JPH04220261A - Diamond-coated member for living body - Google Patents

Diamond-coated member for living body

Info

Publication number
JPH04220261A
JPH04220261A JP2412205A JP41220590A JPH04220261A JP H04220261 A JPH04220261 A JP H04220261A JP 2412205 A JP2412205 A JP 2412205A JP 41220590 A JP41220590 A JP 41220590A JP H04220261 A JPH04220261 A JP H04220261A
Authority
JP
Japan
Prior art keywords
diamond
base material
coating layer
living body
coated member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2412205A
Other languages
Japanese (ja)
Inventor
Akihiro Yagou
昭広 八郷
Naoharu Fujimori
直治 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2412205A priority Critical patent/JPH04220261A/en
Publication of JPH04220261A publication Critical patent/JPH04220261A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the diamond-coated member for the living body which has excellent biocompatibility, is free from wear and corrosion and can prevent the generation of a fault in a stationary section particularly by impact load. CONSTITUTION:This diamond-coated member for the living body has a base material which consists of a metal or ceramics and a high-polymer compd. of a high melting temp. joined to a part thereof or covering the entire part thereof and a coating layer of diamond or diamond-like carbon which is provided in the entire part or a part of the surface of this base material.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、生体に良く適合し、耐
摩耗性に優れると共に加わる荷重による障害がなく、長
期間の使用に耐え得る人工関節等の生体用部材に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to biomaterials such as artificial joints that are well suited to living organisms, have excellent wear resistance, are free from damage due to applied loads, and can withstand long-term use.

【0002】0002

【従来の技術】人工関節、人工心臓弁、人工歯根、人工
骨等の生体用部材は、生体内で使用されるため耐食性を
有し、生体からの拒絶反応を生じないこと、腫瘍の発生
原因とならないこと等の条件を満たす必要がある。
[Prior Art] Biological components such as artificial joints, artificial heart valves, artificial tooth roots, and artificial bones have corrosion resistance because they are used in living organisms, and do not cause rejection reactions from living organisms, and are the cause of tumors. It is necessary to satisfy conditions such as not being

【0003】これらの条件を満たす材料として、従来か
らステライトやチタン等の金属が多く用いられて来たが
、これらの金属にも幾つかの欠点がある。例えば、ステ
ライトを人工関節として使用した場合、摩擦する部分の
摩耗が意外に早いため比較的短期間で関節としての機能
を果さなくなるばかりか、摩耗の屑が摩擦する部分に蓄
積されて炎症の原因となること等が報告されており、数
十年という長期的な使用は不可能であつた。又、一部の
金属材料については、僅かづつではあるが腐食の進行や
表面で血液凝固が起こることも知られている。
Conventionally, metals such as stellite and titanium have been widely used as materials that meet these conditions, but these metals also have some drawbacks. For example, when Stellite is used as an artificial joint, the frictional parts wear out unexpectedly quickly, so not only does it cease to function as a joint in a relatively short period of time, but also wear debris accumulates in the frictional parts, causing inflammation. It has been reported that this can cause problems, so long-term use for several decades has been impossible. It is also known that corrosion progresses and blood coagulation occurs on the surface of some metal materials, albeit slightly.

【0004】又、セラミックを用いた生体用部材も既に
実用化されているが、セラミックは耐摩耗性や耐食性に
優れている反面、強度が低いことや脆く薄い部材が作れ
ない等の欠点があるため、人工歯根のような用途に限ら
れていた。
[0004] Furthermore, biological parts using ceramics have already been put into practical use, but while ceramics have excellent wear resistance and corrosion resistance, they have drawbacks such as low strength and brittleness that makes it impossible to make thin parts. Therefore, its uses were limited to things like artificial tooth roots.

【0005】そこで、上記金属材料からなる生体用部材
の問題点を解決するため、例えば特公昭59−1923
66号公報に示されるように、ステライトやチタン等の
金属の表面にダイヤモンド又はダイヤモンド状炭素を被
覆した生体用部材が提案されている。ダイヤモンドは殆
どの気体及び液体に耐食性があり、硬度が高く、しかも
生体への適合性が高い。又、ダイヤモンド状炭素もダイ
ヤモンドとほぼ同様の性質を有している。
[0005] Therefore, in order to solve the problems of biological parts made of metal materials, for example,
As shown in Japanese Patent No. 66, a biomaterial member has been proposed in which the surface of a metal such as stellite or titanium is coated with diamond or diamond-like carbon. Diamond is resistant to corrosion by most gases and liquids, has high hardness, and is highly compatible with living organisms. Diamond-like carbon also has properties almost similar to diamond.

