JPH0422050Y2 - - Google Patents

Info

Publication number
JPH0422050Y2
JPH0422050Y2 JP13022386U JP13022386U JPH0422050Y2 JP H0422050 Y2 JPH0422050 Y2 JP H0422050Y2 JP 13022386 U JP13022386 U JP 13022386U JP 13022386 U JP13022386 U JP 13022386U JP H0422050 Y2 JPH0422050 Y2 JP H0422050Y2
Authority
JP
Japan
Prior art keywords
pulse width
pressure
valve
fuel
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13022386U
Other languages
Japanese (ja)
Other versions
JPS6336643U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13022386U priority Critical patent/JPH0422050Y2/ja
Publication of JPS6336643U publication Critical patent/JPS6336643U/ja
Application granted granted Critical
Publication of JPH0422050Y2 publication Critical patent/JPH0422050Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 <産業上の利用分野> 本考案は、内燃機関の燃料供給装置に関する。[Detailed explanation of the idea] <Industrial application field> The present invention relates to a fuel supply device for an internal combustion engine.

<従来の技術> 電子制御燃料噴射式内燃機関においては、一般
に吸気通路に装着された電磁駆動式の燃料噴射弁
を噴射量に応じたパルス巾をもつ噴射パルスによ
つて駆動しているが、この場合噴射パルス巾Ti
は次式によつて定まる。
<Prior Art> In an electronically controlled fuel injection type internal combustion engine, an electromagnetically driven fuel injection valve installed in an intake passage is generally driven by an injection pulse having a pulse width corresponding to the injection amount. In this case, the injection pulse width Ti
is determined by the following equation.

Ti=Tp×COEF+Ts ここで、Tpは基本パルス巾であり、次式で求
められる。
Ti=Tp×COEF+Ts Here, Tp is the basic pulse width, which is determined by the following formula.

Tp=K×Q/N Kは定数、Qは吸入空気流量、Nは機関回転数
である。COEFは各種補正係数である。
Tp=K×Q/N K is a constant, Q is the intake air flow rate, and N is the engine speed. COEF is various correction coefficients.

Tsは電圧補正分で、バツテリ電圧の変動によ
る燃料噴射弁の噴射流量変化を補正するためのも
のである(特開昭59−49346号等参照)。
Ts is a voltage correction amount, which is used to correct changes in the injection flow rate of the fuel injector due to fluctuations in battery voltage (see Japanese Patent Laid-Open No. 59-49346, etc.).

ところで、このような従来の電子制御燃料噴射
装置を高出力機関に搭載した場合、噴射パルスと
噴射量との関係を示す直線性が低域パルスで確保
できなくなる。
By the way, when such a conventional electronically controlled fuel injection device is installed in a high-output engine, the linearity indicating the relationship between the injection pulse and the injection amount cannot be ensured in the low-frequency pulse.

また逆に低域パルスの直線性を確保すると高負
荷域での噴射量が不足してしまう問題がある。
On the other hand, if the linearity of the low-frequency pulse is ensured, there is a problem that the injection amount becomes insufficient in the high-load region.

そこで、燃料噴射弁の噴孔径を大きくして高負
荷時の高噴射量を確保するようにしているが、こ
の場合、第4図に示すようにTi−Q(噴射量)特
性の直線性を確保できる領域、即ち、実質的な使
用可能領域が高めにシフトするため、そのままで
はアイドリング等の小噴射量領域で良好な噴射量
制御が行なえなくなる。
Therefore, the injection hole diameter of the fuel injection valve is increased to ensure a high injection amount at high loads, but in this case, the linearity of the Ti-Q (injection amount) characteristic is Since the area that can be secured, that is, the actual usable area shifts to a higher level, it becomes impossible to perform good injection amount control in small injection amount areas such as idling.

そこで、従来機関の1回転につき1回の割合で
行われていた噴射を2回転に1回の割合で減少さ
せ、代わりに1枚当たりの有効噴射量を倍増する
(Ti=2Te+Ts;Teは有効噴射パルス巾)こと
により、直線性に優れた領域を使用し、アイドリ
ング等小噴射量領域でも良好な噴射量制御を行う
ことが試みられている。
Therefore, we reduced the injection rate from once per revolution in conventional engines to once every two revolutions, and instead doubled the effective injection amount per engine (Ti = 2Te + Ts; Te is the effective injection amount). Attempts have been made to use a region with excellent linearity (injection pulse width) to perform good injection amount control even in small injection amount regions such as idling.

