contour compensation circuit as contour compensation means according to the present invention, which controls the high frequency component of the luminance signal.

6,7,8は夫々R,G,Cyの色信号を分離
する為のサンプル・ホールド回路、12は(Cy
−G)の減算を行う事によりB(青)の信号を得
る為の減算器、9〜11は夫々R,G,Bの各色
信号についてホワイト・バランスをとる為のホワ
イト・バランス回路、13〜15はγ補正回路で
あつて各色信号に対してγ補正をかける。
6, 7, and 8 are sample and hold circuits for separating R, G, and Cy color signals, respectively; 12 is a (Cy
- a subtractor for obtaining a B (blue) signal by subtracting G); 9 to 11 are white balance circuits for white balancing each of the R, G, and B color signals; 13 to 11; Reference numeral 15 denotes a γ correction circuit which applies γ correction to each color signal.

16,17は減算器であつて、夫々R−G,B
−G信号を形成する。18,19はロー・パス・
フイルターであつて、色差信号帯域を例えば
500KHz以下に制限する為のものである。20は
輝度信号、色差信号、同期信号等からNTSC信号
を形成する為のエンコーダーである。22はR,
G信号の加算器であり、この出力信号(G+B)
はDCアンプ23に入力され、R信号との差分が
増幅される。第4図はその構成の一例を示した図
である。DCアンプ23の差分信号VC1はスライ
ス回路24において適当な電位でスライスされ、
同図bのVC2信号となる。このVC2信号は次段の
制御信号発生器25により信号振幅と電位を変え
られ、輪郭補償器5を制御する制御信号VC3とな
る。このように回路22〜25等により色飽和度
検出手段が構成されている。
16 and 17 are subtracters, R-G and B, respectively.
- form a G signal. 18 and 19 are low pass
It is a filter, and the color difference signal band is
This is to limit the frequency to 500KHz or less. 20 is an encoder for forming an NTSC signal from a luminance signal, color difference signal, synchronization signal, etc. 22 is R,
This is an adder for the G signal, and this output signal (G+B)
is input to the DC amplifier 23, and the difference with the R signal is amplified. FIG. 4 is a diagram showing an example of its configuration. The differential signal V C1 of the DC amplifier 23 is sliced at an appropriate potential in the slicing circuit 24,
This becomes the V C2 signal shown in Figure b. This V C2 signal has its signal amplitude and potential changed by a control signal generator 25 in the next stage, and becomes a control signal V C3 for controlling the contour compensator 5. In this way, the circuits 22 to 25 and the like constitute a color saturation detection means.

尚、ここでR信号と残りの色信号との差をもつ
て色飽和度レベルとしているのは以下に示す様な
理由による。即ち、一般にカラー・フイルターの
Gフイルターの占める割合はRフイルターやBフ
イルターに対し2倍になつている。これは視感度
がG成分に対して高い為である。
The reason why the difference between the R signal and the remaining color signals is used as the color saturation level is as follows. That is, in general, the proportion of the G filter in the color filter is twice that of the R filter and the B filter. This is because visibility is higher than the G component.

従つてGフイルターの空間周波数はRやBフイ
ルターの空間周波数の略2倍となつているから、
撮像素子をスキヤンした場合にGのサンプリング
周波数はRのサンプリング周波数の略2倍とな
り、G信号についてのナイキスト周波数もR信号
のそれの2倍となる。
Therefore, since the spatial frequency of the G filter is approximately twice that of the R and B filters,
When the image sensor is scanned, the G sampling frequency is approximately twice the R sampling frequency, and the Nyquist frequency for the G signal is also twice that of the R signal.

即ち、前述した如き折り返し歪はR成分に対し
て最も目立ち易く、低い空間周波数のものに対し
ても発生し易い。
That is, the aliasing distortion as described above is most noticeable for the R component, and is also likely to occur for low spatial frequencies.

尚、B成分は視感度が低くモアレ等に関しては
比較的目立ちにくいので無視し得る。
Note that the B component has low visibility and moiré and the like are relatively inconspicuous, so it can be ignored.

この様な考えから、色飽和度の目安としては、
R成分のY成分に占める割合又は(R−Y)のレ
ベルを検出すれば良い事になる。
Based on this idea, as a guideline for color saturation,
It is sufficient to detect the ratio of the R component to the Y component or the level of (RY).

これを更に簡略化すれば、R成分とG成分の比
又は差であつても良い事は以上の理由からも明ら
かである。
It is clear from the above reasons that if this is further simplified, the ratio or difference between the R component and the G component may be used.