【0006】しかしながら、ダイヤモンド又はダイヤモ
ンド状炭素からなる被覆層の形成には、原料ガスとして
水素とメタン等の炭化水素を使用する通常のCVD法等
の気相合成法を用いるため、ステライトやチタン等の金
属基材の温度を一般的に900℃を超える温度に加熱し
なければならず、そのため基材が高温に耐える金属に限
定される欠点があった。
However, to form a coating layer made of diamond or diamond-like carbon, a gas phase synthesis method such as a normal CVD method that uses hydrogen and hydrocarbons such as methane as raw material gases is used. Generally, the temperature of the metal base material must be heated to a temperature exceeding 900°C, which has the disadvantage that the base material is limited to metals that can withstand high temperatures.

【0007】更に、上記金属又はダイヤモンド被覆した
金属、若しくはセラミックからなる従来の生体用部材は
、いずれも剛性が大きいため、大きな荷重のかかる人工
関節や人工歯根等に用いると、衝撃荷重がこれら部材の
固定部位に直接加わることになり、固定部位に障害をお
こすという欠点があった。
[0007]Furthermore, the conventional biological components made of the above-mentioned metals, diamond-coated metals, or ceramics all have high rigidity, so if they are used in artificial joints, artificial tooth roots, etc. that are subject to large loads, the impact load will be applied to these components. This has the disadvantage that it directly applies to the fixed part of the body, causing damage to the fixed part.

【0008】[0008]

【発明が解決しようとする課題】本発明はかかる従来の
事情に鑑み、生体適合性に優れ、固定部位に障害をおこ
さず、且つ摩耗や腐食が殆ど無く、長期的な使用に充分
耐え得るダイヤモンド被覆生体用部材を提供することを
目的とする。
[Problems to be Solved by the Invention] In view of the above-mentioned conventional circumstances, the present invention provides a diamond that has excellent biocompatibility, does not cause damage to the fixation site, has almost no wear or corrosion, and can withstand long-term use. The object of the present invention is to provide a coated biological component.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
、本発明のダイヤモンド被覆生体用部材においては、金
属又はセラミックスとその一部に接合し若しくはその全
部を覆った溶融温度の高い高分子化合物とからなるか、
或は前記高分子化合物のみからなる基材と、当該基材の
表面の全部又は一部に設けたダイヤモンド又はダイヤモ
ンド状炭素からなる被覆層とを備えたことを特徴とする
[Means for Solving the Problems] In order to achieve the above object, the diamond-coated biological component of the present invention includes a metal or ceramic and a high-melting-temperature polymer compound bonded to a part of the metal or ceramic or covering the whole thereof. It consists of
Alternatively, it is characterized by comprising a base material made only of the above-mentioned polymer compound and a coating layer made of diamond or diamond-like carbon provided on all or part of the surface of the base material.

【0010】0010

【作用】本発明の生体用部材では、ダイヤモンド又はダ
イヤモンド状炭素の被覆層を形成すべき基材の全部又は
一部に、従来使用されていた金属やセラミックスよりも
剛性が小さい高分子化合物を用いているので、部材に加
えられる衝撃荷重が分散され、固定部位への過大な荷重
の負荷を防止できる。
[Operation] In the biological component of the present invention, a polymer compound having lower rigidity than conventionally used metals and ceramics is used for all or part of the base material on which the diamond or diamond-like carbon coating layer is to be formed. Therefore, the impact load applied to the member is dispersed, and excessive load can be prevented from being applied to the fixed part.

【0011】使用する高分子化合物としては、衝撃荷重
の分散のため剛性の小さいものが好ましいほか、全表面
をダイヤモンド等の被覆層で覆わない場合は生体への適
合性に優れていることが必要である。又、CVD法等の
気相合成法により表面にダイヤモンド等の被覆層を形成
する必要から、その成膜温度に耐え得る材料でなければ
ならず、これらの点から溶融温度の高いシリコーンゴム
又はフッ素ゴム等が好ましい。
[0011] The polymer compound used is preferably one with low rigidity in order to disperse the impact load, and if the entire surface is not covered with a coating layer such as diamond, it must have excellent compatibility with living organisms. It is. In addition, since it is necessary to form a coating layer such as diamond on the surface by a vapor phase synthesis method such as the CVD method, the material must be able to withstand the film formation temperature.For these reasons, silicone rubber or fluorine rubber with a high melting temperature is used. Rubber etc. are preferred.