しかしながら、機関の高出力化がさらに進めら
れ、これに応じて噴孔径を増大すると、前記使用
可能領域はより高噴射量側にシフトされるため、
制御を高精度に行うことには限界があつた。
However, as the output of engines continues to increase and the nozzle hole diameter increases accordingly, the usable range shifts to the higher injection amount side.
There was a limit to high-precision control.

本考案はこのような従来の問題点に鑑みなされ
たもので、負荷に応じて噴射圧力を可変制御しつ
つ、噴射パルス巾を噴射圧力に応じて補正するこ
とにより、上記問題点を解決した内燃機関の燃料
供給装置を提供することを目的とする。
The present invention was developed in view of these conventional problems, and it is an internal combustion engine that solves the above problems by variably controlling the injection pressure according to the load and correcting the injection pulse width according to the injection pressure. The purpose is to provide a fuel supply system for engines.

<問題点を解決するための手段> このため本考案は、第1図に示すように、噴射
パルスによつて開弁駆動されパルス巾に応じた量
の燃料を吸気通路に噴射供給する燃料噴射弁を備
えると共に、前記燃料噴射弁に供給される燃料の
圧力を制御圧室に導かれる制御圧力との差圧が一
定となるように調圧するプレツシヤレギユレータ
を備えた内燃機関の燃料供給装置において、一定
の負圧を形成する定負圧弁を、機関運転条件に応
じて前記噴射パルスの基本パルス巾を設定する基
本パルス巾設定手段と、前記プレツシヤレギユレ
ータの制御圧室に前記基本パルス巾設定手段によ
つて設定された基本パルス巾が設定値以下の領域
では、前記定負圧弁によつて形成された定負圧を
導き、基本パルス巾が設定値を上回る領域では大
気圧を導くように切換制御する切換弁と、前記基
本パルス巾を前記切換弁により切換制御される燃
料噴射弁への燃料供給圧力によつて補正してパル
ス巾を設定するパルス巾設定手段と、該パルス巾
設定手段によつて設定されたパルス巾を有する噴
射パルスを燃料噴射弁に出力する噴射パルス出力
手段とを備えた構成とする。
<Means for Solving the Problems> For this reason, the present invention, as shown in FIG. Fuel for an internal combustion engine, which includes a valve and a pressure regulator that regulates the pressure of the fuel supplied to the fuel injection valve so that the differential pressure between the pressure of the fuel supplied to the fuel injection valve and the control pressure guided to the control pressure chamber is constant. The supply device includes a constant negative pressure valve that forms a constant negative pressure, basic pulse width setting means that sets the basic pulse width of the injection pulse according to engine operating conditions, and a control pressure chamber of the pressure regulator. In a region where the basic pulse width set by the basic pulse width setting means is less than or equal to the set value, a constant negative pressure is generated by the constant negative pressure valve, and in a region where the basic pulse width exceeds the set value. a switching valve that performs switching control so as to introduce atmospheric pressure; and a pulse width setting device that sets a pulse width by correcting the basic pulse width based on the fuel supply pressure to the fuel injection valve that is switching controlled by the switching valve. , and injection pulse output means for outputting an injection pulse having a pulse width set by the pulse width setting means to the fuel injection valve.

<作用> 基本パルス巾が設定値以下の低負荷領域では、
切換弁によつて定負圧弁で形成された一定の負圧
がプレツシヤレギユレータの制御圧室に導かれ
る。したがつて、定負圧との差圧が一定に調圧さ
れた燃料噴射弁への燃料供給圧力も小さくなる。
一方、パルス巾設定手段は切換弁によつて制御さ
れる燃料供給圧力に応じて噴射パルス巾を補正し
てパルス巾を設定し、これにより低負荷時でもパ
ルス巾を大きくした噴射パルスが燃料噴射弁へ出
力され、パルス巾−噴射量特性の直線性の良い所
を使用できるため、良好な噴射量制御が行える。
<Function> In the low load area where the basic pulse width is less than the set value,
The constant negative pressure created by the constant negative pressure valve is guided to the control pressure chamber of the pressure regulator by the switching valve. Therefore, the fuel supply pressure to the fuel injection valve whose differential pressure with respect to the constant negative pressure is regulated to be constant also becomes small.
On the other hand, the pulse width setting means corrects the injection pulse width according to the fuel supply pressure controlled by the switching valve and sets the pulse width, so that even at low load, the injection pulse with a larger pulse width is used for fuel injection. Since the pulse width is output to the valve and the linearity of the pulse width-injection amount characteristic can be used, good injection amount control can be performed.