要はR成分と他の主たる色成分とを比較すれば
良い。
The point is to compare the R component with other main color components.

第5図は、この様な観点からの本発明の第2実
施例を示す図である。即ち前記減算器の出力とし
ての(R−G)信号のレベルをもつて色飽和度と
する例である。
FIG. 5 is a diagram showing a second embodiment of the present invention from this point of view. That is, this is an example in which the level of the (RG) signal as the output of the subtracter is used as the color saturation level.

また第3図の実施例では色差信号をR−G,B
−Gとしているが、色差信号としてR−Y,B−
Yを利用するシステムでは、この内の(R−Y)
信号をもつて色飽和度信号としても良い事は明ら
かである。
Further, in the embodiment shown in FIG. 3, the color difference signals are R-G, B.
-G, but the color difference signals are R-Y, B-
In a system that uses Y, (RY) of these
It is obvious that the signal may also be used as a color saturation signal.

又、第3図示実施例ではR,G,Cyフイルタ
ーを用いた例を示しているが、R,G,Bのフイ
ルターを用いた場合も本方式は成り立つ。
Further, although the third illustrated embodiment shows an example using R, G, and Cy filters, the present method also holds true when R, G, and B filters are used.

第6図は本発明に係る輪郭補償器5の一列を示
す図である。同図aの輪郭補償器は同図bに示し
た様な周波数特性をもち、補償量は電圧可変抵抗
RLと差動アンプのエミツタ抵抗REとの比に比例
するので入力信号eiの高域周波数成分を制御する
事ができる。
FIG. 6 shows a row of contour compensators 5 according to the invention. The contour compensator shown in figure a has the frequency characteristics shown in figure b, and the amount of compensation is determined by the voltage variable resistance.
Since it is proportional to the ratio between R L and the emitter resistance R E of the differential amplifier, it is possible to control the high frequency component of the input signal e i .

即ち、第6図aの輪郭補償器に於ては入力信号
eiに対して出力信号epは ep=−eie-j〓・A{1+B(1−cosθ)} (A=RM/RE,B=RE/RL,θ=wτ) の関係が成り立つので、制御電圧VC3により電圧
制御可変抵抗RLの値が変化しこれによつてBの
値が変わり、周波数1/2τに於ける利得が第6図
bの如く変化する。従つて制御信号VC3のレベル
が大きい程、即ち色飽和度が高い程抵抗RLが大
きくなるようにすれば輪郭がなまり高域成分が制
限される事になり折り返し歪が発生しにくくな
る。尚第6図a中DLは遅延量τ(nsec)を有する
遅延線であり、第6図b中B1<B2である。第7
図aは本発明の第3の実施例図である。本実施例
では色飽和度検出信号VCからエツジ検出器にお
いて、輪郭信号を検出し、この検出信号によつて
輪郭補償器5を制御するものである。即ちエツジ
検出器35で色飽和度検出信号VCよりその輪郭
信号R1を取り出し、次段のスライス回路36に
於てこの輪郭信号R1を負極性に揃えた後スライ
スすることにより所定のレベル以上の輪郭信号を
得ている。
That is, in the contour compensator of FIG. 6a, the input signal
The output signal e p for e i is e p =−e i e -j 〓・A {1+B(1−cosθ)} (A=R M /R E , B=R E /R L , θ=wτ ) holds, the value of voltage-controlled variable resistor R L changes with control voltage V C3 , which changes the value of B, and the gain at frequency 1/2τ changes as shown in Figure 6b. . Therefore, if the level of the control signal V C3 is higher, that is, the color saturation is higher, the resistor R L is made larger, so that the outline is rounded and the high frequency components are restricted, making it difficult for aliasing distortion to occur. Note that D L in FIG. 6a is a delay line having a delay amount τ (nsec), and B 1 <B 2 in FIG. 6b. 7th
Figure a shows a third embodiment of the present invention. In this embodiment, an edge detector detects a contour signal from the color saturation detection signal V C , and the contour compensator 5 is controlled by this detection signal. That is, the edge detector 35 extracts the contour signal R 1 from the color saturation detection signal V C , and the next stage slicing circuit 36 adjusts the contour signal R 1 to negative polarity and then slices it to a predetermined level. The above contour signals are obtained.