【0012】ダイヤモンド又はダイヤモンド状炭素から
なる被覆層の形成には、CVD法やPVD法等の従来公
知の気相合成法を用い、反応室内のガスをプラズマ化す
る手段としては高周波等によるグロー放電法、アーク放
電法等の各種放電法を用いることが好ましい。特に、低
温で被覆層を形成し得る点ではプラズマCVD法、或は
イオンビーム蒸着法が適切であると思われる。
[0012] To form the coating layer made of diamond or diamond-like carbon, a conventionally known vapor phase synthesis method such as a CVD method or a PVD method is used, and a glow discharge using high frequency or the like is used as a means for turning the gas in the reaction chamber into plasma. It is preferable to use various discharge methods such as a method and an arc discharge method. In particular, the plasma CVD method or the ion beam evaporation method seems to be suitable in that the coating layer can be formed at a low temperature.

【0013】特に本発明においては、気相合成法の原料
ガスとして炭素原子及び水素原子を供給し得るガスと共
に、ハロゲン原子を供給し得るガスを用いることによつ
て成膜温度を下げ、200〜900℃の基材温度でダイ
ヤモンド又はダイヤモンド状炭素を被覆できる。従って
、下地となる基材に溶融温度が200℃以上のシリコー
ンゴムやフッ素ゴムのような高分子化合物を用いること
が可能となり、又基材の一部となる金属やセラミックス
も200℃以上の温度に耐えるものであれば良く、ステ
ライトやチタン等のほか、高い比強度を有するにも拘ら
ず従来使用できなかつたアルミニウム又はアルミニウム
合金等を使用することもできる。
In particular, in the present invention, the film forming temperature is lowered by using a gas capable of supplying carbon atoms and hydrogen atoms as well as a gas capable of supplying halogen atoms as the raw material gas for the vapor phase synthesis method. Diamond or diamond-like carbon can be coated at a substrate temperature of 900°C. Therefore, it is now possible to use polymer compounds such as silicone rubber and fluororubber with a melting temperature of 200°C or higher as the base material, and metals and ceramics that form part of the base material can also have a melting temperature of 200°C or higher. In addition to stellite, titanium, etc., it is also possible to use aluminum, aluminum alloy, etc., which could not be used conventionally despite having a high specific strength.

【0014】ハロゲン原子を供給し得るガスは、ハロゲ
ン分子のほかハロゲン原子を分子内に含む化合物、例え
ばフッ化メタン、フッ化エタン、トリフッ化メタン、フ
ッ化エチレン等のパラフィン系、オレフィン系、脂環式
又は芳香族等のハロゲン化有機化合物、或はフッ化シラ
ン等のようなハロゲン化無機化合物等であっても良い。 これらの化合物のなかでは、水素原子との結合力が大き
く原子半径の小さいものが好ましく、特に低圧で安定な
被覆層を形成するためにはフッ素化合物が好ましい。
Gases capable of supplying halogen atoms include halogen molecules as well as compounds containing halogen atoms in their molecules, such as paraffinic, olefinic, and fatty acids such as fluorinated methane, fluorinated ethane, trifluorinated methane, and fluorinated ethylene. It may be a halogenated organic compound such as a cyclic or aromatic compound, or a halogenated inorganic compound such as a fluorinated silane. Among these compounds, those having a large bonding force with hydrogen atoms and a small atomic radius are preferred, and fluorine compounds are particularly preferred in order to form a stable coating layer at low pressure.

【0015】炭素原子を供給し得るガスとしては、メタ
ン、エタン、プロパン、エチレン、プロピレン等の脂肪
族炭化水素、ベンゼン、ナフタレン等の芳香族炭化水素
、或はアンモニア、ヒドラジン等のヘテロ原子を有する
有機化合物などがある。又、水素原子を供給し得るガス
としては、水素ガス以外に、上記メタンのような各種炭
化水素等の分子内に水素原子を含む化合物がある。従っ
て、これら炭素原子と水素原子を共に分子内に含む化合
物を、炭素原子及び水素原子を供給し得るガスとして用
いることが出来る。
Gases capable of supplying carbon atoms include aliphatic hydrocarbons such as methane, ethane, propane, ethylene and propylene, aromatic hydrocarbons such as benzene and naphthalene, or gases containing heteroatoms such as ammonia and hydrazine. There are organic compounds. In addition to hydrogen gas, gases capable of supplying hydrogen atoms include compounds containing hydrogen atoms in the molecule, such as various hydrocarbons such as the above-mentioned methane. Therefore, a compound containing both carbon atoms and hydrogen atoms in the molecule can be used as a gas capable of supplying carbon atoms and hydrogen atoms.