また、基本パルス巾が設定値を上回る高負荷領
域では、切換弁によつて大気圧がプレツシヤレギ
ユレータの制御圧室に導かれる。
Further, in a high load region where the basic pulse width exceeds a set value, atmospheric pressure is guided to the control pressure chamber of the pressure regulator by the switching valve.

これにより、燃料噴射弁への燃料供給圧力が増
大し、これに伴いパルス巾設定手段は、噴射パル
スのパルス巾を短縮できるため、高回転時でも高
噴射量を確保することができ、機関の高出力化を
図れる。
As a result, the fuel supply pressure to the fuel injection valve increases, and accordingly, the pulse width setting means can shorten the pulse width of the injection pulse, so it is possible to secure a high injection amount even at high rotation speeds, and the engine High output can be achieved.

<実施例> 以下、本考案の実施例を図に基づいて説明す
る。
<Example> Hereinafter, an example of the present invention will be described based on the drawings.

一実施例を示す第2図において、機関1の吸気
通路には絞り弁3の上流に電磁式の燃料噴射弁4
を備えており、該噴射弁4には燃料タンク5から
燃料ポンプ6によつて吸引されプレツシヤレギユ
レータ7によつて調圧された燃料が燃料供給通路
8を介して供給される。
In FIG. 2 showing one embodiment, an electromagnetic fuel injection valve 4 is provided upstream of a throttle valve 3 in an intake passage of an engine 1.
The injection valve 4 is supplied with fuel, which is sucked from a fuel tank 5 by a fuel pump 6 and whose pressure is regulated by a pressure regulator 7, through a fuel supply passage 8.

前記プレツシヤレギユレータ7のダイアフラム
で画成された制御圧室7aには圧力導入通路9を
介して、切換弁10により切り換え制御される制
御負圧又は大気圧が導かれ、他方に画成された燃
圧調整室7bには燃料ポンプ6からの噴射燃料が
導かれる。
Control negative pressure or atmospheric pressure, which is switched and controlled by a switching valve 10, is introduced into the control pressure chamber 7a defined by the diaphragm of the pressure regulator 7 through a pressure introduction passage 9, and the other is controlled by a switching valve 10. Injected fuel from the fuel pump 6 is introduced into the fuel pressure adjustment chamber 7b.

そして、制御圧室7aに導かれる制御圧力に対
して一定の差圧だけ高い燃料供給圧力となるよう
に燃圧調整室7bから余剰燃料をリターン通路1
1を介して燃料タンク5へ戻している。
Then, surplus fuel is transferred from the fuel pressure adjustment chamber 7b to the return passage 1 so that the fuel supply pressure is higher by a certain pressure difference than the control pressure guided to the control pressure chamber 7a.
1 to the fuel tank 5.

前記切換弁10は電磁三方弁で構成され、大気
と連通する大気圧ポート10aと、後述する定負
圧弁12の出力ポート12aに圧力導入通路13
を介して接続された定負圧ポート10bとが選択
的に圧力導入通路9に接続された出力ポート10
cと連通するように切換制御される。
The switching valve 10 is composed of an electromagnetic three-way valve, and has a pressure introduction passage 13 connected to an atmospheric pressure port 10a communicating with the atmosphere and an output port 12a of a constant negative pressure valve 12, which will be described later.
The output port 10 is selectively connected to the pressure introduction passage 9 and the constant negative pressure port 10b is connected to the constant negative pressure port 10b.
Switching is controlled so that it communicates with c.