これはR−G信号により色の飽和度を検出する
だけでなく、その中でも特にモアレの発生し易い
エツジ部について輝度信号の帯域を補正する為で
ある。そして、このようにして検出されたエツジ
部分の信号R2は第3図のローパスフイルタ2の
低域成分を抜き取る為のローパスフイルタ2′の
出力YLと加算器37により加算されて制御信号
VC4を形成する。このVC4信号により輪郭補償器
5′の周波数特性が変化する。この場合、輪郭補
償器5′の構成を第6図aと基本的に同じにして
おき制御信号VC4のレベルが低いほど電圧制御可
変抵抗RLの値が大きくなるように設定する。
This is not only to detect the color saturation level using the R-G signal, but also to correct the band of the luminance signal for edge portions where moiré is particularly likely to occur. Then, the signal R2 of the edge portion detected in this way is added by an adder 37 to the output YL of the low-pass filter 2' for extracting the low-frequency components of the low-pass filter 2 shown in FIG.
Form V C4 . This V C4 signal changes the frequency characteristics of the contour compensator 5'. In this case, the configuration of the contour compensator 5' is basically the same as that shown in FIG. 6a, and the value of the voltage-controlled variable resistor R L is set to increase as the level of the control signal V C4 decreases.

これにより、色飽和度の高い場合の、特にエツ
ジ部に於て輝度信号の高域成分が抑圧される。
As a result, high-frequency components of the luminance signal are suppressed, especially in edge portions when color saturation is high.

又、輝度信号のレベルが低くなつた場合にも輝
度信号の高域成分が抑圧されるので高域成分に含
まれるランダムノイズが減りS/Nが向上する。
尚、この実施例の場合色飽和度を示すR−G信号
やR−Y信号のエツジを検出する事により輝度信
号帯域を制限しているが、このようなものの他に
R−Y信号やR−G信号などの色飽和度を示す信
号の高域成分をハイパスフイルタで抜き出し、こ
のレベルに応じて輝度信号帯域を制限しても良
い。
Furthermore, even when the level of the luminance signal becomes low, the high frequency components of the luminance signal are suppressed, so random noise contained in the high frequency components is reduced and the S/N ratio is improved.
In this embodiment, the luminance signal band is limited by detecting edges of the R-G signal and R-Y signal that indicate color saturation, but in addition to these, the R-Y signal and R-Y signal - The high-frequency component of a signal indicating color saturation, such as a G signal, may be extracted using a high-pass filter, and the luminance signal band may be limited according to this level.

(効果) 以上詳述した如く、本発明によれば、カラー・
ストライプ・フイルターの如く周期的に色フイル
ターが配置されたカラー・フイルターを用いた固
体撮像装置において、色飽和度の高い被写体を撮
像しても折り返し歪が発生せず、常に良好な画質
を得る事ができる。
(Effects) As detailed above, according to the present invention, color and
In a solid-state imaging device using a color filter in which color filters are arranged periodically, such as a stripe filter, aliasing distortion does not occur even when imaging a subject with high color saturation, and good image quality is always obtained. I can do it.

又、構成が簡単であつて従来の信号プロセス回
路の一部(例えば輪郭補償器)と兼用できるから
都合が良い。
Further, it is convenient because the configuration is simple and it can be used also as part of a conventional signal processing circuit (for example, a contour compensator).

又、色飽和度検出方法が極めて簡単なものであ
るから製造が容易であり、信号プロセス回路の一
部出力をそのまま利用できる。
Further, since the color saturation detection method is extremely simple, manufacturing is easy, and a part of the output of the signal processing circuit can be used as is.

又、色飽和度検出信号中の高域部分(エツジ部
分)のレベルによつて輝度信号帯域を制限してい
るから折り返し歪の発生し易い色飽和度の高い画
像のエツジ部等高周波数のエネルギー成分が集中
する部分だけの帯域を制限するので、折り返し歪
低減の効果が非常に大きい、等多くの効果を有す
る。
In addition, since the luminance signal band is limited by the level of the high frequency portion (edge portion) of the color saturation detection signal, high frequency energy such as the edge portion of an image with high color saturation is likely to cause aliasing distortion. Since the band is limited to only the part where the components are concentrated, it has many effects such as a very large effect of reducing aliasing distortion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るストライプ・フイルター
の構成例を示す図、第2図はバランス効果を説明
する図、第3図は本発明の一実施例の構成を示す
ブロツク図、第4図a,bは本発明に係る色飽和
度検出回路の出力を示す図、第5図は本発明の撮
像装置の第2の実施例の要部構成を示す図、第6
図aは輪郭補償器の構成の一例を示す図、同図b
はその周波数特性を示す図、第7図aは本発明の
撮像装置の第3の実施例の構成を示す図、同図b
はその要部信号波形を示す図である。 1……撮像素子、2……ロー・パス・フイルタ
ー、5……輪郭補償器、23……DCアンプ、2
4……スライス回路、35……エツジ検出回路。
FIG. 1 is a diagram showing an example of the configuration of a striped filter according to the present invention, FIG. 2 is a diagram explaining the balance effect, FIG. 3 is a block diagram showing the configuration of an embodiment of the present invention, and FIG. 4a , b are diagrams showing the output of the color saturation detection circuit according to the invention, FIG. 5 is a diagram showing the main part configuration of the second embodiment of the imaging device of the invention, and FIG.
Figure a shows an example of the configuration of a contour compensator, Figure b
7a is a diagram showing the frequency characteristics of the imaging device, FIG. 7a is a diagram showing the configuration of the third embodiment of the imaging device of the present invention, and FIG.
is a diagram showing the main part signal waveform. 1...Image sensor, 2...Low pass filter, 5...Contour compensator, 23...DC amplifier, 2
4...Slice circuit, 35...Edge detection circuit.