【0016】ダイヤモンド又はダイヤモンド状炭素の被
覆層の厚さは0.05〜15μmの範囲とする。この厚
さが0.05μm未満では耐摩耗性の向上等の効果がな
く、又15μmを越えると内部歪みにより被覆層が剥離
する恐れがあるからである。尚、上記被覆層は高分子化
合物を含む基材の表面全体に形成しても良いし、特に摩
擦がおこる部位にのみ形成することも出来る。
The thickness of the diamond or diamond-like carbon coating layer is in the range of 0.05 to 15 μm. This is because if the thickness is less than 0.05 μm, there is no effect of improving wear resistance, and if it exceeds 15 μm, there is a risk that the coating layer will peel off due to internal strain. The above-mentioned coating layer may be formed on the entire surface of the base material containing the polymer compound, or it may be formed only on areas where friction occurs.

【0017】[0017]

【実施例】基材としてチタンからなる人工関節の関節部
にシリコーンゴムを接合したものを用意し、この基材の
全表面にプラズマCVD法を用いてダイヤモンド被覆層
を1μmの厚さに形成した。即ち、成膜室に原料ガスと
してCH4とSiF4との1:8の混合ガスをCH4と
SiF4の全流量20sccmで導入し、成膜室内のガ
ス圧力を約0.15Torrに維持しながら、電力密度
0.8W/cm2で放電させてプラズマ状態とし、約2
50℃に保持した上記シリコーンゴムとチタンからなる
基材の表面にダイヤモンドを被覆した。
[Example] A base material in which silicone rubber was bonded to the joint of an artificial joint made of titanium was prepared, and a diamond coating layer with a thickness of 1 μm was formed on the entire surface of this base material using the plasma CVD method. . That is, a 1:8 mixed gas of CH4 and SiF4 is introduced into the film forming chamber as a raw material gas at a total flow rate of 20 sccm of CH4 and SiF4, and while maintaining the gas pressure in the film forming chamber at approximately 0.15 Torr, the power density is Discharge at 0.8 W/cm2 to create a plasma state, about 2
Diamond was coated on the surface of the base material made of silicone rubber and titanium, which was maintained at 50°C.

【0018】得られた人工関節のダイヤモンド被覆層か
らフッ素原子は検出されなかった。このダイヤモンド被
覆人工関節を兎の大腿骨として埋め込み、1年後に取り
出してみたが、関節部の摩耗はなく、固定部での障害も
発生せず、生体に腫瘍等の変化も見られなかった。
No fluorine atoms were detected in the diamond coating layer of the resulting artificial joint. This diamond-coated artificial joint was implanted in the femur of a rabbit, and when it was removed one year later, there was no wear on the joint, no problems occurred at the fixed part, and no changes such as tumors were observed in the animal.

【0019】[0019]

【発明の効果】本発明によれば、金属やセラミックより
も剛性の小さい高分子化合物を基材の一部又は全部とす
るので、加えられる衝撃荷重を分散させることができ、
固定部位に障害を起こすことのないダイヤモンド被覆生
体用部材を提供できる。
[Effects of the Invention] According to the present invention, since part or all of the base material is made of a polymer compound having lower rigidity than metals or ceramics, the impact load applied can be dispersed.
It is possible to provide a diamond-coated biological component that does not cause any damage to the fixation site.