前記定負圧弁12は、アイドリング回転数制御
用の補助空気制御弁やEGR制御弁へ供給される
制御負圧を形成するための負圧制御電磁弁
(VCMバルブ)の一部に一体に組み付けられてい
る。即ち、吸気通路2に一端を臨ませた吸気負圧
導入通路13の他端をダイアフラム12bの下方
に画成された負圧室12cにダイアフラム12b
中心部と対向して臨ませ、負圧室12cには図で
上方つまり、負圧室12cの容積拡大方向にダイ
アフラム12bを付勢するスプリング12dが装
着されている。又、ダイアフラム12bの上方に
画成された大気圧室12eにはダイアフラム12
bを下方向に付勢するスプリング12fが装着さ
れている。かかる定負圧弁12構造によれば、機
関運転状態によつて吸気負圧は変化するが、該吸
気負圧が設定圧(例えば−120mmHg)以上になる
と、スプリング12d,12fのバランスにより
ダイアフラム12bが吸気負圧導入通路13の開
口を密閉して負圧室12c内の負圧を前記設定値
に一定に保つようになつている。
The constant negative pressure valve 12 is integrally assembled into a part of a negative pressure control solenoid valve (VCM valve) for forming a control negative pressure to be supplied to an auxiliary air control valve for controlling idling speed and an EGR control valve. ing. That is, the other end of the intake negative pressure introduction passage 13, which has one end facing the intake passage 2, is connected to the diaphragm 12b into the negative pressure chamber 12c defined below the diaphragm 12b.
A spring 12d is attached to the negative pressure chamber 12c facing the center and urging the diaphragm 12b upward in the figure, that is, in the direction of increasing the volume of the negative pressure chamber 12c. Further, a diaphragm 12 is provided in an atmospheric pressure chamber 12e defined above the diaphragm 12b.
A spring 12f is attached to bias b downward. According to the structure of the constant negative pressure valve 12, the intake negative pressure changes depending on the engine operating state, but when the intake negative pressure exceeds the set pressure (for example, -120 mmHg), the balance between the springs 12d and 12f causes the diaphragm 12b to move. The opening of the intake negative pressure introduction passage 13 is sealed to keep the negative pressure in the negative pressure chamber 12c constant at the set value.

尚、上記のようにして形成された定負圧は前記
切換弁10の定負圧ポート10bに直接導かれる
と共に、オリフイスを介して大気圧との連通度を
VCMバルブに組み込まれた図示しない電磁弁で
デユーテイ制御することにより、前記した補助空
気制御弁、EGR制御弁等へ供給される制御負圧
を形成するようになつている。
The constant negative pressure created as described above is directly led to the constant negative pressure port 10b of the switching valve 10, and the degree of communication with atmospheric pressure is maintained through the orifice.
By controlling the duty with a solenoid valve (not shown) incorporated in the VCM valve, a control negative pressure is generated to be supplied to the auxiliary air control valve, EGR control valve, etc. described above.

一方、コントロールユニツト14には機関回転
数検出用の回転数センサ15、吸入空気流量を検
出するエアフローメータ16、機関冷却水温度を
検出する水温センサ17等からの機関運転状態検
出信号が入力される。
On the other hand, engine operating state detection signals are input to the control unit 14 from a rotation speed sensor 15 for detecting the engine rotation speed, an air flow meter 16 for detecting the intake air flow rate, a water temperature sensor 17 for detecting the engine cooling water temperature, etc. .

コントロールユニツト14は、これら検出信号
に基づき、燃料噴射弁4に機関回転数に同期して
出力される噴射パルスの基本パルス巾を演算し、
該基本パルス巾に応じて切換弁10を切換制御す
ると共に、該切換制御によつて制御される燃料噴
射弁4への燃料供給圧力に応じて基本パルス巾を
補正してパルス巾を設定し、該パルス巾をもつ噴
射パルスを燃料噴射弁4に出力して必要量の燃料
を噴射させる。
Based on these detection signals, the control unit 14 calculates the basic pulse width of the injection pulse that is output to the fuel injection valve 4 in synchronization with the engine speed,
Switching control of the switching valve 10 according to the basic pulse width, and setting the pulse width by correcting the basic pulse width according to the fuel supply pressure to the fuel injection valve 4 controlled by the switching control, An injection pulse having the pulse width is output to the fuel injection valve 4 to inject the required amount of fuel.

以下、コントロールユニツト14による制御を
第3図に示したフローチヤートに従つて説明す
る。
The control by the control unit 14 will be explained below with reference to the flowchart shown in FIG.

ステツプ(図ではSと記す)1では、機関回転
数Nと吸入空気流量Qとに基づいて噴射パルスの
基本パルス巾Tpを次式により設定する。
In step 1 (denoted as S in the figure), the basic pulse width Tp of the injection pulse is set based on the engine speed N and the intake air flow rate Q using the following equation.