Claims (1)

【特許請求の範囲】 1 被写体像を電気信号に変換する撮像手段と、 前記電気信号から少なくとも赤色信号を含む複
数の色信号及び輝度信号を形成する信号処理手段
と、 前記輝度信号の輪郭を補償する輪郭補償手段
と、 前記赤色信号と前記輝度又は輝度に相当する信
号とのレベルの差又は比を演算する演算手段とを
有し、 該演算手段の演算結果に応じて前記輪郭補償手
段の周波数特性を制御するように構成した撮像装
置。
[Scope of Claims] 1. Imaging means for converting a subject image into an electrical signal; Signal processing means for forming a plurality of color signals including at least a red signal and a luminance signal from the electrical signal; Compensating the outline of the luminance signal. and an arithmetic means for calculating a level difference or ratio between the red signal and the brightness or a signal corresponding to the brightness, the frequency of the contour compensating means being adjusted according to the calculation result of the arithmetic means. An imaging device configured to control characteristics.
JP57231537A 1982-12-29 1982-12-29 Image pickup device Granted JPS59123388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57231537A JPS59123388A (en) 1982-12-29 1982-12-29 Image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57231537A JPS59123388A (en) 1982-12-29 1982-12-29 Image pickup device

Publications (2)

Publication Number Publication Date
JPS59123388A JPS59123388A (en) 1984-07-17
JPH0422076B2 true JPH0422076B2 (en) 1992-04-15

Family

ID=16925044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57231537A Granted JPS59123388A (en) 1982-12-29 1982-12-29 Image pickup device

Country Status (1)

Country Link
JP (1) JPS59123388A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003304549A (en) 2002-04-11 2003-10-24 Olympus Optical Co Ltd Camera and image signal processing system
JP4638395B2 (en) * 2006-08-04 2011-02-23 シャープ株式会社 Image display device and image display method

Also Published As

Publication number Publication date
JPS59123388A (en) 1984-07-17

Similar Documents

Publication Publication Date Title
KR850000959B1 (en) Wide band received color demodulator
US5548330A (en) Image pickup device for generating a corrected luminance signal
DE3879595T2 (en) VIDEO SIGNAL PROCESSING CIRCUIT FOR A VIDEO CAMERA.
JPH0422076B2 (en)
JP4135197B2 (en) Image processing apparatus, image processing method, and camera
US5087967A (en) Color image pickup device having a level correcting circuit for correcting level variations in color image signals
EP0817504A1 (en) Solid-state color imaging apparatus
JP2557620B2 (en) Imaging device
JPH11177996A (en) Image processing device and method and camera
JPH0824347B2 (en) Contour corrector for color television camera
US4979024A (en) Vertical contour enhancement suppression circuit
JP2511968B2 (en) Imaging device
JPS6342478B2 (en)
JPH0419756B2 (en)
JP3337962B2 (en) Video signal processing method and video signal processing device
JP3585710B2 (en) Color imaging device and recording medium
JP2698404B2 (en) Luminance signal processing device
JPH062382Y2 (en) Adaptive contour enhancement Y / C separation circuit
JP2585019B2 (en) Imaging device
JP2776849B2 (en) Solid color camera
JP3591257B2 (en) Video signal processing method and video signal processing device
JPH0424700Y2 (en)
JP4214558B2 (en) Imaging device
JPH0345095A (en) Picture contour exaggeration circuit
JPS6129287A (en) Color solid-state image pickup device