【0020】従って、本発明のダイヤモンド被覆生体用
部材は、生体適合性に優れ、摩耗や腐食が殆ど無く、長
期的な使用に充分耐え得るものであり、特に人工関節や
人工歯根等の衝撃荷重の加わる生体用部材として好適で
ある。
[0020] Therefore, the diamond-coated biological component of the present invention has excellent biocompatibility, has almost no wear or corrosion, and can withstand long-term use, especially when subjected to impact loads such as artificial joints and artificial tooth roots. It is suitable as a biological component in which

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  金属又はセラミックスとその一部に接
合し若しくはその全部を覆った溶融温度の高い高分子化
合物とからなるか、或は前記高分子化合物のみからなる
基材と、当該基材の表面の全部又は一部に設けたダイヤ
モンド又はダイヤモンド状炭素からなる被覆層とを備え
たことを特徴とするダイヤモンド被覆生体用部材。
Claim 1: A base material consisting of a metal or ceramic and a high-melting-temperature polymer compound bonded to a part of the metal or entirely covered, or consisting of only the polymer compound; 1. A diamond-coated biological component comprising a coating layer made of diamond or diamond-like carbon provided on all or part of the surface.
【請求項2】  上記被覆層の厚さが0.05〜15μ
mであることを特徴とする、請求項1記載のダイヤモン
ド被覆生体用部材。
2. The thickness of the coating layer is 0.05 to 15 μm.
The diamond-coated biological member according to claim 1, wherein the diamond-coated biological member has a diameter of m.
JP2412205A 1990-12-19 1990-12-19 Diamond-coated member for living body Pending JPH04220261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2412205A JPH04220261A (en) 1990-12-19 1990-12-19 Diamond-coated member for living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2412205A JPH04220261A (en) 1990-12-19 1990-12-19 Diamond-coated member for living body

Publications (1)

Publication Number Publication Date
JPH04220261A true JPH04220261A (en) 1992-08-11

Family

ID=18521076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2412205A Pending JPH04220261A (en) 1990-12-19 1990-12-19 Diamond-coated member for living body

Country Status (1)

Country Link
JP (1) JPH04220261A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030679A (en) * 1996-07-13 1998-02-03 Nissin Electric Co Ltd Part for automobile and manufacture thereof
JP2007502184A (en) * 2003-05-28 2007-02-08 ブルー メンブレーンス ゲーエムベーハー Implants with functionalized carbon surfaces

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030679A (en) * 1996-07-13 1998-02-03 Nissin Electric Co Ltd Part for automobile and manufacture thereof
JP2007502184A (en) * 2003-05-28 2007-02-08 ブルー メンブレーンス ゲーエムベーハー Implants with functionalized carbon surfaces

Similar Documents

Publication Publication Date Title
US11351031B2 (en) Applications of diffusion hardening techniques
US20070224242A1 (en) Tetrahedral Amorphous Carbon Coated Medical Devices
US5688557A (en) Method of depositing synthetic diamond coatings with intermediates bonding layers
Zhu et al. Deposition of TiC film on titanium for abrasion resistant implant material by ion-enhanced triode plasma CVD
JP4420482B2 (en) Composite material
Narayan et al. Diamond, diamond-like and titanium nitride biocompatible coatings for human body parts
Leng et al. Mechanical properties and platelet adhesion behavior of diamond-like carbon films synthesized by pulsed vacuum arc plasma deposition
JP2011152447A (en) Implant
JPH04144555A (en) Prosthetic appliance
De Barros et al. Plasma-assisted chemical vapor deposition process for depositing smooth diamond coatings on titanium alloys at moderate temperature
EP1980640B1 (en) Surface carburization technique of medical titanium alloy femoral head in total hip arthroplasty
JP2006102500A (en) Boron-added medical implant and production method therefor
JPH04220261A (en) Diamond-coated member for living body
Dion et al. Diamond: the biomaterial of the 21st century?
Met et al. Friction and wear characteristics of various prosthetic materials sliding against smooth diamond-coated titanium alloy
Bokros Carbon in medical devices
Fan et al. Adhesion of diamond films on Ti-6Al-4V alloys
Park et al. Enhanced wear and fatigue properties of Ti–6Al–4V alloy modified by plasma carburizing/CrN coating
JPH04220260A (en) Production of diamond-coated member for living body
Dinu et al. In vitro corrosion resistance of Si containing multi‐principal element carbide coatings
JPH09173437A (en) Bioprosthetic member
WO2022097300A1 (en) Metal material for medical device, manufacturing method for metal material for medical device, and medical device
Martin Tribological Coatings for Biomedical Devices
Zia Effective Heat Treatment for Improvement in Diamond-like Carbon Coatings for Biomedical Applications
Vandenbulcke et al. Nano-smooth diamond surfaces of duplex coatings on titanium alloy for low friction and low wear of biomaterial counterfaces