Tp=K・Q/N(Kは定数) この機能が基本パルス巾設定手段に相当する。 Tp=K・Q/N (K is a constant) This function corresponds to basic pulse width setting means.

ステツプ2では、機関冷却水温度Tw等により
各種補正係数COEFを演算する。
In step 2, various correction coefficients COEF are calculated based on the engine cooling water temperature Tw, etc.

ステツプ3では電圧補正分Tsを演算する。 In step 3, the voltage correction amount Ts is calculated.

ステツプ4ではステツプ1で演算した基本パル
ス巾Tpが設定値A以下であるか否かを判別し、
設定値A以下の低負荷領域と判定された場合は、
ステツプ5へ進み切換弁10を定負圧ポート10
bと出力ポート10cとを連通する側にセツトす
る。
In step 4, it is determined whether the basic pulse width Tp calculated in step 1 is less than or equal to the set value A, and
If it is determined that the load is in the low load area below the set value A,
Proceed to step 5 and connect the switching valve 10 to the constant negative pressure port 10.
b and the output port 10c are set on the side that communicates with each other.

次いでステツプ6へ進み、最終的な噴射パルス
のパルス巾Tiを次式により演算する。
Next, the process proceeds to step 6, where the final pulse width Ti of the injection pulse is calculated using the following equation.

Ti=Tp・COEF+Ts 一方、ステツプ4でTpが設定値Aを上回る高
負荷領域と判定された場合は、ステツプ7へ進み
切換弁10を大気圧ポート10aと出力ポート1
0cとを連通する側にセツトする。
Ti=Tp・COEF+Ts On the other hand, if it is determined in step 4 that Tp is in the high load region exceeding the set value A, proceed to step 7 and switch the switching valve 10 between the atmospheric pressure port 10a and the output port 1.
Set it to the side that communicates with 0c.

次いでステツプ8へ進み、最終的な噴射パルス
のパルス巾Tiを次式により演算する。
Next, the process proceeds to step 8, where the final pulse width Ti of the injection pulse is calculated using the following equation.

Ti=Tp・COEF・P+Ts ここでPは、切換弁10の切換制御によつて燃
料供給圧力が増大するため、パルス巾Tiを短縮
して燃料供給量が一定となるように設定された圧
力補正係数である。
Ti=Tp・COEF・P+Ts Here, P is the pressure correction set to shorten the pulse width Ti and keep the fuel supply amount constant since the fuel supply pressure increases due to switching control of the switching valve 10. It is a coefficient.

このようにして演算されたパルス巾Tiをもつ
噴射パルスがコントロールユニツト14内に設け
られた図示しない駆動回路(噴射パルス出力手
段)により機関回転に同期して燃料噴射弁4に出
力され、機関運転状態に対応した量の燃料が噴射
供給される。
The injection pulse having the pulse width Ti calculated in this way is outputted to the fuel injection valve 4 in synchronization with the engine rotation by a drive circuit (not shown) provided in the control unit 14 (injection pulse output means), and the engine is operated. An amount of fuel corresponding to the state is injected and supplied.

かかる制御を行えば、ステツプ5へ進む低負荷
領域では、プレツシヤレギユレータ7の制御圧室
7aへ定負圧弁12で形成された定負圧が導入さ
れるので、これに一定の差圧を加えた燃料供給圧
力は小さ目に制御される。そして、このような小
さ目に制御された燃料供給圧力に応じてステツプ
6ではパルス巾Tiを大き目に設定できるため、
パルス巾−噴射量特性の直線性の良い所を使用で
き、もつて良好な噴射量制御が行え、アイドルを
含む低負荷域での機関運転性能を安定させること
ができる。
If such control is carried out, in the low load region proceeding to step 5, the constant negative pressure formed by the constant negative pressure valve 12 is introduced into the control pressure chamber 7a of the pressure regulator 7, so that a certain difference is maintained between the constant negative pressure and the constant negative pressure created by the constant negative pressure valve 12. The added fuel supply pressure is controlled to be small. Then, in step 6, the pulse width Ti can be set to a large value in accordance with the fuel supply pressure controlled to be small.
It is possible to use a pulse width-injection amount characteristic with good linearity, thereby achieving good injection amount control and stabilizing engine operating performance in a low load range including idling.

一方、ステツプ7へ進む高負荷領域では、プレ
ツシヤレギユレータ7の制御圧室7aへ大気圧が
導かれるので、これに一定差圧を加えた燃料供給
圧力は大き目に制御される。そして、ステツプ8
では、大き目に制御された燃料供給圧力に応じ
て、補正係数Pを乗じてパルス巾Tiを短縮でき
るため、高回転時にパルス出力間隔が短くなつた
場合でも高噴射量を確保でき、機関の高出力化を
促進できる。
On the other hand, in the high load region proceeding to step 7, atmospheric pressure is introduced to the control pressure chamber 7a of the pressure regulator 7, so that the fuel supply pressure, which is obtained by adding a constant differential pressure to this atmospheric pressure, is controlled to be large. And step 8
In this case, the pulse width Ti can be shortened by multiplying the correction coefficient P according to the largely controlled fuel supply pressure, so even if the pulse output interval becomes short at high engine speeds, a high injection amount can be ensured, and the engine speed can be reduced. It can promote output.

尚、ステツプ4の判定結果に基づいてステツプ
6,8でパルス巾Tiを演算する機能がパルス巾
設定手段に相当する。
The function of calculating the pulse width Ti in steps 6 and 8 based on the determination result in step 4 corresponds to the pulse width setting means.

また、このようにCVMバルブ等に予め備えら
れた低負圧弁を利用してプレツシヤレギユレータ
による燃料調整圧力を切り換える構成であるた
め、エア配管を追加するのみで済み、例えば調整
圧力の異なる2つのプレツシヤレギユレータを設
けて切換使用するような構成に比較して燃料配管
系を変更せずに済むため、耐熱上あるいはレイア
ウト上有利であり、低コストで実施できるという
利点がある。
In addition, since the configuration uses a low negative pressure valve pre-installed in the CVM valve etc. to switch the fuel adjustment pressure by the pressure regulator, it is only necessary to add air piping, for example, to change the adjustment pressure. Compared to a configuration in which two different pressure regulators are installed and used selectively, this method does not require changes to the fuel piping system, so it is advantageous in terms of heat resistance and layout, and can be implemented at low cost. be.

<考案の効果> 以上説明したように、本考案によれば、負荷に
応じて燃料供給圧力を可変とし、これに応じて噴
射パルスのパルス巾を補正する構成としたため、
低負荷域での噴射量制御を良好に行えると共に、
高負荷領域での噴射量を確保して機関の高出力化
を図れる。また、構成が比較的簡易であり、耐熱
上、レイアウト上有利であり、低コストに実施で
きるという利点を有する。
<Effects of the invention> As explained above, according to the invention, the fuel supply pressure is made variable according to the load, and the pulse width of the injection pulse is corrected accordingly.
In addition to achieving good injection amount control in the low load range,
It is possible to increase the engine output by ensuring the injection amount in the high load region. Further, it has the advantage of being relatively simple in structure, advantageous in terms of heat resistance and layout, and being able to be implemented at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の構成を示すブロツク図、第2
図は本考案の一実施例の構成を示す図、第3図は
同上実施例のパルス巾設定ルーチンを示すフロー
チヤート、第4図は異なる噴孔径におけるパルス
巾−噴射量特性を示す線図である。 1……機関、2……吸気通路、4……燃料噴射
弁、7……プレツシヤレギユレータ、7a……制
御圧室、8……燃料供給通路、10……切換弁、
12……定負圧弁、14……コントロールユニツ
ト、15……回転数センサ、16……エアフロー
メータ。
Figure 1 is a block diagram showing the configuration of the present invention;
The figure shows the configuration of one embodiment of the present invention, FIG. 3 is a flowchart showing the pulse width setting routine of the same embodiment, and FIG. 4 is a diagram showing the pulse width-injection amount characteristics at different nozzle hole diameters. be. DESCRIPTION OF SYMBOLS 1... Engine, 2... Intake passage, 4... Fuel injection valve, 7... Pressure regulator, 7a... Control pressure chamber, 8... Fuel supply passage, 10... Switching valve,
12... constant negative pressure valve, 14... control unit, 15... rotation speed sensor, 16... air flow meter.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 噴射パルスによつて開弁駆動されパルス巾に応
じた量の燃料を吸気通路に噴射供給する燃料噴射
弁を備えると共に、前記燃料噴射弁に供給される
燃料の圧力を制御圧室に導かれる制御圧力との差
圧が一定となるように調圧するプレツシヤレギユ
レータを備えた内燃機関の燃料供給装置におい
て、一定の負圧を形成する定負圧弁と、機関運転
条件に応じて前記噴射パルスの基本パルス巾を設
定する基本パルス巾設定手段と、前記プレツシヤ
レギユレータの制御圧室に前記基本パルス巾設定
手段によつて設定された基本パルス巾が設定値以
下の領域では、前記定負圧弁によつて形成された
定負圧を導き、基本パルス巾が設定値を上回る領
域では大気圧を導くように切換制御する切換弁
と、前記基本パルス巾を前記切換弁により切換制
御される燃料噴射弁への燃料供給圧力によつて補
正してパルス巾を設定するパルス巾設定手段と、
該パルス巾設定手段によつて設定されたパルス巾
を有する噴射パルスを燃料噴射弁に出力する噴射
パルス出力手段とを備えたことを特徴とする内燃
機関の燃料供給装置。
A fuel injection valve is provided that is driven to open by an injection pulse and injects fuel in an amount corresponding to the width of the pulse into an intake passage, and the pressure of the fuel supplied to the fuel injection valve is controlled to be guided to a control pressure chamber. In a fuel supply system for an internal combustion engine, which is equipped with a pressure regulator that regulates the pressure so that the differential pressure is constant, the fuel supply system includes a constant negative pressure valve that forms a constant negative pressure, and the injection In a region where the basic pulse width set by the basic pulse width setting means for setting the basic pulse width of the pulse and the basic pulse width setting means in the control pressure chamber of the pressure regulator is equal to or less than the set value, a switching valve that conducts switching control such that the constant negative pressure formed by the constant negative pressure valve is guided and atmospheric pressure is guided in a region where the basic pulse width exceeds a set value, and the basic pulse width is controlled to be switched by the switching valve. pulse width setting means for setting the pulse width by correcting it based on the fuel supply pressure to the fuel injection valve;
A fuel supply device for an internal combustion engine, comprising injection pulse output means for outputting an injection pulse having a pulse width set by the pulse width setting means to a fuel injection valve.
JP13022386U 1986-08-28 1986-08-28 Expired JPH0422050Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13022386U JPH0422050Y2 (en) 1986-08-28 1986-08-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13022386U JPH0422050Y2 (en) 1986-08-28 1986-08-28

Publications (2)

Publication Number Publication Date
JPS6336643U JPS6336643U (en) 1988-03-09
JPH0422050Y2 true JPH0422050Y2 (en) 1992-05-20

Family

ID=31027514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13022386U Expired JPH0422050Y2 (en) 1986-08-28 1986-08-28

Country Status (1)

Country Link
JP (1) JPH0422050Y2 (en)

Also Published As

Publication number Publication date
JPS6336643U (en) 1988-03-09

Similar Documents

Publication Publication Date Title
US7021282B1 (en) Coordinated engine torque control
JP3804814B2 (en) Fuel supply device for internal combustion engine
JP3154038B2 (en) Apparatus for estimating intake pressure of internal combustion engine and fuel supply apparatus
US5440877A (en) Air-fuel ratio controller for an internal combustion engine
JPH0422050Y2 (en)
JPS6133981B2 (en)
JPH0814110A (en) Controller for interna combustion engine
JP3277304B2 (en) Fuel supply device for internal combustion engine
JPH0713503B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP3478092B2 (en) Engine control device with idle intake pressure learning function
JPH10274108A (en) Evaporated fuel purging device for engine
JPH01265148A (en) Electric power control device for heater provided to oxygen concentration sensor
JP2858284B2 (en) Fuel supply control device for internal combustion engine
US8186336B2 (en) Fuel control system and method for improved response to feedback from an exhaust system
JP3470468B2 (en) Control unit for diesel engine
JP2594943Y2 (en) Fuel control device for internal combustion engine
JP2621032B2 (en) Fuel injection control device
JPH0718389B2 (en) Exhaust gas recirculation control device for internal combustion engine
JPH07217475A (en) Engine control device
JPH0577867B2 (en)
JPH08291732A (en) Fuel injection control device for internal combustion engine
JPS5949346A (en) Air-fuel ratio control device of internal-combustion engine of electronically controlled fuel injection type
JP2757097B2 (en) Fuel supply control device for internal combustion engine with assist air supply device
JPH0338417B2 (en)
JPS62191628A (en) Intake path device for multicylinder internal combustion engine